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Resumo

Esta tese investiga modelos matemáticos para avaliar o papel das flutuações climáticas

na dinâmica da dengue (DENV) de 2010 a 2019. Os modelos de transmissão propostos

foram baseados em um modelo SEIR, que incorpora a transmissão vertical do vetor

(mosquito fêmea para ovo) e o compartimento de ovo do vetor, permitindo assim que a

chuva seja introduzida para modular a eclosão dos ovos. Dados de satélite de temper-

atura e precipitação ao longo de dez anos foram utilizados para modular parâmetros

dos modelos. Análise de sensibilidade foi realizada para avaliar a importância de

cada parâmetro. Os cenários simulados foram comparados à incidência observada de

dengue. Os modelos foram capazes de capturar o padrão de incidência da dengue com

boa precisão até 2016. De 2016 a 2019, o ajuste do modelo mostrou resultados piores

quando comparado aos dados observáveis. Os resultados do primeiro modelo demon-

stram que as flutuações da transmissão vertical podem afetar a incidência, sugerindo a

necessidade de investigar mais a fundo esta dinâmica. O segundo modelo apresentou

um bom ajuste para 10 de 12 municípios em que foi avaliado. Os dois municípios onde

o ajuste não foi satisfatório, são municípios onde houve invasão por um novo sorotipo

de dengue dentro do período estudado, demonstrando a necessidade de evoluir os

modelos para multi-sorotipos. A melhor compreensão da relação entre as diferentes

variáveis ambientais e a dengue alcançada pelos modelos propostos pode contribuir

para políticas públicas de saúde em relação às doenças transmitidas por mosquitos.

Palavras-chaves: dengue, Modelo de transmissão, Aedes aegypti, variáveis ambien-

tais, doenças tropicais





Abstract

This thesis investigates two models to assess the role of climate fluctuations in dengue

dynamics (DENV) from 2010 to 2019. The proposed transmission models were based

on a susceptible, infected and recovered (SIR) model, which incorporates vector vertical

transmission (from female mosquito to offspring) and the egg compartment of the

vector, thus allowing the effect of rain to be introduced to modulate the hatching of eggs.

Satellite data of temperature and precipitation over ten years were used to modulate

model parameters. Sensitivity analysis was performed to assess the importance of

each parameter in the model. The simulated scenarios of the models were compared to

the observed incidence of dengue. The two models were able to capture the pattern

of dengue incidence with good accuracy through 2016, although higher deviations

were observed from 2016 to 2019. The results of the first model demonstrate that

fluctuations in vertical transmission can affect rates and patterns of attack transmission,

suggesting the need to further investigate this dynamic. The second model showed a

good fit for 10 of the 12 municipalities in which it was evaluated. The two municipalities

where the adjustment was not satisfactory were municipalities where a new dengue

serotype was being re-introduced during the period of the study, demonstrating the

need to enhance the models to include multi-serotypes. The better understanding of

the relationship between different environmental variables and dengue achieved by the

proposed models can contribute to public health policies in relation to mosquito-borne

diseases.

Keywords: dengue, Transmission model, Aedes aegypti, environment variables, tropical

diseases
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1 Introduction

Dengue is a viral mosquito-borne disease. The Dengue virus (DENV) transmis-

sion cycle includes primarily two vectors, Aedes aegypti and Aedes albopictus, and the

transmission is through bites of the female mosquito (GUARNER; HALE, 2019). Dengue

is an endemic disease in many countries worldwide, displaying marked seasonality,

and its incidence and geographic distribution has been increasing in the past 40 years,

particularly in countries with tropical climates where temperatures and humidity favor

mosquito proliferation (RACLOZ et al., 2012; FARINELLI et al., 2018). The disease is

one of the most important vector-borne diseases in the world (BHATT et al., 2013) and

considered by the World Health Organization one of the 20 Neglected Tropical Diseases

(NTDs), which consist of a group of diseases that disproportionately impact vulnerable

populations and territories (TIDMAN; ABELA-RIDDER; CASTAÑEDA, 2021).

The ecology of the DENV vector has been widely studied and modelled taking

into account temperature-dependency, which is regarded as the main seasonality

driver of this disease(FOCKS et al., 1993; OTERO; SOLARI; SCHWEIGMANN, 2006;

LIMA et al., 2014). Deterministic models, such as the SIR/SEIR (Susceptible (S),

Exposed (E), Infectious (I) and Recovered (R)) model have often been employed to

model DENV transmission dynamics(SIDE; NOORANI, 2013; HUBER et al., 2018;

CHANPRASOPCHAI; TANG; PONGSUMPUN, 2018).

Existing DENV transmission models methodology and parameters vary substan-

tially (ANDRAUD et al., 2012; LAURA et al., 2019), but many recognize that environmen-

tal fluctuations are key to understanding mosquito population dynamics. Temperature,

for example, modulates oviposition, survival rates, biting rates and the extrinsic incuba-

tion period of DENV(RUEDA et al., 1990; TUN-LIN; BURKOT; KAY, 2000; WATTS et

al., 1987), whereas rainfall is an egg hatching trigger, as it provides oviposition breed-

ing sites and the development of the mosquito’s aquatic stages (LOWE; CHIROMBO;

TOMPKINS, 2013). These environmental aspects contribute to mosquito populations

displaying strikingly seasonality and geographically distribution between tropical and
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subtropical regions, such as Brazil (KRAEMER et al., 2019).

In SIR/SEIR transmission models, the ecology of the dengue vector is modelled

taking into account temperature-dependency and the adult stage of the vector. Tem-

perature is regarded as the main driver of the seasonality of this disease (FOCKS et

al., 1993; OTERO; SOLARI; SCHWEIGMANN, 2006; LIMA et al., 2014). In this sense,

it is noteworthy that rainfall, despite being relevant when predicting dengue cases, is

usually not included as a weather variable (SIDE; NOORANI, 2013; HUBER et al.,

2018) because of the difficulty of incorporating this variable, since eggs may stay viable

after months during dry seasons (TRPIŠ, 1972), excessive and prolonged rain may

wash-out larvae from breeding sites(LOWE; CHIROMBO; TOMPKINS, 2013) and there

is a lag between the beginning of rainfall season and the increase of dengue cases (HII

et al., 2012). In regards to the vector stage, it is noted that, by incorporating only the

adult stage, which is the stage responsible for transmitting the DENV to humans(NATAL,

2002; NELSON et al., 1986), the ability to study the effects of environmental factors on

specific immature stages of the vector is limited.

Therefore, the following questions are addressed in this thesis: (1) How is the

dynamics of DENV transmission modulated by weather variables? and (2) Is vertical

mosquito transmission a significant mechanism for the long-term persistence of DENV

in a certain area? To answer these questions, two mathematical models were proposed.

The first one was recently published in the International Journal of Environmental

Research and Public Health (IJERPH), entitled "A Framework for Weather-Driven

Dengue Virus Transmission Dynamics in Different Brazilian Regions" (ALVES; LANA;

COELHO, 2021). This article proposed a SIR model based on Huber et al. (2018).

This new model includes temperature-driven biological responses related to dengue

transmission dynamics, while also adding an egg compartment to the Aedes population,

thus allowing the effect of rainfall to be introduced as a modulating variable in egg-

hatching. Vertical transmission of DENV has been demonstrated in the laboratory for

Ae. aegypti and Ae. albopictus, and has the potential to sustain endemic transmission

in the long term (ADAMS; BOOTS, 2010), so it is featured in the model as well. Four

municipalities in different climate regions in Brazil were chosen as case studies.
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In addition to the results published in the article (ALVES; LANA; COELHO,

2021), this Thesis presents additional results by expanding the analysis to include a

new model (a SEI-SEI-SEIR model), to compare these two different models, using

twelve municipalities as case studies, and to present an improvement of the optimization

process.

This thesis addressed limitations of existing models and also presented and

discussed scenarios for dengue transmission that are a cause for concern due to

environmental changes that may affect temperature, rainfall, and consequently, mosquito

ecology (TIDMAN; ABELA-RIDDER; CASTAÑEDA, 2021). This thesis is organized in

eight sections, in the following order: Introduction, Objectives, Justification, Literature

Review, Methodology, Results, Discussion, and Conclusions and Recommendations.
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2 Objectives

This thesis aimed to study the dengue transmission dynamics through weather-

driven mathematical models in the period from 2010 to 2019 in different Brazilian

municipalities.

The specific objectives were:

• Consolidate a climatic, epidemiological and demographic database to be used in

the models;

• Conceive, implement, calibrate, and fit the model to the data, through an incremen-

tal process, in the weather-driven dengue transmission dynamic models that have

an explicit compartment of mosquito population for a set of Brazilian municipalities;

• Study neglected parameters such as vertical transmission, egg population com-

partment, egg-hatching modulated by rainfall, and how they influence the dengue

transmission dynamic;

• Compare the two different models considering the goodness-of-fit between the

model output and the data.
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3 Justification

Dengue is considered a public health emergency of international concern (OR-

GANIZATION, 2008), as it is spreading rapidly and causes serious public health impacts.

To make things more pressing, more than half of the global population (3.45–4.09 billion

people) have been predicted to live in areas that are suitable for dengue transmission

(MESSINA et al., 2019). Several risk determinants of dengue have been identified,

including urbanization, population growth, migration to marginalized areas with poor

infrastructure, behavioral, and environmental factors (FARINELLI et al., 2018; LAI, 2018).

One issue that has received particular attention is the association between climatic

factors and vector-borne diseases (LAI, 2018). Considering the expected increase in

global temperatures due to climate change, it is predicted that the dengue endemic

regions will expand geographically (WILDER-SMITH, 2021; TIDMAN; ABELA-RIDDER;

CASTAÑEDA, 2021).

These facts highlight the extreme importance of expanding dengue surveil-

lance in order to support health agents’ efforts to control the dengue virus circulation.

Mathematical models are a strategic tool to improve virus surveillance through the

development of an early warning system, and therefore were the tool chosen to be

explored in this Thesis. In spite of several models for dengue transmission dynamic that

have been proposed in literature, important challenges remain, such as the establish-

ment of an association between the vector population and environmental and economic

determinants, the human population that is susceptible to the virus, and the contribution

of vertical transmission to the maintenance of virus circulation.

The models presented in this Thesis took great inspiration from the literature, but

brought innovative adaptations. This work aims to contribute to a better understanding

of the relationship between environment variables and dengue transmission dynamic,

helping to improve dengue surveillance, which ultimately aids public health agents to

propose strategies for the control of dengue.

Despite this Thesis focus on Brazilian municipalities, the methodology presented
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is replicable since it uses satellite data and the parameters can be optimized for each

specific site. Nonetheless, understanding how environmental variables impact dengue

transmission dynamic is of extreme importance since the climate change can modify

the average temperature and rainfall causing shifts in dengue transmission (TIDMAN;

ABELA-RIDDER; CASTAÑEDA, 2021; GAGNON; BUSH; SMOYER-TOMIC, 2001;

POLWIANG, 2015).
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4 Literature review

4.1 Dengue fever: symptoms, diagnosis and treatment

Dengue fever is an acute febrile disease whose etiologic agent is a virus that

belongs to the Flavivirus genus of the Flaviviridae family. Dengue virus (DENV) has

a simple chain of 11 kilobases (kb) of RNA of positive polarity (Positive polarity RNA)

(NELSON et al., 1986). This viral complex comprises four serotypes, antigenically

distinct: DENV-1, DENV-2, DENV-3 and DENV-4 (TAUIL, 2001). The four serotypes of

the dengue virus are phylogenetically distinct and often to the same degree as different

"species" of flaviviruses (KUNO et al., 1998). DENV isolation studies have suggested

that mixed-serotype infections can occur, but there is competitive suppression between

dengue serotypes (KUNO et al., 1998).

Infection of humans with any dengue virus can cause two well-defined syn-

dromes: Dengue Fever (DF) or Dengue Hemorrhagic Fever/Dengue Shock Syndrome

(DHF/DSS) (SERVIÇOS., 2019). A range of intermediate responses or no clinical re-

sponse is also possible (HALSTEAD, 2007), and it is estimated that around 80% of

dengue incidence has no clinical response (BHATT et al., 2013).

Overall, patient treatment is composed of oral intake of rehydration solution

(ORS). Paracetamol can be prescribed for high fever if the patient is uncomfortable (OR-

GANIZATION et al., 2015). However, in more severe cases, patients should be admitted

to a hospital with access to intensive care facilities, where there is also availability of

blood transfusion; fluid therapy is recommended in severe cases (ORGANIZATION et

al., 2015), which represents a considerable burden to any health system (SUAYA et al.,

2009).
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4.2 Dengue transmission

Dengue viruses are transmitted to humans through the bites of infected Aedes

mosquitoes, mostly by two main vectors: Ae. aegypti, the primary vector, and Ae.

albopictus, the secondary vector. These mosquitoes are widely distributed around the

world, mainly in tropical and subtropical regions.

The transmission cycle of Aedes is described in Figure 1. The virus enters the

skin when an infected female mosquito bites a human for a blood meal (ORGANIZATION

et al., 2015). Once infected, symptoms may appear between the 4th and 7th day after

the bite, which is the time required for a host to become infectious, that is, capable of

transmitting the virus to a new mosquito (GUZMAN et al., 2016). This is also called

the intrinsic incubation period. When a new mosquito becomes infected after biting

an infectious human, it takes around 8 to 10 days for it to become infectious, this is

the extrinsic incubation period (GUZMAN et al., 2016). Ae. aegypti females can bite

different people during a single blood meal, thus they can be very effective in spreading

the virus (GUBLER, 1998).

