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Modelling policy combinations of vaccination and transmission
suppression of SARS-CoV-2 in Rio de Janeiro, Brazil

Abstract

COVID-19 vaccination in Brazil required a phased program, with priorities for age groups, health

workers, and vulnerable people. Social distancing and isolation interventions have been essential to

mitigate the advance of the pandemic in several countries. We developed a mathematical model

capable of capturing the dynamics of the SARS-CoV-2 dissemination aligned with social distancing,

isolation measures, and vaccination. Surveillance data from the city of Rio de Janeiro provided a

case study to analyze possible scenarios, including non-pharmaceutical interventions and vaccination

in the epidemic scenario. Our results demonstrate that the combination of vaccination and policies

of transmission suppression potentially lowered the number of hospitalized cases by 380+ and 66+

thousand cases, respectively, compared to an absence of such policies. On top of transmission

suppression-only policies, vaccination impacted more than 230+ thousand averted hospitalized cases

and 43+ thousand averted deaths. Therefore, health surveillance activities should be maintained

along with vaccination planning in scheduled groups until a large vaccinated coverage is reached.

Furthermore, this analytical framework enables evaluation of such scenarios.
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1 Introduction1

Since the emergence of the SARS-CoV-2 virus, the COVID-19 pandemic has reached many coun-2

tries causing millions of severe cases and deaths (Tangcharoensathien et al., 2021). The need for3

interventions was necessary to mitigate the pandemic by reducing dissemination and in the next4

phase by starting vaccination (Brauner et al., 2021; Perra, 2021). Even with a phased vaccination,5

some measures remain essential such as social distancing and isolation of cases until extensive vaccine6

coverage is achieved. Many authors in the literature have pointed out the importance of combining7

non-pharmaceutical and pharmaceutical interventions to hinder the pandemic (Huang et al., 2021;8

Borchering et al., 2021; Gumel et al., 2021; Patel et al., 2021). However, these interventions are9

geographically determined, depending on diverse factors from each city to be applied, having different10

outcomes in different regions and populations.11

Several models studied the impact of social distancing (Matrajt and Leung, 2020). Models12

range from understanding the epidemiological mechanisms behind SARS-CoV-2 and also to predict13

the dynamics of the epidemic. Schematic and extensive reviews by Wynants et al. (2020) and14

Padmanabhan et al. (2021) evaluates diverse models against their predictive capabilities. As SARS-15

CoV-2 is a challenging disease in terms of modelling due to its diverse epidemiological mechanisms16

that involve different comorbidities (Gude-Sampedro et al., 2021), heavy dependence on public health17

capacity (Garcia et al., 2020), different impact by age groups (Wu and McGoogan, 2020), the role of18

asymptomatic individuals (Day, 2020), and is heavily affected by several interventions (Zamir et al.,19

2020; Lai et al., 2020). Models in the literature have been specializing in understanding not only the20

general dynamics but also the impact of each factor to tackle each problem assertively. Regarding the21

diverse epidemiological scenario, models have been developed to enlighten the question of which are22

the high-risk population where public health authorities could focus resources (Gude-Sampedro et al.,23

2021; Das et al., 2021b,a).24

Several non-pharmaceutical interventions require prior careful analysis since they involve not only25

the number of cases and deaths, but many also address psychological issues (Adeniyi et al., 2022;26

Rahaman et al., 2020), the necessary resources for their application, and other health issues related27

to them, due to the emergence of other diseases during the pandemic (Rana et al., 2021; Shimizu28

et al., 2021; Torner, 2020). Nonetheless, these interventions have been of paramount necessity in29

reducing the number of deaths and hospitalizations worldwide (Spinelli et al., 2021; Perra, 2021; Lai30

et al., 2020; Flaxman et al., 2020; Zamir et al., 2020; Jorge et al., 2021).31

Since the beginning of the pandemic, vaccination and other pharmaceutical interventions have32

been an object of study (Huang et al., 2021). However, only most recently have we reached more33
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thorough vaccination in diverse countries. Understanding the specific dynamics that separate the34

impacts of non-pharmaceutical and pharmaceutical interventions is still debated in the literature. It35

demands a modeling task that requires careful exploration of different classes of individuals through36

age groups, and their specificities (Wu and McGoogan, 2020).37

In this work, we develop and evaluate how a model can capture the dynamics of the SARS-38