Vertical transmission of dengue in mosquitoes is reported to be of low probability

(JOSHI; MOURYA; SHARMA, 2002; MITCHELL; MILLER, 1990; SERUFO et al., 1993).

This mechanism needs to be further studied, as it can be an efficient way to maintain

DENV circulation, especially in regions with marked seasonality, where eggs can go

into latency during the dry season and develop after, in more humid seasons, already

carrying the virus.
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Figure 1 – After an infected Aedes aegypti mosquito bites a human, there is a probability

that the human will become infected after being exposed to dengue virus. The

human host will carry the virus and might pass to susceptible mosquitoes,

carrying on the disease. Source: (GUZMAN et al., 2016)

Figure 2 shows three (3) major cycles reported in literature: forest, rural and

urban cycles. The primitive forest transmission cycle of dengue viruses involves some

Aedes species mosquitoes and primates (GUBLER, 1998). Infected primates can invade

rural areas carrying the virus and starting a cycle. Humans move between urban and

rural areas, bringing the virus to these sites. In Brazil, Ae. aegypti is the only main vector

in urban sites (GUBLER, 1998).

A great deal of effort is taken to prevent the spread of dengue viruses in infected

mosquitoes by implementing mosquito control. Female mosquitoes do not fly far from
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Figure 2 – Major dengue transmission cycles reported: forest/enzootic, related to

primates-Aedes-primates mosquitoes cycles; rural, related to human-Aedes-

human cycle; and urban areas, where the viruses are maintained in an Ae.

aegypti-human-Ae. aegypti cycle. Source: (GUBLER, 1998)

where they are born. This fact makes human movement an essential key in spreading the

virus (ORGANIZATION, 2010; WILDER-SMITH; GUBLER, 2008). Despite these known

facts, it is still not clear where or when an epidemic can start. However, since dengue

is a vector-borne disease, environmental forcings are important to the vector ecology

and the virus transmission. This relation should be carefully studied as determinants of

dengue epidemics.

4.3 Dengue burden

Estimates from 2000 to 2010 showed that there were on average 390 million

(95% credible interval 284–528) dengue cases per year in the world, of which 96

million (67–136) manifest apparently, with symptons, in any level of disease severity.

This results in around 24,000 deaths and an enormous burden in healthcare systems

globally (BHATT et al., 2013). Other estimates cite 50 million worldwide cases per year,

with 500,000 hospitalized cases and 20,000 deaths caused by dengue (CRUZ, 2002).

According to (ORGANIZATION, 2022), the number of dengue cases is growing,
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Figure 3 – Average annual number of dengue cases reported to the Panamerican

Health Organization and number of countries reporting dengue. Source:

(ORGANIZATION, 2022)

as illustrated in Figure 3. This growth has made the World Health Organization revise

the International Health Regulations (IHR), including dengue as one of the diseases

of public health emergency of international concern (ORGANIZATION et al., 2015).

Dengue threatens health security as it can disrupt healthcare systems during rapid

epidemic spreads, which may happen beyond national borders (ORGANIZATION et al.,

2015).

The metric disability-adjusted life years (DALYs), used to assess health and

social impacts, shows a significant burden on the countries in areas where dengue is en-

demic. Meltzer et al. (1998) estimated that endemic countries lost 580 DALYs/year/million

population on average. Similar values caused by other diseases such as malaria, tuber-

culosis, intestinal helminths, and childhood diseases cluster in all of Latin America.

Few studies have measured the economic impact of dengue. Suaya et al.

(2009), in a study conducted more than ten years ago, interviewed 1695 ambulatory

and hospitalized patients diagnosed ostensibly with dengue in Latin America and Asia.

Of those interviewed, 45% were hospitalized and 78% indeed had dengue. Students
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missed an average of 5.6 days of school and workers lost an average of 9.9 days

of work, considering days spent in hospital care or at home, with fever. The average

opportunity and health cost reached 571 American dollars per case, being opportunity

the time lost not working. The total average opportunity and health cost was 149.3 million

American dollars per year for the countries Brazil, El Salvador, Guatemala, Panama, and

Venezuela (SUAYA et al., 2009). Brazil stands out with an average opportunity and health

cost of 135.2 million dollars per year with dengue. The current total cost is probably

higher, since it will account for the underreported cases and the substantial costs

associated with dengue surveillance and vector control programs (ORGANIZATION et

al., 2015).

As evidenced by the study of Suaya et al. (2009), Brazil’s dengue burden is

worrisome. The country notified 98.5% of all the dengue cases and the highest fatality

rate in South America in the 2000-2010 decade (ORGANIZATION et al., 2015). Dengue

afflicts all levels of society, but the burden may be higher among the poorest, who

more frequently lack access to safe drinking water and proper solid waste collection

(ORGANIZATION et al., 2015).

4.4 Dengue history in Brazil

Evidence of occurrence of dengue in Brazil first appears in 1845 (DICK et al.,

2012). Dengue was introduced, mainly in port cities which had commercial activities. A

possible reason why coastal cities were more susceptible to dengue is that travelers

play an essential role in the epidemiology of dengue infections, as travelers with the

disease, which can be caused by different serotypes, can carry it into new areas

(ORGANIZATION et al., 2015).

In 1945, scientists isolated Dengue viruses for the first time, and laboratory di-

agnostic was available thereafter (SABIN; SCHLESINGER, 1945). In the same decade,

the Pan American Health Conference began to promote prevention and control mea-

sures against Aedes aegypti in Brazil, by then already known to be the primary vector

of dengue (DICK et al., 2012). The measures taken against the vector aimed at their
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aquatic and alate stages, using larvicide made of substances with a base of mineral oils,

cresols and potassium permanganate (SEVERO, 1955). This campaign was a success

in eliminating mosquitoes in vast areas of Brazil (DICK et al., 2012).

However, with the relaxation of a intensive vector control policy, the Americas

experienced their first dengue importation in 1963 in Jamaica. DENV-3 caused this

epidemic, a virus of Asian origin (DICK et al., 2012). Interestingly, in Asia, only DENV-2

remained in circulation by the middle of the 20th century (HALSTEAD, 2006) Decades

of unprecedented human efforts to eradicate Ae. aegypti fell apart very rapidly sub-

sequently, and after 1971, a reinfestation of the vector in the Americas brought the

spread and expansion of Dengue (DICK et al., 2012). The 80s decade was marked

by the re-introduction of DENV-1 in Brazil (SCHATZMAYR et al., 1986); DENV-2 was

re-introduced in 1990 (NOGUEIRA et al., 1993); DENV-3 appeared considerably later, in

2001 (NOGUEIRA et al., 2001) and lastly DENV-4 was re-introduced in 2011 (CAMPOS

et al., 2013). These introduction timeframes and the resulting number of dengue cases

can be seen in Figure 4.

Figure 4 – Dengue cases and dengue fatal cases reported in Brazil in 34 years (1986

to 2020). Colour bars indicate when each dengue strain was introduced or

re-emerged. Gray bars indicate number of dengue cases. Line plot indicate

number of dengue fatality reported. Source: Salles et al. (2018)

From the 2000s forward, an unprecedented increase in the number of cases is

reported in the americas (DICK et al., 2012). All four serotypes have been circulating
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since 2011, and the highest record of cases ever reported happened during this decade.

Brazil started to reach more than 1 million cases per year, and deaths reportedly

reached almost 1,000, as shown in Figure 4. This scenario is worrisome since DHF

cases are reported in every epidemic (DICK et al., 2012).

Dengue cases show cyclical variation, with high epidemic years and low epi-

demic years (ORGANIZATION et al., 2015). Driven by peak transmission of the disease,

dengue shows a seasonality influenced by characteristics of the host, the vector and the

agent. The history of dengue shows a struggle between humans and virus-vector, but

until today researchers still try to fully understand how transmission happens in order to

alert health autorities in advance about possible new outbreaks.

4.5 Environmental forcing

Dengue vector’s life cycle has four main stages: egg, larvae, pupae, and adult

mosquito. Favorable conditions for Aedes mosquito development are high tempera-

ture and high precipitation. These conditions are found in Tropical and Subtropical

regions, classifications made by Köppen-Geiger, which divide Earth into regions as an

expression of the prevailing climate (ALVARES et al., 2013). The boundaries between

climatic regions were selected using temperature and rainfall data, but they have a high

correlation to biome distribution and Ae. aegypti population distribution as well.

The tropical region has an average temperature of more than 18 C° during the

coldest month (ALVARES et al., 2013). The areas in subtropical zones bordering on

tropical zones have similar characteristics. The regions with more rain volume and forest

cover in tropical zones can be classified as tropical rainforests. Figure 5 represents

mean temperature in Brazil territory. Brazil has a vast territory and thus different climates,

almost all favorable to Ae. aegypti mosquito (Figure 6).

Environmental factors have been shown to be strong determinants in dengue

epidemic behavior. Morin, Comrie e Ernst (2013) bibliographic review give numerous

examples of how environmental factors impact dengue transmission: habitat availability

for mosquito larvae is influenced by temperature and incoming precipitation; and tem-
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Figure 5 – Map of Brazilian mean temperature. Blue stands for temperature bellow 10

C° and green stands for temperatures above 26 C°. Source: (ALVARES et

al., 2013)

perature is a major regulator of mosquito development, viral replication within infected

mosquitoes, its survival and reproductive behavior.

Furthermore, there are key points in the dengue transmission cycle, that need

to be understood in order to know how environmental factors determine the disease

dynamic, which will be addressed in the following.

4.5.1 Ae. aegypti oviposition behavior and fecundity

Most studies evaluated where the eggs are laid or specific conditions like

different water treatments (CHADEE; CORBET; TALBOT, 1995; FAY; PERRY et al.,

1965).
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Figure 6 – Map of Brazilian climate using Köppen-Geiger classification. Blue stands for

tropical weather and green stands for subtropical weather which have more

probability of dengue cases. Source: (ALVARES et al., 2013)

Chadee, Corbet e Talbot (1995) showed that mosquitoes prefer laying eggs in

dark corners of the container and most of them are laid during the day.

The average number of eggs laid by female Ae. aegypti mosquito has also

been investigated. In an laboratory experiment, each colony with 54 females provided

from 200 to 3,000 eggs per day, which means 3-55 eggs laid by female per day (FAY;

PERRY et al., 1965). This number can change according to the weight of the female

and other factors (FOCKS et al., 1993). Furthermore, the gonotrophic cycle, i.e. the

period between the blood meal and oviposition, is regulated by the temperature and

takes longer for the first oviposition than for the subsequent ones (FOCKS et al., 1993).

Oviposition is directly linked to environmental factors such as temperature and
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precipitation. Chadee, Corbet e Talbot (1995) showed that most of the eggs laid in

their study in Trinidad, West Indies, were obtained during the wet season: 86.4% of the

3,556 eggs of Ae. aegypti, whereas the remaining, proportionally very few eggs, were

deposited during the dry season. A similar study in Brazil showed a positive correlation

between precipitation (mm) with the number of eggs: 0.91 more eggs were found for

each 1 mm of precipitation in ovitraps in the field, which fits a linear regression with 0 as

intercept (ZEIDLER et al., 2008). Laboratory experiments also showed this correlation;

low humidity (32%) more than halved the mean number of eggs laid per mosquito

compared to high humidity level (84%) (CANYON; HII; MÜLLER, 1999).

Mathematical models have already been used to model oviposition as a function

of temperature. Yang et al. (2009) fitted oviposition rate as a function of temperature in a

quasi-linearly manner. Mordecai et al. (2017) gathered data from literature and modelled

oviposition in response to temperature using a Brière function (cT (T−Tmin)(Tmax−T )− 1
2 ),

assuming that fecundity has its peak between 23 C° and 34 C°.

4.5.2 Ae. aegypti vertical transmission of DENV

Vertical transmission (VT) of DENV in mosquitoes has been demonstrated

previously under laboratory conditions (LIMA; LIMA-CAMARA, 2018). Three consecutive

generations of Ae. aegypti and Ae. albopictus transmitted the virus to their eggs (JOSHI;

MOURYA; SHARMA, 2002). A number of studies further demonstraded the natural

vertical transmission of DENV in Ae. aegypti and Ae. albopictus (MITCHELL; MILLER,

1990; SERUFO et al., 1993; COSTA et al., 2017).

In Brazil, the vertical transmission was observed in laboratory in 1990 (MITCHELL;

MILLER, 1990). Natural vertical transmission was also demonstrated in 1993 (SERUFO

et al., 1993), in three confirmed cases of DENV-1 in Campos Altos, Minas Gerais

State. A recent study in the Amazon rainforest showed that all dengue serotypes were

circulating at the same time, and were identified in larval samples (COSTA et al., 2017).

Vertical transmission is not a well-established parameter and studies do not

converge about it. A study from 1992 assessing VT in Aedes aegypti in the United States

reported 13% of vertical transmission rate (BOSIO et al., 1992). (BUCKNER; ALTO;
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LOUNIBOS, 2013) studied mosquitoes in Florida and vertical transmission of DENV-1

was documented with rates of 11.11% (2 out of 18) for Ae. albopictus and 8.33% (3 out

of 36) for Ae. aegypti. VT of DENV-4 showed 10.5% of Ae. aegypti naturally infected by

this route in Brazil (CRUZ et al., 2015). On the other hand, Thailand researchers found

considerably lower and different rates of VT over a year, varying from 0 to 2.4%; the

peak of vertical transmission occurred four months before a large dengue outbreak in

this case (CHOW et al., 1998). Finally, a study did not find any VT evidence (CHOW

et al., 1998). In this case, it is noteworthy that several factors can contribute to the

non-detection of VT, including low sensitivity of the tests, inappropriate methodology,

and mosquito sample maintenance issues.

Bosio et al. (1992) claims that vertical transmission rates may be higher in

epidemic areas, which may contribute to the maintenance of DENV circulation and the

amplification of the cases since the adult insects are born naturally infected.

4.5.3 Ae. aegypti egg stage

Ae. aegypti eggs are laid in situations where conditions of transient water occur.

However, they can be viable out of water for up to a year or longer (HARDWOOD;

HORSFALL, 1959), in what is known as diapause or latency condition or quiescence

(YANG et al., 2014). Diapause is a crucial adaptation to seasonal environmental variation

in a wide range of arthropods. During diapause, desiccation resistance in eggs increases

and they can survive in an extreme weather conditions (URBANSKI et al., 2010).

Sota e Mogi (1992) recorded different values for their Ae. aegypti eggs, in a

study conducted in Japan, with the mean survival time varying between 101-128 days.

On the other hand, Faull and Williams observed more than 7,000 eggs laid in Australia

and concluded their mean survival time was 180-220 days (FAULL; WILLIAMS, 2015).

4.5.4 Ae. aegypti eggs hatching behavior

When the surroundings become favorable to larval development due to the

water availability, the egg’s latency is interrupted and the larva hatches (CLEMENTS
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et al., 1992). Eggs hatching at the beginning of a favorable period is a critical event

to ensure the larvae survival (BYTTEBIER; MAJO; FISCHER, 2014). Factors such

as the water temperature and the physiological condition of eggs may determine the

hatching response of Ae. aegypti eggs (BYTTEBIER; MAJO; FISCHER, 2014). Eggs of

Ae. aegypti exhibit increased viability under conditions of high humidity ( 80%), as they

hatched readily when kept under such conditions (SAIFUR et al., 2010).

Two types of eggs are described on the literature, one being "active" eggs, which

hatched readily after oviposition, and the other being "subactive" eggs that hatched only

after a long period of flooding (SAIFUR et al., 2010). Eggs of Aedes aegypti hatch more

readily in the laboratory when moistened for several hours before submergence in water

(SAIFUR et al., 2010). Focks et al. (1993) noticed that 19.7% of all newly eggs hatched

spontaneously without flooding and 59.6% were "subactive" eggs.

Moura et al. (2020) showed that Ae. aegypti hatching rates for 3-day-old eggs

was 85.4%, and hatching rates of batches of eggs stored for 12–61 days ranged between

84% and 90%; 339.037 eggs were arranged to hatch. Therefore, egg latency did not

affect its survival, as the hatch rate did not present a significant change after storage for

12-61 days.

Alto e Juliano (2001) showed daily eclosion rates of 5-6% per day in their

case study. They also noticed how precipitation and temperature affected the hatching.

Precipitation had a quadratic effect, and there were more hatchings when the weather

was neither too dry nor too wet. The temperature had a linear effect between 22 C° to

30 C°, with a higher hatching rate when temperature was near 30 C°. Focks et al. (1993)

found a similar relation, observing the development rate of 1-2% in low temperatures

(20-25 C°) which increased to 2-3% in high temperature (35 C°).

4.5.5 Ae. aegypti larvae stage

There are four larval instars (SCHAPER; HERNÁNDEZ-CHAVARRÍA, 2006).

The larvae change considerably in size and structure during their development; the

first instar is about 1 mm long, whereas the fourth instar grows to be eight times larger

(SCHAPER; HERNÁNDEZ-CHAVARRÍA, 2006).
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The environment, food supply, container, and temperature can affect the devel-

opment time from the larvae stage to the pupae. Bar-zeev et al. (1957) reported a mean

of 14.9 days for this period between different containers. In stressful situations, such as

low food supply, the development stage becomes a function of food weight density, and

they are negatively correlated and can go up to 20 days (FOCKS et al., 1993). When

the food supply is not limited, development rates are limited by temperature rather than

by food (FOCKS et al., 1993).

In experiments with Aedes albopictus, different rates were found for different

average development times depending on the container: development times were 19.6,

27.3, and 37.5 days for a tree hole, a bamboo stump and an auto tire, respectively, the

latter having the lowest food supply (GOMES et al., 1995). These development times

are more realistic considering field conditions, as they are similar to Wijeyaratne et al.

(1974)’s work, which observed a development time for larvae of 24 days and overall of

39 days in the city of Gainesville/USA, at the summer season.

Alto e Juliano (2001) showed a correlation between development time of the

larval and temperature. At 22 C°, which is a harsh temperature for Ae. aegypti, the

controlled sample in the laboratory took 14-16 days to develop, but this time decreased

drastically at 30 C° temperature, reaching 10-11 days. Yang et al. (2011) also found

correlation between temperature and larvae development time. Mordecai et al. (2017)

modeled the development rate of the larvae using temperature, but with a quadratic

function that has 40 C° as the limit.

Regarding mortality rates, larvae survival is very susceptible to food density. In

experiments, 80% of larvae died in low food density, whereas only 15-30% died with

enough food density, which corresponds to a 1% mortality rate per day (FOCKS et al.,

1993).

4.5.6 Ae. aegypti pupae stage

Pupae belong to the aquatic phase of the mosquito life cycle. They stay dormant,

metamorphosing, but can be activated through external stimuli such as vibrations

swinging around the container (NELSON et al., 1986). In experiments, the pupae stage
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hardly had any mortality rate in different kinds of stress conditions (FOCKS et al., 1993),

primarily because pupae do not feed. Experiments made by Bar-zeev et al. (1957)

showed pupal development time ranging between 1-8 days, once again correlated

to temperature. Literature defines an average of 2 days for pupae development time

(NELSON et al., 1986; FOCKS et al., 1995).

4.5.7 Ae. aegypti adult stage

This stage in mosquitoes is generally marked by reproduction and dispersion of

the species; however, in opposition to other species, the Ae. aegypti has a more passive

dispersion that comes from the transport of the eggs container more than the adult

flight capacity (NELSON et al., 1986). The female often remains in the same household

where it emerged, not flying more than 50 meters. Generally, the adult behavior includes:

copulating, feeding, and sometimes migrating and resting (NELSON et al., 1986).

Brady et al. (2013) modeled the adult survival rate using a sample of 410

mosquitoes. Mosquitoes on field showed lower survival time compared to mosquitoes

in laboratory, 10-20 days compared with 60-100 days, respectively. This gives a daily

mortality rate between 0.05 and 0.082 (average 0.064) in laboratory compared to an

observed in field mortality rate, 0.033 and 0.595 (average 0.288). These numbers are

still far from the value used by Focks et al. (1995), of 8.6 days expected survival time or

0.118 daily mortality rate.

4.5.8 Ae. aegypti sex ratio

Only female mosquitoes need humans for blood meal (ORGANIZATION et

al., 2015) and therefore can transmit the virus. As a result, the sex ratio, proportion

between males and females inside the population, is an essential factor in determining

dengue transmission. Focks et al. (2000) noticed a correlation between sex ratio and

temperature: the higher the temperature, the higher the ratio of females. In these studies,

ratios ranged from 1-0.88 (1 male to 0.88 females or 46% females) at 22 C° to 1-3.88

(1 male to 3.88 females or 80% females) at 32 C°. Most models prefer to use a 1-1

female-to-male sex ratio, although the reasons for this choice remain unclear (HUBER
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et al., 2018; MAGORI et al., 2009).

4.5.9 Ae. aegypti environmental carrying capacity

Mosquito population is regulated by several factors such as quantity of hosts,

breeding sites availability, water breeding sites temperature, food availability, and others.

All of those factors are dependent of economic, demographic and climate factors

(PALAMARA et al., 2014).

Some authors use the carrying capacity in the adult mosquito stage as function

of temperature, prioritizing the climate factors (HUBER et al., 2018; PALAMARA et al.,

2014). Other authors use the maximum number of mosquitoes per kilometer square

(MAIDANA; YANG, 2007). One study has showed the correlation between the carrying

capacity and area size (LANA et al., 2018).

In a complex approach, Erguler et al. (2016) modelled carrying capacity using a

rainfall-human density-dependent function. Mosquito population can not evolve without

rainfall or humans and differences in demographic could affect the relationship between

humans and mosquitoes. Field studies showed an average of 0.7 rate between females

mosquitoes per person in Panama (NEIRA et al., 2014) while in Amazon, the reported

rates were of 1.2 females mosquitoes per person in the high-temperature season and

0.06 in the low-temperature season (ABAD-FRANCH; ZAMORA-PEREA; LUZ, 2017).

Finally, many authors prefer to limit the larvae or pupae population, but not in the

adult mosquito (TRAN et al., 2013). Others prefer to link the adult mosquito population

to studying the pupae since the mortality rate of pupae is insignificant. Focks et al.

(2000) estimated a range between about 0.5 and 1.5 Ae. aegypti pupae per person with

an average of 0.71.

4.5.10 Ae. aegypti biting behavior

Within 24 hours after hatching, female mosquitoes can take a blood meal

(NELSON et al., 1986). They prefer to feed on humans during the daytime and have

two peaks of biting activity: early morning, from 2 to 3 h after daybreak, and afternoon
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right before dark (GUBLER, 1998).

Canyon, Hii e Muller (1999) estimated the number of bites per day using

three intervals of host availability experiments, 6, 12, and 24 h intervals. Host-biting

frequencies were 0.7 bites per female mosquito in the 24 h feeding interval, 0.54 bites

per female in the 12 h, and 0.47 bites per female in the 6 h; thus, when hosts are more

available, they trend to bite more (CANYON; HII; MULLER, 1999). However, laboratory

experiment results can differ from field results. Mordecai et al. (2017) modeled biting

behavior using temperature so that females do not bite more than 0.4 times per day and

limited the biting behavior from 13.35 C° to 40.08 C° using a Brière function.

4.5.11 Probability of DENV transmission from mosquito to human

After an infected mosquito bite, humans can become exposed to the dengue

virus. Watts et al. (1987) tested the transmission efficiency of Ae. aegypti using monkeys.

In this study, the correlation between transmission and temperature was evident, since

DENV-2 was only transmitted to monkeys in temperatures equal or higher than 30 C°.

Using the Watts et al. (1987) experiment, Mordecai et al. (2017) modeled the probability

of mosquito infectiousness with a Briére function with a maximum point of 80% in

temperatures near 30 C°. Yang et al. (2016) used a constant rate of 6% while Polwiang

(2015) used constant rate of 36%. and Abad-Franch, Zamora-Perea e Luz (2017) ranged

from 50% to 90% rate of infection, considering 50% optimistic and 90% gloomy.

4.5.12 DENV intrinsic incubation period

Literature defines the intrinsic incubation period as the time that an exposed

host takes to become fully infected (infectious), enough to transmit the virus to another

vector. This period is estimated to be between 4 and 10 days for DENV (ORGANIZATION

et al., 2015). McLean et al. (1975) studied this phenomenon using infected Ae. aegypti

and mices. Mosquitoes transmitted the DENV-2 virus after six days incubation at 32 C°,

6-27 days at 24 C°, and 13-20 days at 13 C°, showing a correlation with temperature.

When studying Zika virus, Lessler et al. (2016) estimated 5.9 (95% CI: 4.4-7.6)
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days of average intrinsic incubation period. Although this is specific to Zika, Huber et al.

(2018) work use this estimation for dengue as well.

Focks et al. (1995) used four days as time default for the intrinsic incubation

period for all dengue serotypes. However, they recognized this period can be longer,

especially if they compare the period of infective viremia and detectable viremia. Newton

e Reiter (1992), Chowell et al. (2007), Nishiura e Halstead (2007) uses, respectively, 5,

5.5 and 4 days as their intrinsic incubation period.

4.5.13 Human infectious period

After the incubation period, humans infected by DENV can transmit the virus to

vectors. In this stage, the host can display a broad spectrum of illness or, in most cases,

stay asymptomatic (ORGANIZATION et al., 2015). The febrile phase of dengue usually

last 2-7 days (ORGANIZATION et al., 2015), but Nishiura e Halstead (2007) showed

that some human hosts could transmit DENV two days before the onset of fever and

even two days after the fever has passed. Huber et al. (2018) used an average of five

days for the infectious period in their model, inspired by Gubler (1998) observations but

Otero e Solari (2010) diverged, using three days instead.

Humans infected with dengue are protected from other dengue serotypes for

2-3 months after the primary infection, but with no long-term (cross-protective immunity)

(ORGANIZATION et al., 2015).

4.5.14 Probability of DENV transmission from human to mosquito

Xiao et al. (2014) studied in the laboratory the probability of DENV transmission

from a host to Ae. albopcitus after each mosquito takes a blood meal biting guinea pig

fresh blood infected by DENV-2. In the experiments, mosquito infection rates correlated

with temperature. For mosquitoes held at 18 C°, no infection was detected in the head

and salivary glands after 25 days of incubation. Over the temperature range of 18–31

C°, the infection rate displayed a tendency to increase. The maximum infection rate was

attained at 31 C°, at which the infection rates were 70.59 % in the head and salivary
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glands. However, the infection rate of mosquitoes at 36 C° was lower than at 31 C°.

At 36 C°, the infection rates of the salivary glands were 47.06 %. These values were

used by Mordecai et al. (2017), which modeled the probability of vector infection with

temperatures from 12.22 C° to 37.46 C° using a Brière function. Yang et al. (2016) used

a constant rate of 30% ; Polwiang (2015) used constant rate of 20%, and Abad-Franch,

Zamora-Perea e Luz (2017) used a range from 50% to 90% rate of infection, considering

50% optimistic and 90% "gloomy" in their words.