CoV-2 pandemic and compare scenarios with and without interventions to better deal with the39

ongoing SARS-CoV-2 pandemic and understand the real impact of these measures. Results consider40

specifically the dynamics of the pandemic in the city of Rio de Janeiro, Brazil, as a case study.41

However, implications of the results are general, such that they could be extended to other similar42

cities. Also, as non-pharmaceutical measures are essential to mitigate the effects of the pandemic, the43

perspective of controlling it comes with vaccination. However, its policies and methods for application44

need yet to be systematically addressed. Health surveillance should be maintained along with the45

planning for effective vaccination.46

2 Methods47

2.1 Model48

We modeled different scenarios with an ODE-based compartmental model. In the model, susceptible49

individuals (S) can evolve to exposed (E) condition when in contact with infected individuals. The50

group of infected individuals is divided between asymptomatic cases (Y), symptomatic cases (C),51

which includes both mild and moderate cases (Cx), which can evolve to severe cases (H). This last52

group occurs from the evolution of the symptomatic group and, therefore, is considered to represent53

hospitalized individuals. All infected individuals can evolve to death (D) or recovered (R). We have54

also included the dynamics of vaccination for a single dose. Vaccination individuals (V) can evolve55

into Immunized (I) or non-immunized individuals (Im). Each of these model classes is stratified by56

age groups, from 0 to 100 years, in 5-year intervals, added by one last age group of higher than 10057

years, in a total of 21 groups of distinct age ranges for each compartment of the model.58

Vaccination is included in the model as susceptible individuals are vaccinated at a coverage rate59

of η. These vaccinated individuals will take a pre-determined time τimmun to develop immunity at60

a probability of ρI when they evolve to immunized status (I). Due to incomplete vaccine efficacy,61

we included the possibility of the vaccinated individual not developing the required immunization62

and still being susceptible (Im). Although some individuals are to be considered non-immunized,63

as reported by other authors (Hogan et al.), these individuals are less likely to be infected, develop64
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symptoms, be hospitalized, and die. Therefore, these individuals evolve to different but relatable65

classes of individuals, as shown in Fig. 1 with the classes that end with the letter "v". The reduced66

parameters related to these different degrees of severity were previously reported (Hogan et al.).67

The infection rate between susceptible individuals and symptomatic is β, and with asymptomatic68

individuals is βA. When they become exposed individuals, the time to evolve to infected is the69

incubation time τinc. At the end of this time, the individual has a probability ρS of developing70

symptoms.71

The time required for an asymptomatic individual to evolve to death is α−1
A , whereas for the72

symptomatic individuals is α−1. It is expected that α > αA due to higher morbidity in the former73

case, besides the fact that asymptomatic individuals do not present themselves as clinical cases.74

Symptomatic individuals can evolve to a severe case with a risk probability of αH . The symptomatic75

(C) and severe cases (H) individuals are modeled separately due to their different epidemiological76

mechanisms (Liu et al., 2020; Siordia Jr, 2020), and to allow the test of non-pharmaceutical77

methodologies that target these individuals separately. The separation between these individuals is78

mainly based on their symptoms, e.g., mild/symptomatic and symptoms requiring hospitalization.79

Severe cases exhibit clinical conditions for hospitalization, such as oxygen saturation lower than 93%,80

dyspnea, or multiple organ failure (Wu and McGoogan, 2020; Betti and Heffernan, 2021; Musa et al.,81

2021; Chevrier et al., 2021). Both can evolve to death (or the symptomatic case can evolve to the severe82

case) separately with different case-fatality ratios, as shown in the literature (Wu and McGoogan,83

2020). It is vital to understand whether isolating only the severe cases is an adequate measure to84

mitigate the pandemic or if we should apply a broader approach when applying non-pharmaceutical85

interventions.86

The parameters related to asymptomatic individuals, such as βA and αA are calculated through87

a product between a reducing factor (Byambasuren et al., 2020) fA and the original parameter for88

symptomatic individuals β and α respectively. Regarding the individuals that were vaccinated but89

are not immunized, another reducing factor is considered (Palacios et al., 2021), fv. This factor90

applies to reduce the infection rate β with the product β · fv. These individuals also have a reducing91

factor applied to their hospitalization risk (Palacios et al., 2021), fv,H .92

The recovery of infected individuals (symptomatic and severe) is controlled by the recovery93

rate (Zhou et al., 2020) γ, being modified to γH in the case of severe cases. Severe cases are94

hospitalized and thus receiving proper assistance confronting the sickness. The hospitalized individual95

can recover after a determined period, controlled by the discharge time τdisc and dyspnea time τdysp.96

The discharge time is a median time where individuals who present a clinical recovery are therefore97

termed as recovered individuals and are no longer hospitalized. In contrast, the dyspnea time is the98
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time from illness onset to dyspnea clinical condition (Zhou et al., 2020). We calculated the recovery99

rate of individuals (γH = 1
τdisc−τdysp

) using both the discharge and dyspnea time, as we considered a100

stochastic implementation of our model.101

The ODE system which resumes this model is:

dS

dt
= −β(C +H)S − βAY S − ηS (1)

dE

dt
= β(C +H)S + βAY S + βfv(C +H)Im+ βIm,AY S − E

τinc
(2)

dC

dt
= ρS

E

τinc
− αγC

1− α(1− γ)
− αHγC

1− αH(1− γ)
− γC (3)

dY

dt
= (1− ρS)

E

τinc
− αAγC

1− αA(1− γ)
− γY (4)

dH

dt
=

αHγC

1− αH(1− γ)
− H

τdisc − τdysp
− αγHH

1− α(1− γH)
(5)

dD

dt
=

αγC

1− α(1− γ)
+

αAγC

1− αA(1− γ)
+

αγHH

1− α(1− γH)
(6)

dR

dt
= γC + γY +

H

τdisc − τdysp
(7)

dV

dt
= ηS − 1

τI
V (8)

dI

dt
=
γI
τI
V (9)

dIm

dt
=

1− γI
τI

V − βfv(C +H)Im (10)

(11)

2.1.1 Social distancing interventions102

The model enables the application of intervention measures with the social distancing of specific age103

groups. Social distancing affects people in reducing the probability of encounters between infected104

and susceptible individuals. Thus, we simulate this condition by reducing the infection rates β, βA,105

βI and βIm for the specific age groups. Due to imperfect application of social distancing intervention,106

each intervention is controlled by a success rate.107

The fact that the model is stratified by age groups opens a new range of different scenarios, e.g.108

when applying the social distancing intervention to younger age groups, we can simulate limitation109

of school activities. The reduction is applied to the R0 value, from which the infection rates are110

calculated, by multiplying it with the reduction factor κ = 0.65. The social distancing applied to the111

0-20 years old age groups is labeled SD-Y, when applied to the age groups higher than 60 years old is112

labeled SD-E, and when we apply the reduction to all age groups, we label this condition as SD-A.113

6

Jo
urn

al 
Pre-

pro
of



2.1.2 Isolation interventions114

The application of isolation interventions is made by reducing the encounter probability between115

susceptible and infected individuals. Different scenarios are tested in this work. In the lockdown116

scenario (L), we alter the susceptible flow equation to117

dS

dt
= −β(1− σL)(C +H)S − βA(1− σL)Y S − ηS (12)

Another intervention possibility is when tests are applied to the individuals, and a quarantine118

is applied where symptomatic cases are isolated with a probability σ and asymptomatic with a119

probability σA, this condition is labeled as TQ-C. In this scenario, we modify the susceptible flow120

equation to121

dS

dt
= −β(1− σ)(C +H)S − βA(1− σA)Y S − ηS (13)