4.5.15 DENV virus extrinsic incubation period

DENV virus extrinsic incubation period is defined as how long an exposed

vector takes to become fully infected. The literature describes it in a range of 8-12 days

(ORGANIZATION et al., 2015). In experiments in mice for Zika virus, extrinsic incubation

period was modeled (BOORMAN; PORTERFIELD et al., 1956). In those experiments,

mosquitoes were infected with Zika and it took at least ten days to rise the virus level.

Huber et al. (2018) used this value for dengue modeling.

Focks et al. (1995) noticed how extrinsic incubation time is correlated with tem-

perature in a nonlinear regression. They modeled it using an exponential function with

temperature as input. Afterwards, Mordecai et al. (2017) modeled extrinsic incubation

time as well, but using a Brière function with temperatures ranging from 10.68 C° to

45.90 C° and extrinsic incubation period varying from 5 to 20 days.

4.6 Mathematical models of dengue transmission dynam-

ics

Kermack e McKendrick (1927) were the first researchers to introduce a mecha-

nistic model for virus transmission dynamic. They divided the population into susceptible,

infected, and recovered compartments (SIR). These compartments are able to control

the force of infection, that is, the rate at which a susceptible person acquires an infection,

because the more the disease spread, less susceptible humans are in the population

and thus less likely they are to become ill. Patients that were previous infected become
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recovered and can not be infected again. Later on, Kermack e McKendrick (1933)

extended their work, adding birth, migration, death and imperfect immunity; with these

additions, recovered patients could once again become susceptible.

In Kermack e McKendrick (1927) model, infected patients could infect other

humans, however in this Thesis, where dengue is the concern, humans can infect

only susceptible vectors, which may later spread the disease to other humans. In a

systematic review about models applied to dengue transmission, Andraud et al. (2012)

found, in addition to the traditional SIR compartments, the following: symptomatic /

asymptomatic humans, vaccinated humans, susceptible and infected vector population,

and that vector population could also be divided into egg, larva, pupa and adult stages.

Age stratification models were also found.

Those models can account for one to four serotypes, with and without cross-

protection (ANDRAUD et al., 2012). They can present many biological processes related

to dengue transmission such as bite rate, oviposition, virus incubation period and other

parameters (ANDRAUD et al., 2012). Robust models with many components have

the advantage that they can represent reality with more trustworthiness, but at the

same time, this come at a computational cost and make the model more complex to be

optimized.



55

5 Methodology

In this work, two mathematical models were proposed and a typical pipeline with

six steps was followed (FREGLY, 2021): data collection and transformation, model de-

velopment, optimization, evaluation, and fitting. These sections’ workflow are presented

in Figure 7. The first model is a SIR model and the second, a SEIR model.

Figure 7 – Model analysis pipeline. Adapted by (FREGLY, 2021)

5.1 Case studies

To test the SIR model, it was chosen four Brazilian municipalities that have

different DENV transmission dynamics and environmental patterns, namely Rio de

Janeiro, Fortaleza, Foz do Iguaçu and Porto Alegre (Figure 8). All of them, except for
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Porto Alegre, have suffered multiple severe dengue outbreaks between 2010 and 2019

(CODECO et al., 2018).

Fortaleza, the capital of the state of Ceará, is located on the northern coast

of Northeastern Brazil, near the equator line. It exhibits a high demographic density

of 8,390.76 people/km2, with a population size of 2,452,185 inhabitants according to

the 2010 Census (BRASIL, 2010). Fortaleza displays a warm and sub-humid tropical

climate (CAPRARA et al., 2015), with an average temperature of 29 ± 1.4 C° in the last

decade (WAN; HOOK; HULLEY, 2015). Periods of intense droughts with occasional

rains are common; with an average rainfall of 14 ± 21 mm for an 8-day cycle in the last

decade, (FUNK et al., ), the lowest average rainfall levels of all municipalities considered

in this assessment. Due to its tropical climate and high population density, it is highly

receptive to infestation by Ae. aegypti. Although it is a coastal area, Fortaleza does

not receive the same influx of tourists as Rio de Janeiro or São Paulo municipalities in

Brazil (BRASIL, 2020a).

The municipality of Rio de Janeiro, the capital of the state of Rio de Janeiro,

also exhibits a high demographic density, of 5,556 people/Km2, and a population size

of 6,320,446 inhabitants (BRASIL, 2010). It shares some weather characteristics with

Fortaleza, with a tropical humid and warm climate weather (CÂMARA et al., 2009), with

an average temperature of 26 ± 3 C° in the last decade (WAN; HOOK; HULLEY, 2015).

Occasionally, winters can comprise warm weeks with an average temperature of 30 C°

(CÂMARA et al., 2009). Average rainfall values from last decade indicate 18 ± 19 mm

per an 8-day cycle (FUNK et al., ), characterizing dry weather, although with heavy

rains, especially in the fall.

Foz do Iguaçu is located in western part of the state of Paraná, in southern Brazil.

It is set at an altitude of 164 m, with a demographic density of 418.5 people/km2, and a

population size of 256,088 inhabitants (BRASIL, 2010). The climate is subtropical humid

mesothermal, with an average temperature of 24 ± 4 C° (WAN; HOOK; HULLEY, 2015)

and average rainfall of 26 ± 25 mm (FUNK et al., ) in the last decade. The municipality

shares borders with two countries, Paraguay and Argentina, and represent a well-known

trade route stop between these countries (CONTE, 2013). At the same time, it is known
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by its tourist activities (PERIS; LUGNANI, 2011). Therefore, in spite of the fact that it has

a relatively small resident population and is located far from the coast, Foz do Iguaçu

receives thousands of tourists every day (BRASIL, 2020a).

Porto Alegre, the capital of the state of Rio Grande do Sul, is the southernmost

municipality among those analyzed in this study. It displays a humid subtropical climate

(HASENACK; FLORES, 1994), and is located on the state coast, similarly to Rio de

Janeiro and Fortaleza. Porto Alegre has a demographic density of 2,837.52 people/km2

and a population size of 1,409,351 inhabitants (BRASIL, 2010). It receives thousands of

tourists from Argentina and Uruguay, that border Rio Grande do Sul (BRASIL, 2020a).

Porto Alegre is the coldest municipality considered herein, averaging 21 ± 4 C° in the

last decade (WAN; HOOK; HULLEY, 2015). The average rainfall per 8 days is 22 ±

20 mm(FUNK et al., ) during the same period.

For the SEIR model proposed in this Thesis, in addition to three (Rio de Janeiro,

Fortaleza and Porto Alegre) of the four municipalities previously studied for the SIR

model, other nine were also added as case studies. The criteria for selecting munic-

ipalities was to choose the two most populous municipalities of each state of Brazil

that has a partnership with InfoDengue research group (CODECO et al., 2018). Foz do

Iguaçu was removed from the SEIR model analysis since it is not the first or second

most populous municipality in Paraná State. Therefore, the municipalities studied in the

SEIR model were:

Rio de Janeiro State: the two biggest municipalities in population size of Rio

de Janeiro State are Rio de Janeiro and São Gonçalo. With 6,320,446 and 999,728

inhabitants, respectively, in 2010 (BRASIL, 2010) and projections of 6,747,815 and

1,091,737, respectively, in 2020 (BRASIL, 2020c), they share similar environments in

respect to temperature and rainfall, but different economies. São Gonçalo per capita

income (R$ 724,92) is less than half of the per capita income of Rio de Janeiro (R$

1,784.44) (BRASIL, 2020b).

Ceará State: Fortaleza and Caucaia are the biggest cities of this State. They

had a population size of 2,452,185 and 325,441, respectively, in 2010 (BRASIL, 2010)

and projections of 2,686,612 and 365,212, respectively, in 2020 (BRASIL, 2020c). These
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cities share the same economic disparity of Rio de Janeiro and São Gonçalo: Caucaia´s

income per capita is R$ 405.51 whereas the income per capita of Fortaleza, the capital

of the state, is more than the double, R$ 994.29. (BRASIL, 2020b).

Minas Gerais State: Belo Horizonte, the capital of the state, and Contagem

represented the State of Minas Gerais. They had a population size of 2,375,151 and

603,442, respectively, in 2010 (BRASIL, 2010) and projections of 2,521,564 and 668,949,

respectively, in 2020 (BRASIL, 2020c). In relation to per capita income, the difference

between municipalities is not as big as in the municipalities previously mentioned above

although still significant: Contagem has R$ 908.23 per capita income and the capital

has less than the double of this value, R$ 1,766.47 (BRASIL, 2020b).

Paraná State: Curitiba and Londrina are the biggest municipalities from this

State. They had a population size of 1,751,907 and 506,701, respectively, in 2010

(BRASIL, 2010) and projections of 1,948,626 and 575,377, respectively, in 2020

(BRASIL, 2020c). Curitiba is located in the south of Brazil, so it has a low mean

temperature along the year compared to the rest of the country, 19 C° average with 3.17

C° deviation (WAN; HOOK; HULLEY, 2015). Londrina is in almost the same latitude

of Rio de Janeiro, which causes a warmer weather, 24.31 C° average with 3.66 C°

deviation along the year (WAN; HOOK; HULLEY, 2015). Both municipalities appear

in the list of one hundred municipalities with the highest income per capita in Brazil.

Curitiba´s per capita income is R$ 1802.45 and Londrina´s, R$ 1,217.45 (BRASIL,

2020b).

Santa Catarina State: Joinville is the biggest city of this State, and Florianópolis

is the capital. They had a population size of 515,288 and 421,240, respectively, in 2010

(BRASIL, 2010) and projections of 597,658 and 508,826, respectively, in 2020 (BRASIL,

2020c). Florianópolis has the sixth per capita income from Brazil: R$ 2,096.56. Joinville

is an industrial city with R$ 1,310.36 of per capita income (BRASIL, 2020b).

Espírito Santo State: the biggest municipalities in Espírito Santo are Serra and

Vila Velha, none of them are the capital city. They had a population size of 409,267 and

414,586, respectively, in 2010 (BRASIL, 2010) and projections of 527,240 and 501,325,

respectively, in 2020 (BRASIL, 2020c). They represent the biggest relative population
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growth from municipalities inside this study case. Espírito Santo is located next to Rio

de Janeiro State, with similar environment (WAN; HOOK; HULLEY, 2015). However,

unlike Rio de Janeiro, which received almost 1,000,000 tourists in one year (in 2010),

Espírito Santo´s tourism activity is small, having received near to 5,000 tourist per year

(BRASIL, 2020a). Their per capita income are small compared to others municipalities

from Brazil, reaching R$ 1,384.33 for Vila Velha and R$ 787.83 for Serra (BRASIL,

2020b).

5.2 Data

5.2.1 Demographic and geographic data

The centroid of the municipalities (latitude, longitude), their size and popula-

tion growth were obtained from Instituto Brasileiro de Geografia e Estatística (IBGE)

(BRASIL, 2010; BRASIL, 2020c). In the SIR model, birth and mortality human rates

were based on 2010 data (Rio de Janeiro, 2020) from Rio de Janeiro city and were

also used for all the other cities in the model. In the SEIR model, each city had its

own population daily growth based on the difference between 2010 data and 2020

populations (BRASIL, 2010; BRASIL, 2020c). The average Brazilian mortality rate in

2010 (0, 603%) was also obtained from IBGE (BRASIL, 2010).

The number of tourists was provided by the Tourism Ministry (BRASIL, 2020a).

It provided yearly data aggregated by State.

5.2.2 Epidemiological data

Dengue notification is mandatory in Brazil and the data from 2010 to 2020

was obtained from InfoDengue Application Programming Interface (API) that gather

data from Sistema de Informação de Agravos de Notificação (SINAN) (BRASIL., 2007).

InfoDengue provides reported cases aggregated per municipality per week. The patient’s

residence was used as the reference for dengue occurrence (CODECO et al., 2018).
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Figure 8 – Brazilians municipalities used in this Thesis as case studies, pointed in South

America satellite view: (a) Rio Janeiro; (b) São Gonçalo; (c) Caucaia; (d)

Fortaleza; (e) Contagem; (f) Belo Horizonte; (g) Vila Velha; (h) Serra; (i)

Londrina; (j) Curitiba; (k) Joinville; and (l) Florianópolis (MAPS, 2021)
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5.2.3 Climate data

The Earth Surface Temperature (LST) data came from the MODerate Resolution

Imaging Spectroradiometer (MODIS / MOD11A2) sensor on the Terra satellite (WAN;

HOOK; HULLEY, 2015). It has 8 days of Emissivity, with a resolution of 1 square km

of Sine Grid. The data emitted by the satellite refer to the average daily temperature

(LST Day) and night (LST Night) every 8 days. The average between day and night

temperature was chosen to represent the average overall temperature. Many parameters

are bounded by maximum and minimal values, which makes raw temperature data

(either day or night) not a good fit to those parameters.

Rainfall data was obtained from the Climate Hazards Group InfraRed Precipita-

tion with Station Data (CHIRPS) database at the Climate Hazard Center at the University

of California, Santa Barbara (UCSB-CHG) (FUNK et al., ). CHIRPS has more than 30

years of operation and continues to operate to this day, with a daily resolution of 5 km.

The sum of all rainfall in the 8-day period was used to represent that period. Rainfall

data was aggregated by municipality with the same method used for temperature.