If we only isolate the symptomatic cases (scenario TQ), we change the susceptible individuals122

flow equation to123

dS

dt
= −β(1− σ)(C +H)S − βAY S − ηS (14)

The scenario where we only isolate the severe cases is termed TQ-S, and we modify the susceptible124

flow equation to125

dS

dt
= −β(C + σH)S − βAY S − ηS (15)

The exposed, vaccinated, and partially immunized compartments are also changed as the susceptible126

flow, depending on the applied scenario. Table 1 summarizes the parameters used in the model127

with their respective values and references. Only four parameters were fitted to represent the SARI128

notification data for the city of Rio de Janeiro: the basic transmission rate (β) via R0, and the three129

probabilities of isolation (for symptomatic cases (σ), asymptomatic cases (σA) and lockdown scenario130

(σL)). The other parameters are recovered from the literature (Table 1).131

The parameter β is calculated from the previous definition of R0 value, the asymptomatic132
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Table 1: Description of parameters in the model and values used in simulations with
references.

Parameter Description Value
β Infection rate Calculated using R0

fA Asymptomatic factor 0.42 (Byambasuren
et al., 2020)

βA Asymptomatic infection
rate

fA · β

σ Probability of successful
isolation of symptomatic
individuals

0.60

σA Probability of successful
isolation of asymptomatic
individuals

0.20

σL Probability of successful
isolation during lockdown

0.75

ρS Probability of developing
symptoms

0.83 (Byambasuren
et al., 2020)

α Death risk Depends on age
group (Wu and
McGoogan, 2020)

αH Hospitalization risk Depends on age
group (Stokes
et al., 2020)

αA Death risk of asymptotic
individuals

fA · α

τdysp Time for dyspnea 7 days (Zhou et al.,
2020)

τdisc Discharge time 22 days (Zhou
et al., 2020)

τinc Incubation time 5.1 days (Lauer
et al., 2020)

γ Recovery rate 1/6.5 (Zhou et al.,
2020)

γH Recovery rate for hospital-
ized individuals

Calculated using
τdisc and τdysp

γI Immunization probability 0.493 (Palacios
et al., 2021)

τI Time to immunization 14 days (Palacios
et al., 2021)

fv β reducing factor for Im
individuals

0.163 (Palacios
et al., 2021)

fv,H αH reducing factor for Im
individuals

0.163 (Palacios
et al., 2021)
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value (Byambasuren et al., 2020) fA, the probability of developing symptoms (Byambasuren et al.,133

2020) ρS , and the incubation time (Lauer et al., 2020) τinc with134

β =
R0

τinc(ρS + (1− ρS)fA)
(16)

Fig. 1 depicts a schematic diagram showing the model compartments.135

Figure 1: Schematic diagram of the model compartments.

2.1.3 Stochastic implementation136

The model is implemented in a discrete-time fashion. Days were applied as the time units since cases137

are reported on a daily basis and the change of interventions could be simulated on specific dates.138

However, the algorithm could use other time units such as weeks, if applied adjusted parameters.139

The algorithm requires initial values for the variables used in the model. The transitions given in the140
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equations in the ODE system are used to obtain the transition probabilities (Allen, 2017). Typically,141

for each time step, all transitions are evaluated as probabilities and the number transitioning from142

a compartment to the other linked compartments, including keeping the state, are drawn from a143

multinomial distribution. Multiple simulations generate multiple sample paths, which are evaluated144

allowing to obtain mean values and intervals. Since the transitions follow distributions with the145

parameters used in the model, after multiple simulations the mean values are expected very close to146

the deterministic realization. A stochastic simulation code was implemented using Rstudio (Racine,147

2012) Version 1.2.5042 with R software version 4.0.0 (http://www.r-project.org) was used for all148

calculations, data importation, and curation.149

2.2 Case study150

Parameters of the model were adjusted to the number of cases and the dynamics observed in the151

municipality of Rio de Janeiro. Data from Severe Acute Respiratory Illness (SARI) are compared152

to the results of new daily hospitalizations. In contrast, data from Acute Respiratory Illness (ARI)153

notified cases are compared to the results of new daily cases. All notified data is retrieved from the154

public database OpenDataSus (available at https://opendatasus.saude.gov.br/dataset).155

Throughout the pandemic, the scenario was altered several times due to governmental decisions156

of applying the interventions or making them more flexible and the incomplete adherence of the157

population. In this section, we evaluate how the model behaves when we use the same quarantine158

severity as applied by the government for each period while comparing the results to real-time data.159

Our approach is based on the Rio de Janeiro municipality and state real pandemic decrees, with slight160

adjustments, as the accordance of the population to governmental decisions is not straightforward.161

We consider no intervention done between 01 January 2020 and 15 March 2020 (day 1 to day 74).162

Starting from 16 March 2020 until 27 March 2020 (day 75 to day 86), we consider that this is the163

beginning of the pandemic, where the government started to apply some intervention measures. The164

population’s adherence to non-pharmaceutical interventions of the government in Brazil was not165

strictly followed (de Moura Villela et al., 2021; Jorge et al., 2021; Szwarcwald et al., 2020), decreasing166

with the temporal advance of the pandemic. Therefore, to model the notification data, we have167

considered the non-pharmaceutical interventions during 2021 after the vaccination as adjustable when168

necessary. The different isolation and social distancing scenarios are summarized in Table 2.169
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Table 2: Isolation and social distancing scenarios for the different data ranges throughout the years
of 2020 and 2021.

Data range (DD.MM.YY) Isolation Social Distancing

16.03.2020 - 27.03.2020 TQ-S SD-Y+SD-E

28.03.2020 - 03.04.2020 TQ-S SD-A

05.04.2020 - 14.05.2020 TQ-C SD-A

15.05.2020 - 29.05.2020 L SD-A

30.05.2020 - 02.06.2020 TQ SD-A

03.06.2020 - 12.07.2020 TQ-C SD-A

13.07.2020 - 02.09.2020 TQ-C SD-Y + SD-E

03.09.2020 - 22.09.2020 TQ-C SD-A

23.09.2020 - 31.10.2020 TQ-C SD-Y + SD-E

01.11.2020 - 16.11.2020 TQ-S SD-A

17.11.2020 - 21.11.2020 TQ-C SD-A

22.11.2020 - 01.12.2020 TQ SD-A

02.12.2020 - 30.01.2020 TQ-C SD-A

31.01.2021 - 07.03.2021 TQ-S SD-A

08.03.2021 - 18.03.2021 TQ-S SD-Y+SD-E

19.03.2021 - 02.04.2021 TQ SD-A

03.04.2021 - 06.04.2021 - SD-A

07.04.2021 - 18.04.2021 TQ-S SD-A

19.04.2021 - 22.04.2021 TQ-C SD-A

23.04.2021 - 30.04.2021 TQ-S SD-A

01.05.2021 - 04.05.2021 TQ-C SD-A

04.05.2021 - 14.05.2021 TQ-S SD-Y + SD-E

15.05.2021 - 19.05.2021 TQ-C SD-Y + SD-E

20.05.2021 - 30.06.2021 TQ-S SD-A

To better fit the model to the real notification data, we estimated initially R0 = 2.6, the reduction170

factor of the social distancing during lockdown to be 0.75, the success in isolating symptomatic171

cases to be 0.60, while 0.20 for the asymptomatic cases. Also, we considered that the first cases172

were imported on 11 February 2020. Reporting rate of severe cases (SARI) is 96% of the real cases,173

accounting for small under-reporting, whereas under-reporting of notified ARI disease cases is 20% of174

the actual number of ARI cases. The number of SARI cases notified in the city of Rio de Janeiro,175
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daily aggregated, is evaluated from January to the end of June of 2021. This data range is considered176

an acceptable range to avoid the effect of dramatic sub notification due to notification delay.177