5.3 Data transformation

Population size from 2010 was used to represent total population size. The

8-day birth and death rates were the same for the SIR model and were measured

from the number of births in the Rio de Janeiro State in 2010 divided by 365
8 (Rio

de Janeiro, 2020), which means the population size maintained in the same number

between time. In the SEIR model, birth and death rates were considered different; it

was used the Brazilian average mortality rate as the death rate in all municipalities, but

the birth rate was the sum of the average mortality rate in 2010 Brazil (6.03 ∗ 10−3 yearly

rate or 1.64 ∗ 10−5 daily rate) and the daily growth of each municipality, in the end, all

municipalities ended with a bigger population comparing 2010 to 2020. The daily growth

was a function between 2010 population and 2020 population, as given by:

daily growth of municipality =
(

2020 population size
2010 population size

) 1
3650 − 1

The centroid of each municipality was used to extract the climate data. From
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Table 1 – Population size and growth in 2010 for each studied municipality (BRASIL,
2010), mean and standard deviation of the temperature (C°), and mean and
standard deviation yearly rainfall (mm).

Municipality Population Daily Growth µtemperature σtemperature µrainfall σrainfall

Rio de Janeiro 6,320,446 1.79 ∗ 10−5 26,35 3,06 748,41 102,75
Fortaleza 2,452,185 2.50 ∗ 10−5 28,332 2,01 512,81 101,89
Belo Horizonte 2,375,151 1.64 ∗ 10−5 23,64 2,30 701,47 139,03
Curitiba 1,751,907 2.92 ∗ 10−5 19,20 3,17 1040,44 114,43
São Gonçalo 999,728 2.41 ∗ 10−5 25,82 2,99 756,86 101,37
Contagem 603,442 2.82 ∗ 10−5 23,53 2,33 732,10 143,99
Joinville 515,288 4.06 ∗ 10−5 19,92 3,14 1341,74 141,50
Londrina 506,701 3.48 ∗ 10−5 24,31 3,66 1010,49 132,07
Serra 409,267 6.94 ∗ 10−5 24,29 2,41 690,40 116,36
Florianópolis 421,240 5.18 ∗ 10−5 19,97 3,28 1090,27 125,30
Vila Velha 414,586 5.2 ∗ 10−5 24,44 2,45 690,88 116,82
Caucaia 325,441 3.16 ∗ 10−5 28,59 2,14 481,14 93,74

each one, it was subtracted and added 0.2° (almost 23 km), thus creating, in the end, four

coordinates points representing enough square to contemplate the municipality. After

that, all pixels within the square of the municipality were extracted from the temperature

and rainfall maps. The average pixels were used to represent the climate data.

The SIR model used an 8-day period time-frame to match the periodicity of

satellite-based weather data, while the SEIR model used a daily time-frame to match

with works done in literature such as Huber et al. (2018). Since temperature had an

eight day emissivity, to standardize, the accumulated rainfall were collected at the same

8 day period.

Although the analysis used either eight-day periods or daily periods, the number

of dengue cases has a weekly periodicity (CODECO et al., 2018). Thus, this weekly

period was transformed to daily by dividing by seven. For the analysis using eight-day

period, after transforming in daily period, it was summed every eight-day to transform it

into an eight-day period in such a way that the eight-day period has some part of cases

of two different weekly reports.

The number of tourists was obtained aggregated by year and by state (BRASIL,

2020a). Since in this analysis the most influential (in terms of population size) mu-

nicipalities of each State were used, the number of the State was used to represent
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the municipality. The yearly aggregation was divided by 365
8 to become an eight-day

time-frame and by 365 to become a daily time-frame.

In addition to these transformations, temperature and rainfall data were stored

in linear interpolation functions. The interpolation was necessary since the models had a

continuous time frame. The functions received as input the time, that could be a decimal,

and returned the temperature or rainfall related to that time, which was calculated by

weight average between the two nearest values extracted from maps.

5.4 Models developed

5.4.1 SI-SI-SIR model

The model used a SI-SI-SIR structure to describe the DENV transmission dy-

namics. The model has susceptible (S), infected (I) and recovered (R) compartments for

human population and S and I compartments for Ae. aegypti egg and adult populations,

because mosquitoes stay infected for their entire life. Figure 9 presents the model

diagram.
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Figure 9 – SI-SI-SIR model diagram. SE and IE represent the non-infected and infected

egg of the vector population; SV and IV , the susceptible and infectious

compartments of the adult mosquito population; and SH , IH and RH the

susceptible, infectious and recovered portions of the human population,

respectively. Solid arrows indicates the direction of transmission.

The equations bellow represent the interactions between each population com-

partment. The first equations (5.1a and 5.1b) represent the egg population, where

SE is the susceptible eggs compartment and IE, the infected eggs. The temperature-

dependent function o(T ) is the number of eggs laid by female mosquito. The rainfall-

dependent function d(R) represents the eggs development rate. fv is the female pro-

portion in the mosquito population, vt is the vertical transmission rate and µe is the egg

mortality rate. Temperature and rainfall time series are denoted respectively by T and

R.
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dSE
dt

= o(T )SV + (1 − vt)o(T )IV − (µe + d(R))SE (5.1a)

dIE
dt

= vto(T )IV − (µe + d(R))IE (5.1b)

dSV
dt

= d(R)fvsa(T )SE
(

1 − NV

KNH

)
−
(
a(T )phm(T )(IH + Im)

NH

+ µv

)
SV (5.1c)

dIV
dt

= d(R)fvsa(T )IE
(

1 − NV

KNH

)
+
(
a(T )phm(T )(IH + Im)

NH

)
SV − µvIV (5.1d)

dSH
dt

= µhNH − a(T )pmh(T )IV
SH
NH

− µhSH (5.1e)

dIH
dt

= a(T )pmh(T )IV
SH
NH

− (γ + µh)IH (5.1f)

dRH

dt
= γIH − µhRH (5.1g)

Equations 5.1c and 5.1d represent adult mosquitoes, with SV standing for

susceptible and IV for infected adult mosquitoes. sa(T ) is the egg-to-adult survival rate

and µv the adult mortality rate. The aquatic phase (larvae and pupae) is not explicitly

represented in the model and thus the survival and mortality rates are absorbed into

the egg-to-adult rates described above. NV is the total number of the vector population

(Sv + Iv). K is the environmental carrying capacity, which constrains the growth of the

mosquito population. a(T ) is the mosquito biting rate, phm is the probability of a human

infecting a mosquito per bite, Im is the rate of pendular immigration of infected humans

and NH is the total number of humans in the model (SH + IH +RH).

The SIR sub-model (equations 5.1e, 5.1f and 5.1g) represents human popu-

lation with SH , IH and RH compartments governed by equations 5.1e, 5.1f and 5.1g,

respectively. Human population was assumed as constant with same birth and death

rates (µh) plus a small pendular migration rate. The pendular migration represents

residents that live in one municipality and work or study in another (ZASLAVSKY;

GOULART, 2017). Pendular migration does not affect the population size in the model,

but affects the force of infection since mosquitoes can bite infected humans coming from

others places. γ represents the recovery rate of humans after infection. Lastly, pmh(T ) is

the probability of a mosquito to infect a human.
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5.4.1.1 SI-SI-SIR initial conditions

Initial conditions of the model for each municipality were defined in Table 2.

SH(0) were determined empirically, by fitting the model to data. IH(0) was set to the

DENV incidence in the first week of January 2010, the beginning of the analysis. RH(0)

was set to NH(0) − SH(0) − IH(0).

Table 2 – Municipality-specific initial conditions for simulations

Municipality NH SH(0) IH(0) Tourists (8 day)−1

Rio de Janeiro 6.320.446 327.259 40 21.535
Fortaleza 2.452.185 87.734 70 2.099
Porto Alegre 1.409.351 171.628 2 14.325
Foz do Iguaçu 256.088 37.332 35 15.892

For the initial conditions of adult mosquito population (SV (0) + IV (0)), 0.7 female

mosquitoes per person was used, as reported by Neira et al. (NEIRA et al., 2014), thus

SV (0) and IV (0) were directly proportional to SH(0) + RH(0) and IH(0), respectively,

multiplying it by 0.7. This ratio was used for the egg compartment as well: SE(0), the

initial state of susceptible eggs, was equal to 0.7(SH(0) +RH(0)), while IE(0), the initial

state of infected eggs, was equal to 0.7IH(0).

Most of the vector parameters were reported in a daily time frame; for these,

the parameters were multiplied by 8 to transform to an eight-day time frame. Egg and

adult mortality rates were the only ones different, as they were calculated using the

following formula: 1 − (1 − x)8, assuming the daily values are x, since (1 − x)8 represent

the probability of surviving in eight day period. Rates that did not depend on time were

maintained the same.

The eight-day time frame parameters are presented in Table 3 for constants

values and Table 4 for values defined by a function.
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Table 3 – Constant eight-days time-frame parameters for dengue transmission dynamic
model SI-SI-SIR. †these values were found in the literature with daily rates
and were converted to 8 day rate. ‡converted from annual rates.

Parameter Definition Value Source

fv Mosquito sex ratio 0.5 (MAGORI et al., 2009)
µe Egg mortality rate (8 day)−1 0.077255† (BAR-ZEEV et al., 1957)
vt Vertical transmission rate 0.1 (ADAMS; BOOTS, 2010)
γ DENV recovery rate (8 day)−1 1 (ORGANIZATION, 2009)
Im Infected immigrants 0.001
µh Human mortality and birth rate (8 day)−1 0.0003656 ‡ (Rio de Janeiro, 2020)
k Carrying Capacity 0.7 (NEIRA et al., 2014)

Table 4 – Temperature and rainfall dependent rates for dengue transmission dynamic
model SI-SEI-SEIR (eight-days). The Brière function is given by [aT (T − b)(c − T ) 1

2 ].
The quadratic is [a(T − b)(T − c)] and the linear function is aR function. T represents
temperature and R represents rainfall.

Variable Definition Function a b c Source

a(T ) Biting rate (8 day)−1 Brière 0.00161 13.35 40.08 (MORDECAI
et al., 2017)

o(T ) Oviposition rate per 8
days

Brière 0.06848 14.58 34.61 (MORDECAI
et al., 2017)

sa(T ) Aquatic survival rate Quadratic −0.00599 13.56 38.29 (MORDECAI
et al., 2017)

phm(T ) human to mosquito in-
fection rate per bite

Brière 0.000491 12.22 37.46 (MORDECAI
et al., 2017)

pmh(T ) mosquito to human in-
fection rate per bite

Brière 0.000849 17.05 35.83 (MORDECAI
et al., 2017)

µv(T ) Adult mosquito mor-
tality rate (8 day)−1

Quadratic −0.0185 9.16 37.73 (MORDECAI
et al., 2017)

d(R) Development rate Quadratic −2.29574 −1.18161 (ALTO; JU-
LIANO,
2001)

5.4.2 SI-SEI-SEIR model

The SEIR model was adapted to a daily time frame and introduced the exposed

compartment to the vector and to the human population. The SI-SEI-SEIR model was

used to describe the DENV transmission dynamics. The new compartment, the exposed

(E) compartment, represents the intrinsic and extrinsic incubation period. They represent

individuals that are passing by their incubation period, extrinsic for vector and intrinsic
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for humans, and will become infectious right after this period. The daily time frame

model was evaluated with and without the exposed compartment to understand the

impact of this change. Figure 10 presents the model diagram.

Figure 10 – SI-SEI-SEIR model diagram. SE and IE represent the non-infected and

infected egg of the vector population; SV , EV and IV , the susceptible,

exposed and infectious compartments of the adult mosquito population;

and SH , EH , IH and RH the susceptible, infectious, exposed and recovered

portions of the human population, respectively. Solid arrows indicate the

direction of transmission.

The equations below constitute the SEIR model. Since two new exposed com-

partment were introduced, it also added two new parameters: the intrinsic incubation

rate (γ) and extrinsic incubation rate (e(T )); which reflect the velocity an individual

change from exposed to infected in humans and mosquitoes, respectively.
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dSE
dt

= o(T )SV + (1 − vt)o(R)IV − (µe + h)SE (5.2a)

dIE
dt

= vto(T )IV − (µe + h)IE (5.2b)

dSV
dt

= d(R)fvsa(T )SE
(

1 − NV

KNH

)
−
(
a(T )phm(T )(IH + Im)

NH

+ µv

)
SV (5.2c)

dEV
dt

= a(T )phm(T )(IH + Im)
NH

SV − (e(T ) + µv)EV (5.2d)

dIV
dt

= d(R)fvsa(T )IE
(

1 − NV

KNH

)
+ e(T )EV − µvIV (5.2e)

dSH
dt

= µhNH − a(T )pmh(T )IV
SH
NH

− µhSH (5.2f)

dEH
dt

= a(T )pmh(T )IV
SH
NH

− (δ + µh)EH (5.2g)

dIH
dt

= δEH − (γ + µh)IH (5.2h)

dRH

dt
= γIH − µhRH (5.2i)

5.4.2.1 SI-SEI-SEIR initial conditions

Twelve municipalities were used as case studies. Table 5 shows the initial values

for compartments used in the model and parameters that differ from municipality to

municipality (Table 1). The dengue incidence in the municipality in the first week of 2010

was used as the initial condition for EH(0) and IH(0). The proportion of infectious in the

vector population followed that of the human population. SH(0) was set by optimization

in the first simulation, which will further be discussed, and RH(0) = 1 −SH(0) −EH(0) −

IH(0).

The constant daily rates are in Table 6 and the rates defined by a function are

in Table 7.