In order to evaluate the vaccination program, we used real vaccination data notification from the178

city of the Rio de Janeiro applied to each group at the specific dates on which they were applied.179

Figures containing the reported vaccination data are available in the supplementary material of this180

work. As our model accounts for only one dose of vaccination, we applied to the simulations the181

dates of first dose to reach the different scenarios, using data from all applied vaccines. In Brazil, the182

vaccination program covers both two-dose and single dose vaccines (Hung and Poland, 2021; Ranzani183

et al., 2021; Villela et al., 2021). To capture the general mechanism provided by the pharmaceutical184

interventions, our approach has only the application of a single dose program that also includes185

the infection-rate reduction (Hogan et al.) and hospitalization risk reduction (Palacios et al., 2021).186

Furthermore, the protection provided by the vaccination starts after the first dose (Iacobucci and187

Mahase; Tuite et al., 2021), although not full nor long-lasting, as these mechanisms help to represent188

the notification data using only a single dose program simulation. Also, we analyzed the prevention189

of deaths and hospitalizations for different scenarios considering the cumulative curves of each case190

using the equation for number of prevented (deaths or hospitalizations) λ(t),191

λ (t) = λspecific(t)− λnon(t) (17)

where λ(t) represents cumulative deaths or hospitalization at time t, specific refers to the specific192

scenario studied scenario, and non represents the scenario without vaccination and restrictions.193

3 Results194

The model captured the dynamics of the epidemics in Rio de Janeiro successfully regarding the195

hospitalizations compared to SARI notified cases (Fig. 2). As the model does not account for all the196

influenza-like illness, but it is limited to the SARS-CoV-2 cases, there should be a difference between197

the notification data and the SARI notified cases, also due some natural errors within notification198

systems. To cover this problem, we considered a reporting parameter of 0.95 to data.199

The model also presented a good fit to notification data when using the vaccination data. As200

expected, the combination of vaccination, social distancing and isolation measures was responsible to201

significantly lower the number of SARI notified cases throughout the years of 2020 and 2021 in Rio de202

Janeiro. However, if more restrictive measures were applied, the resulting effect was clearly stronger.203

After the beginning of the vaccination program, the downfall of the pandemic is advanced and204
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Figure 2: Model results for new daily hospitalizations and cases of SARI in Rio de Janeiro. Notified
cases of SARI in Rio de Janeiro are represented by black lines, other colors represent the different
simulated vaccination scenarios: vaccination with the applied restrictions (pink), no vaccination but
applying the same restrictions as the pink case (green), and vaccination with lockdown scenario (blue).
Red lines represents the median values in each scenario.

accelerated, which is evidenced by the observed inflection point. Abandoning social distancing,205

however, generates an increase in the number of expected SARI cases as shown. As shown by a206

last peak of simulation data, the advancement of vaccination dates is responsible to reduce the207

number of cases in a downward direction in conditions where a new peak would rise. If there were208

no flexibilization during vaccination, no peaks would be observed. The number of cumulative and209

prevented deaths and hospitalizations, are shown in Fig. 3.210

As shown in Fig. 3, the vaccination had a major role in reducing the number of hospitalizations211

and deaths due to SARI. The reduction in number of cases after vaccination and suppression policies,212

compared to a no-policy scenario, was 380+ thousand hospitalized cases and 66+ thousand cases,213

considering until June 2021. Vaccination is expected in this case to avert more than 230+ thousand214

hospitalized cases and 43+ thousand deaths.215

The prevented deaths and hospitalizations are only observed to remain high when the vaccination216

is applied, which is a direct result of the long-term protection provided by the vaccine. The contrary217

is observed when only social distancing or other non-pharmaceutical interventions are applied, as new218

peaks maintain high number of deaths and hospitalizations.219

As shown in Fig.4, there is a marked difference in the effectiveness of each intervention alone.220

Social distancing alone had a less pronounced effect than the quarantine of cases, except for the221

quarantine of only the severe cases (TS), which had a minimal delaying effect at the peak. A222

combination of mitigation policies makes significant impact in the peak of number of cases.223
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(a) Prevented deaths in different scenarios. Vac-
cination and Lockdown (blue), vaccination and
restriction (pink), and applying only the restric-
tions, without vaccination (green) .

(b) Cumulative deaths in different scenarios. No
vaccination and no restrictions (yellow), vaccina-
tion and lockdown (blue), vaccination and restric-
tion (pink), and applying only the restrictions,
without vaccination (green).

(c) Prevented hospitalizations in different scenar-
ios. Vaccination and Lockdown (blue), vaccina-
tion and restriction (pink), and applying only the
restrictions, without vaccination (green) .

(d) Cumulative hospitalizations in different scenar-
ios. No vaccination and no restrictions (yellow),
vaccination and lockdown (blue), vaccination and
restriction (pink), and applying only the restric-
tions, without vaccination (green).

Figure 3: Different scenarios comparing prevented deaths and hospitalizations, and cumulative deaths
and hospitalizations due to SARI. To calculate the prevented deaths and hospitalizations, we used our
model to calculate a scenario where no restrictions and no vaccination were applied, the cumulative
deaths and hospitalization curves of this scenario was our reference to calculate the absolute the
number of prevention.
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Figure 4: Different scenarios model comparison. A different color identifies each intervention. The
points represent the stochastic calculation done with the model considering the given probabilities
with 100 iterations per day. The red lines are means of each intervention. The used parameters are
given in Table 1, with the exception of R0, which is 3.5.
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As our model is stratified by age groups, we also observe how the different interventions change224

the number of deaths and hospitalizations by age, as shown by Fig.5. The quarantine of all cases, the225

social distancing of all individuals, and the combination of this intervention with the quarantine of226

symptomatic cases are the three most effective interventions, as also seen by Fig.4. In all cases, despite227

isolating or distancing different age groups, the pattern of hospitalizations and deaths regarding age228

groups is very similar. The major difference is observed in delaying the pandemic peak and the229

pandemic’s length, broadening its profile through time but not through age groups. Hospitalizations230

are centered around older groups, mainly individuals around 60 years old and older, in all interventions.231

Also, in Figure 5, despite profile similarity across age groups, some age groups are more affected232

since the beginning of the pandemic and at the end. There is a distortion of the profile’s rectangular233

shape observed in almost all scenarios in favor of a more oval-oriented shape, which is more pronounced234

in the SD-A and TQ, only TQ, and only TQ-C scenarios.235

4 Discussion236

The main objective of NPI interventions is to mitigate the effect of the pandemic for proper health237

care attention to mild and severe cases. As shown by Fig.4 independently from the nature of the238

intervention (social distancing or isolation of cases), as expected and seen in many studies (Matrajt239

and Leung, 2020; Ferguson et al., 2020; Flaxman et al., 2020; Prem et al., 2020), delaying the epidemic240

peak is a consequence of the reduction in transmission intensity.241

As demonstrated in Fig.4, when comparing different interventions, there is a considerable difference242

between the isolation of both symptomatic and asymptomatic cases and isolating only the symptomatic243

cases, with the former intervention being a more successful application. Further, if we combine244

isolation with social distancing interventions, a better result is reached in reducing the number245

of hospitalizations and delaying the peak of new cases. This result highlights the importance of246

an enforced isolation measure, as the asymptomatic cases also impact the transmission dynamics.247

The correct identification and consequently isolation of these cases pose a problem which has been248

discussed in the actual pandemic (Gandhi et al., 2020; Nishiura et al., 2020), in some cases, following249

the correct procedure to identify and isolate these cases were responsible for ending the pandemic250