5.5 Model fitting

5.5.1 Sensitivity analysis

A Sobol sensitivity analysis was conducted to determine the leverage of each

parameter concerning the fit between the simulated and observed data (MARTINEZ-
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Table 5 – Municipality-specific initial conditions and parameters

Municipality IH(0) and EH(0) values Tourists per day

Rio de Janeiro 40 2, 691
Fortaleza 70 262
Belo Horizonte 70 154
Curitiba 70 1, 986
São Gonçalo 35 2, 691
Contagem 28 154
Joinville 10 351
Londrina 23 1, 986
Serra 26 14
Florianópolis 27 351
Vila Velha 22 14
Caucaia 10 262

Table 6 – Initial values for constant daily time-frame parameters for dengue transmission
dynamic model SI-SEI-SEIR

Parameter Definition Value Source

fv Mosquito sex ratio 0.5 (MAGORI et al., 2009)
µe Egg mortality rate (1 day)−1 0.01 (BAR-ZEEV et al., 1957)
δ Intrinsic incubation rate 5.9−1 (LESSLER et al., 2016)
vt Vertical transmission rate 0.1 (ADAMS; BOOTS, 2010)
γ DENV recovery rate (1 day)−1 5−1 (ORGANIZATION, 2009)
Im Infected immigrants 0.001
k Carrying Capacity 0.7 (NEIRA et al., 2014)

ROMERO et al., 2002). The sensitivity analysis identified the parameters that more

substantially affect model adherence to the observed data. The Python Sensitivity

Analysis Library (SALib) was used (HERMAN; USHER, 2017). The sum of squared

errors (SSE) between the simulated and observed time series was applied as the model

output.

The following parameters and respective ranges were scanned in this analysis

for SI-SI-SIR model: o(T ) (0.25-4), vt (0.25-4), K (0.25, 4), a(T ) (0.25-4), im (0.25-4),

pmh (0.25-1), phm (0.25-1), fv (0.5-1.5), ue (0.25-4), uv (0.25-4), γ (0.25-2), uh (0.25-4),

sa(T ) (0.25-2). For constant parameters, the range represents the exact variable value;

for dependent parameters, the range represents a multiplier applied to the constant a

in the Brière [aT(Tb)(cT)12] and quadratic [a(Tb)(Tc)], [a(R2+bR)] functions. Others

parameters were also scanned, such as minimal and maximum temperature in the
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Table 7 – Initial values for temperature and rainfall dependent daily rates for dengue
transmission dynamic model SI-SEI-SEIR. The Brière function is given by [aT (T −
b)(c− T ) 1

2 ]. The quadratic is [a(T − b)(T − c)] and the linear function is aR function. T
represents temperature and R represents rainfall.

Variable Definition Function a b c Source

a(T ) Biting rate (1 day)−1 Brière 0.000202 13.35 40.08 (MORDECAI
et al., 2017)

sa(T ) Aquatic survival rate Quadratic −0.00599 13.56 38.29 (MORDECAI
et al., 2017)

phm(T ) human to mosquito in-
fection rate per bite

Brière 0.000491 12.22 37.46 (MORDECAI
et al., 2017)

pmh(T ) mosquito to human in-
fection rate per bite

Brière 0.000849 17.05 35.83 (MORDECAI
et al., 2017)

e(T ) virus extrinsic incuba-
tion rate (day−1)

Brière 0.0000665 10.68 45.90 (MORDECAI
et al., 2017)

µv(T ) Adult mosquito mor-
tality rate (day−1)

Quadratic −0.148 9.16 37.73 (MORDECAI
et al., 2017)

o(T ) Oviposition rate per
day

Brière 0.00856 14.58 34.61 (MORDECAI
et al., 2017)

d(R) Development rate Quadratic −2.29574 −1.18161 (ALTO; JU-
LIANO,
2001)

environmental-dependent functions: tmin (-4-+4) and tmax (-4-+4); it was increased or

subtracted from 0 to 4 C° to each. The initial values for the susceptible population for

egg and adult vector population SEV (0) (0-1 times the total human population), SV (0)

(0-1 the total human population) were also scanned ; and initial value for susceptible

human population S(0) (0.3-1 the total human population).

5.5.2 Calibration

Following the sensitivity analysis, constant and climate-dependent parameters

obtained from the literature were adapted for each municipality, in order to better adapt

to the climate context of each municipality. This process was performed empirically

for the SIR model, observing the analysis result. We sought to alter the parameters

as little as possible from those reported in the literature, and even with the employed

adaptations, the same order of magnitude of the original values was always maintained,

and they all remained biologically realistic. The adaptations were performed based on
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the understanding that mosquitoes adapt differently to the climate of each municipality,

and so slightly different biological parameters than those observed in the laboratory

under controlled and fixed conditions are, therefore, possible and likely.

For the SEIR model, the values of each parameter were fitted using the Grid

Search Algorithm, which searches over a given subset of the hyperparameters space of

the training algorithm (FREEMAN; DOE; SIEMIGINOWSKA, 2001). The best parameters

values were the ones that produced the smaller SSE between the grid.

5.6 Model evaluation

The Akaike information criterion (AIC) was used as the mean to assess the

goodness-of-fit of different models version. The AIC penalizes models having a large

dimension at the same time that measure lack of fit to the data (WAGENMAKERS;

FARRELL, 2004). The AIC was calculated using equation 5.3.

AIC = −2Log(Li) + 2Vi (5.3a)

Where Li is the maximum likelihood for the candidate model i and Vi the number

of free parameters.

A set of visualizations was also used for comparing simulations and observed

data. All models were tested using Python computer language (ROSSUM; JR, 1995)

with the Python library numpy (HARRIS et al., 2020).
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6 Results

6.1 SI-SI-SIR model

6.1.1 Sensitivity Analysis

The sensitivity analysis pointed to the most important parameters using the

first order and the second order values (MARTINEZ-ROMERO et al., 2002). First order

analyzes how much a parameter contributes to model sensitivity. High first order values

mean that small changes in the parameter influence greatly the model. Second order

indicates how much a parameter contributes to other parameters’ sensitivity. High

second order values mean two or more variables are correlated and, since they are

correlated, changes in one variable are enough to change all correlated ones. When

choosing variables, the most important ones are usually those that have high first order

values and do not have high second order values between themselves. (MARTINEZ-

ROMERO et al., 2002).

According to the sensitivity analysis, dengue recovery rate (γ), human birth and

mortality rate (µh), and biting rate (a(T )) all affect the model behavior more strongly than

the other evaluated parameters. When averaging the values for the four municipalities,

the following parameters had first and total order sensitivity coefficients higher than

5%: γ, µh and a(T ) (Figure 11). The second order sensitivity coefficients revealed that

mosquito-to-human infection probability per bite (pmh(T )), human-to-mosquito infection

probability per bite (phm(T )) and carrying capacity (K) exhibited dependent associations

between each other and the other assessed parameters (Figures 26, 27, 28 and 29

from Annex D). The recovery rate (γ) was the only parameter that exhibited a negative

correlation with SSE (R2 > 80%) for all municipalities (Figures 30, 31, 32 and 33 from

Annex D). The other evaluated parameters exhibited weak correlations with SSE, less

than 50% and greater than −50% for the Pearson Correlation Index. When comparing

parameter sensitivities between municipalities, Rio de Janeiro was the only municipality
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where µv(T ) comprised over 0.5% of the total order sensitivity coefficient, while Fortaleza

was the only municipality not sensitive to im, the rate of infectious immigrants.

Figure 11 – Sensitivity analysis for each model parameter. From top to bottom, from left
to right: Fortaleza, Foz do Iguaçu, Porto Alegre and Rio de Janeiro.

6.1.2 Calibration Process

The SI-SI-SIR model had a quality evaluation under four weather regimes across

different Brazilian municipalities. Starting with parameter values from the literature

(Tables 4 and 3), the vicinity of their values was explored to see how they would affect

the model’s fit to data. These changes aimed at bringing the parameters values closer

to representing local mosquito population while keeping values in the same order of

magnitude of original values (Table 8). The constant coefficients of carrying capacity

(K), biting rate (a(T )), development rate (d(R)), and the probabilities of transmission

between human and mosquito (pmh(T ) and phm(T )) were adapted for each municipality.

The most significant changes in this qualitative process were observed in the
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Table 8 – Adapted parameter values resulting from the exploratory analysis in four differ-
ent geographical contexts. Concerning the temperature and rainfall dependent
functions, the new value substitutes the a variable within their function.

Municipality phm(T ) pmh(T ) a(T ) K d(R)

Rio de Janeiro 0.000491 0.0003396 0.00161 0.6 −0.1607018
Fortaleza 0.0001473 0.0003396 0.0012075 3 −0.229574
Porto Alegre 0.0002946 0.0002547 0.000966 0.6 −0.688722
Foz do Iguaçu 0.000491 0.0001698 0.00161 3 −0.0114787

municipality of Fortaleza, as, similarly to Foz do Iguaçu, the carrying capacity was 5-fold

higher than that of Rio de Janeiro and Porto Alegre. Furthermore, d(R) and phm(T ) were

reduced to a third. Foz do Iguaçu’s pmh(T ) was also 50% lower, while d(R) decreased

to 5%. Porto Alegre variables displayed at least a half decrease, while Rio de Janeiro

exhibited small changes to d(R) and K.

Simulations obtained with the parameter values from Table 8 are displayed

in Figure 12. Fortaleza and Rio de Janeiro most often presented simulated epidemic

peaks resembling the observed peaks. This contrasts with Porto Alegre and Foz do

Iguaçu, which exhibited less agreement between the simulated and observed peaks.

From 2010 to 2016, simulations adhered to the observed series, both in terms of peak

magnitudes and seasonality, while the simulated incidence began to stray away from

the observations both in magnitude and in phase in all cities after 2016.
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Figure 12 – Observed (black dots) and simulated (red line) dengue incidence time series
for the four studied municipalities.

Table 9 indicates the attack rates for each municipality, i.e., the sum of all

infected individuals during the period divided by the size of the population at risk. This

differed between the simulated and observed time series. Foz do Iguaçu presents a

lower simulated attack rate than the observed (9.64% difference), while overestimation

in the attack rate of 8.05%, 6.02% and 0.09% were observed for Rio de Janeiro, Fortaleza

and Porto Alegre respectively.

6.1.3 Vertical Transmission

Figure 13 compares simulations with and without vertical transmission. Remov-

ing vertical transmission influenced the epidemic peak size. Foz do Iguaçu and Rio de

Janeiro, for example, exhibited a minor incidence peak in 2011, which has consistently

increased from 2013 to 2020, and sometimes, as in 2015, presented higher differences.
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Table 9 – Adapted parameter values resulting from the exploratory analysis in
four different geographical contexts. Concerning the temperature and rain-
fall dependent functions, the new value substitutes the a variable within their
function.

Municipality Observed Attack Rate (%) Simulated Attack Rate (%)

Rio de Janeiro 6.52 14.57
Fortaleza 10.34 16.36
Porto Alegre 0.37 0.46
Foz do Iguaçu 35.96 26.32

In Fortaleza, removing vertical transmission increased dengue incidence in certain

epidemic peaks, especially in 2013. Porto Alegre did not exhibit significant epidemic

size variations, although vertical transmission smoothed the epidemic peaks.

Figure 14 indicates the influence of vertical transmission on attack rates. Vertical

transmission was positively correlated with attack rates for every municipality, indicating

that with increasing vertical transmission there are also higher attack rates. In Rio de

Janeiro, increasing the vertical transmission value from 3% to 13% (JOSHI; MOURYA;

SHARMA, 2002; BOSIO et al., 1992; LEQUIME; PAUL; LAMBRECHTS, 2016) caused

a 2% disparity in attack rates between the simulations, indicating an 126, 408 increase in

dengue cases. Porto Alegre, on the other hand, requires a vertical transmission success

rate of over 50% to begin displaying epidemic behavior.
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Figure 13 – Observed (dots) and simulated (solid line) dengue incidence time series,
with (blue lines) and without (red lines) vertical transmission, for the four
studied municipalities. Parameter values used in the simulations are shown
in Table 8.
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Figure 14 – Increased attack rates (%) with different vertical transmission levels. The
gray area indicates the range of vertical transmission reported in the litera-
ture.

6.2 SI-SEI-SEIR model

The SEIR model expanded the SIR model of this Thesis, changing the timeframe

from 8-day period to a daily period. This change enabled the addition of the exposed

compartment (E) to the model. To fully understand these changes, the two versions of

this model were evaluated with and without the exposed compartment.

6.2.1 Sensitivity Analysis

According to the sensitivity analysis, changes to the maximum temperature

values inside the briére functions (tmax), human susceptible population (S(0)), and biting

rate (a(T )) affect the model behavior more strongly than the other evaluated parameters,

although they all share relatively small first order values, bellow 10%. The following

parameters had first and total order sensitivity coefficients higher than 5%: biting rate
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(a(T )), mosquito-to-human infection probability per bite (phmh(T )), human-to-mosquito

infection probability per bite (phm(T )), vector mortality rate (µv(T )), carrying capacity

(K), changes to maximum temperature (tmax) and initial value for susceptible humans

(S(0)) (Figure 15).

The second order analysis showed strong links between most parameters

(Figure 16). Human and egg mortality rates (ue and uh respectively), survival from

aquatic phase (sa(T )), vector female ratio (fv), vertical transmission (vt) and intrinsic

incubation period rate (γ) showed no association to the other parameters (Annex E). The

oviposition (o(T )) and egg development (d(R)) rates presented an important correlation

to others parameters, which is the opposite of the SIR model.
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Figure 15 – Sensitivity analysis for SEIR model without and with exposed compartment.
The values represent the average between all 12 municipalities.
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Figure 16 – Second order sensitivity analysis for SEIR model without and with exposed
compartment. The values represent the average between all 12 municipali-
ties.
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Table 10 – Goodness-of-fit for the proposed model in twelve Brazilian municipalities

Model without exposed Model with exposed
Municipality SSE AIC SSE AIC

Rio de Janeiro 14955 6468 13534 6985
São Gonçalo 919 4237 882 4583
Fortaleza 4624 5529 4646 6045
Caucaia 115 2581 89 2572
Belo Horizonte 2233 4947 1595 5104
Contagem 861 4185 761 4453
Curitiba 51 1924 45 1976
Londrina 1242 4478 1190 4846
Joinville 12 807 12 823
Florianópolis 11 753 10 722
Serra 521 3784 448 3987
Vila Velha 497 6520 423 4198

In respect to each parameter correlation with the SSE between observed and

simulated incidence, the following parameters showed fitted R-squared value above 20%:

oviposition rate (o(T )), biting rate (a(T )), human-to-mosquito infection probability per

bite (phm(T )), vector mortality rate (µv(T )), carrying capacity (K) (Figures 36, 37, 38, 39,

40, 41, 42, 43, 44, 45, 46, 47 from Annex E). Changes to maximum temperature (tmax)

was the only parameter that exhibited a negative correlation with SSE, with R2 > 50%

for all municipalities. The other evaluated parameters exhibited weak correlations with

SSE, less than 50% and greater than −50% for the Pearson Correlation Index, but those

that showed at least 20% R-squared were: uv, Im, pmh and phm.

6.2.2 Comparing models with and without exposed compartment

The SEIR model was implemented as a daily time frame while the SIR model,

eight-day time frame. This was done to add the exposed compartment to the model.

Table 10 shows the comparison between the two models’ main results. The smaller

the two parameters, the best is the goodness-of-fit in the model. AIC penalizes adding

more variables, making the model with exposing compartment justify the inclusion of

the parameters with the better fit.

The model with an exposed compartment consistently fits better to observed

incidence. In all municipalities, the error was reduced on average 5-15% compared
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with the model without the exposed compartment. Opposite to these findings, the

model without exposed compartment presented smaller AIC in almost all municipalities,

only Florianópolis, Vila Velha, and Caucaia do not present this trend. This shows that,

although adding an exposed compartment reduces overall error of the model, it is still

not a significant reduction because it increases the complexity of the model thus scoring

a bigger AIC value.

Figures 17 shows the results of the simulations using the best parameters

found in the grid search produced by the sensitivity analysis from 2010 to 2014. The

two models produced similar curves to the observed data with seasonality expected to

dengue incidence.
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Figure 17 – Simulations from model with and without exposed compartment simulations
from 2010 to 2014, from left to right from top to bottom: Rio de Janeiro, São
Gonçalo, Fortaleza, Caucaia, Belo Horizonte, Contagem, Curitiba, Lond-
rina, Joinville, Florianópolis, Serra and Vila Velha. Orange line represent
the simulation with exposed compartment while blue line represent the
simulation without exposed compartment. Blue bars represent the observed
incidence.

Figures 18 shows the results of the simulations using the best parameters found

in the grid search produced by the sensitivity analysis from 2010 to 2020. When there

is a large timeframe, it becomes clear that the simulations could not reproduce when

the disease occurs, since it always aims for the period where temperature and rainfall

would likely cause an epidemic.
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Figure 18 – Simulations from model with and without exposed compartment from 2010
to 2020, from left to right from top to bottom: Rio de Janeiro, São Gonçalo,
Fortaleza, Caucaia, Belo Horizonte, Contagem, Curitiba, Londrina, Joinville,
Florianópolis, Serra and Vila Velha. Orange line represent the simulation
with exposed compartment while blue line represent the simulation without
exposed compartment. Blue bars represent the observed incidence.

The two models do not converge to the municipalities of Minas Gerais state.

Both had a small number of cases from 2010 to 2012 but had an epidemic year in 2013

which could not be reproduced by the models.

Table 11 presents the best fit based on SSE to each parameter for the model

without exposed compartment. While, table 12 present the same, but for the model with

exposed compartment.

The fitted parameters show a trend between municipalities belonging to the
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same state. Most of them presented the same value for each parameter, except the

municipalities of Paraná (Curitiba and Londrina) and Ceará (Fortaleza and Caucaia).

From Tables 11 and 12 is also possible to notice that parameters values vary

between municipalities. Vertical transmission (vt) and egg mortality (ue) were overes-

timated in the two models compared to Bar-zeev et al. (1957) and Adams e Boots

(2010). Parameters related directly to infection rate such as vector female ratio (fv),

biting rate (a(T )), probability of human-to-mosquito infection (phm(T )) and probability

of mosquito-to-human infection (pmh(T ) were always underestimated in the models

compared to Mordecai et al. (2017) values. The primarily difference between the model

with exposed and without exposed compartment resides in the o(T ), K, ESV (0), SV (0)

and S(0) values. The carrying capacity (K) has larger values with the exposed com-

partment; while oviposition (o(T )) values fluctuates around Mordecai et al. (2017) value,

sometimes overstimating, sometimes understimating.
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7 Discussion

7.1 SI-SI-SIR model

The SIR model (5.1) was validated with data from 2010 to 2019 in four Brazilian

municipalities. The model provides a framework for understanding weather-driven

dengue transmission considering rainfall dependency, one of the challenges for these

type of models (CHÁVEZ et al., 2017; GÖTZ et al., 2017). The addition of susceptible

and infected egg states allowed for the inclusion of rainfall dependency and vertical

transmission in the studied model.

This work was inspired by the model developed by Huber et al. (2018), whose

performance was tested using different sinusoidal functions to represent temperature.

Here, we used temperature and rainfall time series derived from weather satellite

data. Other works in the literature usually employ sinusoidal functions to represent

temperature variations (CHÁVEZ et al., 2017; HUBER et al., 2018; RASHKOV et al.,

2019; OSORIO et al., 2015) or constant temperature (DEFTERLI, 2020; PHAIJOO;

GURUNG, 2017; ESTEVA; YANG, 2015). Our model was capable of producing similar

patterns to those observed for dengue incidence, presenting both seasonality and

similar epidemic sizes. In contrast to Huber et al. (2018), our simulations displayed

sharper epidemic peaks, more similar to observed peaks, due to the use of observed

temperature data and the addition of the egg compartment, which drove the force of

infection even higher, as adult mosquitoes are almost always at the carrying capacity

level when the temperature permits.

Environmental variables affected the dynamics, as expected: in Fortaleza, Rio

de Janeiro and Foz do Iguaçu, which display warmer climates where transmission

is facilitated, both the simulated and observed time series exhibited higher dengue

incidence and the same epidemic pattern. In Porto Alegre, a municipality that has

a colder climate, a lower dengue incidence was observed, not enough to generate

epidemic cycles, instead producing only sporadic outbreaks. Nonetheless, the qualitative
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calibration process mostly affected parameters which, in the literature, are highly variable.

The colder weather of Porto Alegre represents unfavorable conditions for the vector,

which explains the fact that most parameter values are smaller than in other cities.

Fortaleza and Foz do Iguaçu present favorable climates, allowing for higher carrying

capacity, leading to a better fit to data. Lastly, the sensitivity analysis clarified how

each parameter affected the model’s ability to match the observed dynamics. It further

demonstrated that the parameters, especially dengue recovery rate (γ), can be better

adapted to the Brazilian environment, since a higher γ reduced the SSE.

With respect to the discordance between the simulated and observed time

series, most of the inaccuracies concerning epidemic size and peak dates were noted

after 2016, which can be explained by the following factors: (a) the model conflates all

dengue serotypes into only one, and though this simplification is common in conceptual

framework articles, it does not adequately represent the susceptible population, which

can accumulate errors over time; (b) after 2016, Zika and chikungunya were introduced

in the studied municipalities (Figures 21 and 22 in Annex B), and the co-circulation

of this disease can lead to their misdiagnosis, as they result in similar clinical condi-

tions (BELTRÁN-SILVA et al., 2018); (c) in 2015–2016, extreme weather changes due

to the El Niño phenomenon were observed (JIMÉNEZ-MUÑOZ et al., 2016), which may

cause changes in epidemiology scenarios (GAGNON; BUSH; SMOYER-TOMIC, 2001;

TIPAYAMONGKHOLGUL et al., 2009; PETROVA et al., 2020); (d) not all developmental

Ae. aegypti stages were accounted for in the model, with the aquatic phase not explicitly

represented.

The sensitivity analysis demonstrates that parameters related to egg compart-

ment (such as o(T ), vt, sa(T ) and µe) did not play a strong role in model sensitivity.

When tracking the egg population (Figure 25 in Annex D), it is clear that an abrupt

growth occurs, forcing the adult population quickly towards its carrying capacity, even

when its parameters are underestimated. It is noteworthy, however, that this growth

behavior demonstrates the relevance of an explicit egg compartment in the model.

Rainfall influence on epidemic peaks is related to the timing of egg hatching.

Low rainfall rates can bring the mosquito adult population size to its carrying capacity,
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but cannot alter the general dengue impact. Other aspects of mosquito biology such as

eggs, larvae and pupae mortality and oviposition rates, are also influenced by rainfall

rates (DIENG et al., 2012). Although the presented model did not assess this impact,

this should be a concern in future studies for the improvement of this model.

The last investigated parameter was vertical transmission. Most dengue trans-

mission models do not include vertical transmission (MORDECAI et al., 2017; AN-

DRAUD et al., 2012), as it complicates the model too much and it is assumed it would

not bring significant changes in the model output. However, in this study, vertical trans-

mission played an important role. When removed, it altered the transmission dynamics,

modifying the timing of the dengue epidemic peaks and the overall burden. The effect of

different transmission values was assessed as indicated in Figure 14, and the higher

the vertical transmission, the higher the overall burden calculated by the attack rate in

the simulations.

To further investigate vertical transmission, would be necessary a study that

tracks infected eggs over the years. A positive correlation between the infected egg

population and dengue cases could be indicative of how important vertical transmission

can be to sustain epidemics. Also, It could help to understand which variable is more

important to start a new epidemic: the importation of infected humans to a susceptible

population or a pool of already infected eggs.

7.2 SI-SEI-SEIR model

The SEIR model (5.2) proposed in this Thesis expanded the SIR model, chang-

ing the time-frame to daily periods which allowed more compartments in the models

such as the exposed vector and exposed humans.

This time-frame modification brought changes to the results even to the model

without an exposed compartment. The egg compartment increased in importance when

compared to the SI-SI-SIR model. This was probably due to the more localized effects

of rainfall, which before affected uniformly the 8-day period in which it happened, but

with the daily time-frame, its effects can be considered on a scale of a single day.
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While the SI-SI-SIR model presented a qualitative calibration, SEI-SEI-SEIR

model was calibrated by optimization with a grid-search. In municipalities such as Belo

Horizonte and Contagem, the model could not find a suitable simulation based on this

criterion only. The best fit parameters between municipalities in the same state are

similar, probably because of the homogeneity in the environmental, demography, and

dengue incidence patterns. However, municipalities in the same state, such as Curitiba

and Londrina, that have more than 5 C° of difference in the average temperature,

presented variations between parameters (Table 1).

The model presented a reasonable goodness-of-fit for most municipalities,

except for Minas Gerais State. Those municipalities had similar dengue profiles since

they had a small number of cases until the 2013 epidemic happened. This epidemic

was caused by the invasion of DENV-4 serotype in those municipalities (RABELO et al.,

2020). Although DENV-4 was abundant in the year 2013, which constitute more than

50% of the dengue cases, it rapidly vanished from the region having less than 3% in

2014. Since a single serotype model could hardly recreate this kind of behavior, this

shows the importance of expanding the current model to manage all dengue serotypes.

Data from simulations for all 2010 decade showed that the model captures the

epidemic peaks based on rainfall and temperature. In this model, rainfall presented

a bigger impact, which could make possible predictions for municipalities such as

Fortaleza, where the temperature is stable during the year, but rainfall is scarce, making

dengue cases mostly happen in rainfall season. The overestimation of egg mortality

(ue) and the underestimation of the oviposition rate (o(T )), when compared to Bar-zeev

et al. (1957) and Mordecai et al. (2017), shows that the egg population in simulations

maybe be growing more than it should, which could be caused by a wrong approach

in the present model or by a biological difference, since these values were taken from

mosquitoes from the Northern Hemisphere and not from Brazil.

The underestimation of all parameters directly linked to dengue infection, making

the force of infection smaller, and the fact that the simulations presented an epidemic

every year of the decade simulation showed a need to still improve the model. In the

long term, this single-serotype model could not reproduce a recurrent phenomenon
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in dengue dynamics: when no incidence happens in a year. This kind of behavior in

a long term study probably can only be achieved in a multi-serotype model, having a

high enough force of infection to continue bringing the susceptible population of a given

serotype to low enough levels for blocking transmission in the following years if the

dominant available serotype is the same.

The SEIR model can be used in an effective way to know when dengue cases

will not happen, since the vector will need the temperature and rainfall conditions to

reproduce and infect. At the same time, it can also be a valuable asset to predict the

dengue epidemic in the short term, since the model had a good fit for 10 of the 12 tested

municipalities in a 4-year range.
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8 Conclusions and Recommendations

Every specific objective in this Thesis was completed. The climatic, epidemi-

ological and demographic database was built and put to open access in InfoDengue

website (CODECO et al., 2018). The two models highlighted the importance of tracking

the egg compartment of the mosquito population, including vertical transmission and

rainfall dependence. The SIR model showed how vertical transmission can change

dengue transmission dynamics and should be better analyzed. Overall, the simulations

indicate similar patterns to observed data, showing that the models had a good fit.