(Day, 2020). The isolation of only the severe cases did alter significantly the dynamics, demonstrating251

the importance of having a model in which mild and severe cases are studied separately, as they have252

marked differences in their epidemiology (Liu et al., 2020; Siordia Jr, 2020) besides having some253

studies indicating some similarities (Yilmaz et al., 2020; Wu and McGoogan, 2020). The isolation of254

only symptomatic cases was more effective when applied together with the social distancing of all age255
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Figure 5: Normalized death and hospitalization profiles for different intervention scenarios. Normalized
values are calculated by the quotient of each daily new hospitalization or death by the highest
hospitalization or death of the group with most hospitalizations or death through the pandemic.
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groups. Therefore, it is imperative to recognize the importance of transmission by asymptomatic256

individuals.257

Comparing the applied social distancing measures, results here show a very marked difference258

between the isolation of all age groups against the isolation of only young or elderly individuals and259

the severity of SARS-CoV-2 among elderly individuals higher than younger individuals (Siordia Jr,260

2020; Wu and McGoogan, 2020). However, there must be a very careful distinction between the261

severity of cases and the epidemiological dynamic imposed by the different groups, the isolation of262

only the elder individuals is not sufficient to significantly halter the pandemic. As shown in our263

model, isolating the elderly group may give a false impression of protection to these individuals, as264

this intervention is not sufficient to effectively stop the epidemic. Therefore, only the social distancing265

of all age groups at an early stage acts to avoid severe cases.266

The social distancing of all age groups had similar performance compared to the isolation of both267

symptomatic and asymptomatic cases, as shown by Fig.4. This interesting result indicates that the268

early recognition and application of broad interventions to the population are the most effective269

measures to be studied. In regard to the social distancing, all age groups should be taken into account,270

in agreement with other modeling studies (Ferguson et al., 2020; Flaxman et al., 2020). Regarding271

the isolation intervention, all cases should be included in the measure, including asymptomatic cases,272

which can only be reached through successful testing. This highlights the importance of mass testing273

individuals exposed to the SARS-CoV-2 pandemic.274

The value of 2.6 for the R0 is within the range of the estimated value for other studies and even275

other areas (Coelho et al., 2020; Yue et al., 2021; Abbott et al., 2020; Li et al., 2020; Wu et al., 2020).276

Despite the significant number of interventions, either a social distancing or isolation intervention,277

the best approach is clearly the combination of both measures. This is shown in 4 where the SD-A278

intervention combined with the TQ isolation measure produced the best results.279

Despite all of the interventions, combined or not, there is a growing concern about the social and280

economic distress of a population during interventions (Ashraf, 2020; Fernandes, 2020). It is also281

imperative to develop pharmaceutical interventions to reduce the posed threat by the virus infections.282

Also, initiatives such as the vaccines being developed and the fundamental understanding of how the283

virus acts biologically are essential to this end. Therefore, it is crucial to model beyond the dynamics284

of only non-pharmaceutical interventions.285

Non-pharmaceutical interventions also demonstrate through Fig.2 that they have the merit of286

controlling the direction, evolution, and severity of the pandemic and should be studied and applied287

whenever possible. However, pharmaceutical and non-pharmaceutical interventions need to be288

considered altogether during the pandemic. Considering these results, it is clear that the vaccine has289
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a long-term effect on the population. Comparing the last peaks obtained by the results, although290

vaccination did not control the direction of the pandemic, it was directly responsible to diminish the291

number of cases and deaths effectively.292

In all scenarios, the phased rollout of the vaccination program should be along with maintaining293

social distancing and case isolation. Abandoning the quarantine shows to be a most critical scenario,294

in which there is a considerable increase in the number of hospitalizations. The only condition where295

the pandemic maintains its downward strategy during the vaccination program is combining social296

distancing and isolation.297

This is a crucial moment to study and show that we must yet consider the application of strict298

interventions of social distancing, isolation, and vaccination as the risk of SARS-CoV-2 transmission is299

present in multiple countries. The modelling in this work shows that effective control of the COVID-19300

pandemic requires a combination of these efforts.301
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