The findings of the first SIR model suggests the need to further investigate the

contribution of vertical transmission to dengue transmission dynamics. But more studies

are required concerning the biology of the vector and its interaction with the virus to

improve future models. The 8-day time frame made it more easy to study long term

effects but, as showed by the SEIR model, it probably caused an underestimation of the

egg compartment a a reservoir for the long-term persistence of the virus.

The SEIR model produced an effective way to predict the number of dengue

cases. It highlighted the importance of considering temperature and rainfall in order

to achieve a better fit to observational data. But at the same time, it showed the

importance to extend the current model to a multi-serotype model. Also, some authors

correlated oviposition to rainfall and not temperature (CHADEE; CORBET; TALBOT,

1995; ZEIDLER et al., 2008; CANYON; HII; MÜLLER, 1999), and since oviposition

values were underestimated in the SEIR model, it would be reasonable to test this

approach in further studies.

Future studies should be conducted to further improve these two models, for

example, by including the four dengue serotypes and simplifying the model by removing

parameters that did not affect the model results, as revealed by the sensitivity analysis

of this Thesis. Notwithstanding, many issues remain in regards to dengue biology that

also need to be addressed in parallel to improve models: parameters values are often

not well contextualized in literature, and their importance is seldom discussed. In this



96 Chapter 8. Conclusions and Recommendations

sense, some improvement opportunities include an evaluation of how parameters could

influence the competition between serotypes, which this Thesis did not study, and

how some parameters influence dengue incidence, for example: how much a stronger

pendular migration contributes to starting a new epidemic.

Dengue is a disease of global concern and in spite of many decades of study in

order to understand the dynamics of its transmission, many questions remain. Consid-

ering the essential role played by mathematical models in planning measures to prevent

and combat dengue, it can be said that the results of this Thesis contributed to a better

understanding of the role of climate fluctuations in dengue dynamics.
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ANNEX A – Environmental variables

All the Figures were created using the Matplotlib library of Python 3 program-

ming language. Figures 19 and 20 show environment variables. Figure S3, S4 and S5

illustrate the behavior of the functions used in the article. Figures S6 to S14 show results

derived from the sensitivity analysis. Lastly, Figure S15 and S16 illustrate the moment

when Chikungunya and Zika cases were first reported in Rio de Janeiro and Fortaleza

municipalities, respectively.

Figure 19 – Average temperature per 8 days from 2010 to 2019 in Fortaleza (Blue),

Foz de Iguaçu (Orange), Porto Alegre (Green) and Rio de Janeiro (Red)

municipalities, Brazil.



112 ANNEX A. Environmental variables

Figure 20 – Mean rainfall per 8 days from 2010 to 2019 in Fortaleza (Blue), Foz de

Iguaçu (Orange), Porto Alegre (Green) and Rio de Janeiro (Red) municipal-

ities, Brazil.



113

ANNEX B – Chikungunya and Zika

cases

All the Figures were created using the Matplotlib library of Python 3 program-

ming language. Figure 21 and 22 illustrate the moment when Chikungunya and Zika

cases were first reported in Rio de Janeiro and Fortaleza municipalities, respectively.

Figure 21 – Chikungunya cases in Fortaleza from 2010 to 2020 according to InfoDengue

data (CODECO et al., 2018)
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Figure 22 – Zika cases in Rio de Janeiro from 2010 to 2020 according to InfoDengue

data (CODECO et al., 2018)
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ANNEX C – Functions behavior

All the Figures were created using the Matplotlib library of Python 3 program-

ming language. Figure 23 and 24 illustrate the behavior of the functions used in the

article.

Figure 23 – Brieré curve of the equation 2.59R(R − 0)((1 −R) 1
2
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Figure 24 – Relation between egg eclosion rate (day) and rainfall represented by the

quadratic function: −2.29574834R2 + 2.71268315b
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ANNEX D – SIR model

Figure 25 – Simulations of adult populations of Ae. aegypti from 2010 to 2019 for
Fortaleza, Foz de Iguaçu, Porto Alegre and Rio de Janeiro municipalities.



118 ANNEX D. SIR model

Figure 26 – Porto Alegre first, second and total order sensitivity analysis: interaction
between Ot(T )(0.5-2), vt(0-0.3), K (0.5, 3), a(T ) (0.5-2), im (0.00001-0.01),
pmh (0.5-2), phm (0.5-2), fv (0.3-0.7), ue (0.01-0.15), uv (0.3-0.7), γ (0.4-1.6),
uh (0.00001-0,001), sa(T ) (0.5-2) and model output sum of square errors
(SSE).

Figure 27 – Rio de Janeiro first, second and total order sensitivity analysis: interaction
between Ot(T )(0.5-2), vt(0-0.3), K (0.5, 3), a(T ) (0.5-2), im (0.00001-0.01),
pmh (0.5-2), phm (0.5-2), fv (0.3-0.7), ue (0.01-0.15), uv (0.3-0.7), γ (0.4-1.6),
uh (0.00001-0,001), sa(T ) (0.5-2) and model output sum of square errors
(SSE).
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Figure 28 – Foz de Iguaçu first, second and total order sensitivity analysis: interaction
between Ot(T )(0.5-2), vt(0-0.3), K (0.5, 3), a(T ) (0.5-2), im (0.00001-0.01),
pmh (0.5-2), phm (0.5-2), fv (0.3-0.7), ue (0.01-0.15), uv (0.3-0.7), γ (0.4-1.6),
uh (0.00001-0,001), sa(T ) (0.5-2) and model output sum of square errors
(SSE).

Figure 29 – Fortaleza first, second and total order sensitivity analysis: interaction be-
tween Ot(T )(0.5-2), vt(0-0.3), K (0.5, 3), a(T ) (0.5-2), im (0.00001-0.01),
pmh (0.5-2), phm (0.5-2), fv (0.3-0.7), ue (0.01-0.15), uv (0.3-0.7), γ (0.4-1.6),
uh (0.00001-0,001), sa(T ) (0.5-2) and model output sum of square errors
(SSE)
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Figure 30 – Sensitivity Analysis residues regarding sum of square errors (SSE) from
model simulations and simulations parameters with the respecting range of
possibilities: Ot(T )(0.5-2), vt(0-0.3), K (0.5, 3), a(T ) (0.5-2), im (0.00001-
0.01), pmh (0.5-2), phm (0.5-2), fv (0.3-0.7), ue (0.01-0.15), uv (0.3-0.7), γ
(0.4-1.6), uh (0.00001-0,001), sa(T ) (0.5-2) ; for Rio de Janeiro
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Figure 31 – Sensitivity Analysis residues regarding sum of square errors (SSE) from
model simulations and simulations parameters with the respecting range of
possibilities: Ot(T )(0.5-2), vt(0-0.3), K (0.5, 3), a(T ) (0.5-2), im (0.00001-
0.01), pmh (0.5-2), phm (0.5-2), fv (0.3-0.7), ue (0.01-0.15), uv (0.3-0.7), γ
(0.4-1.6), uh (0.00001-0,001), sa(T ) (0.5-2) ; for Porto Alegre
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Figure 32 – Sensitivity Analysis residues regarding sum of square errors (SSE) from
model simulations and simulations parameters with the respecting range of
possibilities: Ot(T )(0.5-2), vt(0-0.3), K (0.5, 3), a(T ) (0.5-2), im (0.00001-
0.01), pmh (0.5-2), phm (0.5-2), fv (0.3-0.7), ue (0.01-0.15), uv (0.3-0.7), γ
(0.4-1.6), uh (0.00001-0,001), sa(T ) (0.5-2) ; for Foz de Iguaçu



123

Figure 33 – Sensitivity Analysis residues regarding sum of square errors (SSE) from
model simulations and simulations parameters with the respecting range of
possibilities: Ot(T )(0.5-2), vt(0-0.3), K (0.5, 3), a(T ) (0.5-2), im (0.00001-
0.01), pmh (0.5-2), phm (0.5-2), fv (0.3-0.7), ue (0.01-0.15), uv (0.3-0.7), γ
(0.4-1.6), uh (0.00001-0,001), sa(T ) (0.5-2) ; for Fortaleza
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Figure 34 – Chikungunya incidence in Fortaleza from 2010 to 2020 according to Info-
dengue data

Figure 35 – Zika incidence in Rio de Janeiro from 2010 to 2020 according to Infodengue
data
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ANNEX E – Sensitivity analysis for

model SI-SEI-SEIR
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Figure 36 – Sensitivity Analysis residues regarding sum of square errors (SSE) from
model simulations and simulations parameters with the respecting range
of possibilities: Ot(T )(0.25-4), vt(0.25-0.4), K (0.25, 4), a(T ) (0.25-4), im
(0.25-4), pmh (0.25-1), phm (0.25-1), fv (0.25-1.5), ue (0.25-4), uv (0.25-4),
δ (0.25-4), γ (0.25-4), ip (0.25-4), uh (0.25-4), sa(T ) (0.25-4) ; for Rio de
Janeiro
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Figure 37 – Sensitivity Analysis residues regarding sum of square errors (SSE) from
model simulations and simulations parameters with the respecting range
of possibilities: Ot(T )(0.25-4), vt(0.25-0.4), K (0.25, 4), a(T ) (0.25-4), im
(0.25-4), pmh (0.25-1), phm (0.25-1), fv (0.25-1.5), ue (0.25-4), uv (0.25-4), δ
(0.25-4), γ (0.25-4), ip (0.25-4), uh (0.25-4), sa(T ) (0.25-4) ; for São Gonçalo



128 ANNEX E. Sensitivity analysis for model SI-SEI-SEIR

Figure 38 – Sensitivity Analysis residues regarding sum of square errors (SSE) from
model simulations and simulations parameters with the respecting range
of possibilities: Ot(T )(0.25-4), vt(0.25-0.4), K (0.25, 4), a(T ) (0.25-4), im
(0.25-4), pmh (0.25-1), phm (0.25-1), fv (0.25-1.5), ue (0.25-4), uv (0.25-4),
δ (0.25-4), γ (0.25-4), ip (0.25-4), uh (0.25-4), sa(T ) (0.25-4) ; for Belo
Horizonte
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Figure 39 – Sensitivity Analysis residues regarding sum of square errors (SSE) from
model simulations and simulations parameters with the respecting range
of possibilities: Ot(T )(0.25-4), vt(0.25-0.4), K (0.25, 4), a(T ) (0.25-4), im
(0.25-4), pmh (0.25-1), phm (0.25-1), fv (0.25-1.5), ue (0.25-4), uv (0.25-4), δ
(0.25-4), γ (0.25-4), ip (0.25-4), uh (0.25-4), sa(T ) (0.25-4) ; for Caucaia
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Figure 40 – Sensitivity Analysis residues regarding sum of square errors (SSE) from
model simulations and simulations parameters with the respecting range
of possibilities: Ot(T )(0.25-4), vt(0.25-0.4), K (0.25, 4), a(T ) (0.25-4), im
(0.25-4), pmh (0.25-1), phm (0.25-1), fv (0.25-1.5), ue (0.25-4), uv (0.25-4), δ
(0.25-4), γ (0.25-4), ip (0.25-4), uh (0.25-4), sa(T ) (0.25-4) ; for Contagem
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Figure 41 – Sensitivity Analysis residues regarding sum of square errors (SSE) from
model simulations and simulations parameters with the respecting range
of possibilities: Ot(T )(0.25-4), vt(0.25-0.4), K (0.25, 4), a(T ) (0.25-4), im
(0.25-4), pmh (0.25-1), phm (0.25-1), fv (0.25-1.5), ue (0.25-4), uv (0.25-4), δ
(0.25-4), γ (0.25-4), ip (0.25-4), uh (0.25-4), sa(T ) (0.25-4) ; for Curitiba
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Figure 42 – Sensitivity Analysis residues regarding sum of square errors (SSE) from
model simulations and simulations parameters with the respecting range
of possibilities: Ot(T )(0.25-4), vt(0.25-0.4), K (0.25, 4), a(T ) (0.25-4), im
(0.25-4), pmh (0.25-1), phm (0.25-1), fv (0.25-1.5), ue (0.25-4), uv (0.25-4), δ
(0.25-4), γ (0.25-4), ip (0.25-4), uh (0.25-4), sa(T ) (0.25-4) ; for Florianópolis
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Figure 43 – Sensitivity Analysis residues regarding sum of square errors (SSE) from
model simulations and simulations parameters with the respecting range
of possibilities: Ot(T )(0.25-4), vt(0.25-0.4), K (0.25, 4), a(T ) (0.25-4), im
(0.25-4), pmh (0.25-1), phm (0.25-1), fv (0.25-1.5), ue (0.25-4), uv (0.25-4), δ
(0.25-4), γ (0.25-4), ip (0.25-4), uh (0.25-4), sa(T ) (0.25-4) ; for Fortaleza
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Figure 44 – Sensitivity Analysis residues regarding sum of square errors (SSE) from
model simulations and simulations parameters with the respecting range
of possibilities: Ot(T )(0.25-4), vt(0.25-0.4), K (0.25, 4), a(T ) (0.25-4), im
(0.25-4), pmh (0.25-1), phm (0.25-1), fv (0.25-1.5), ue (0.25-4), uv (0.25-4), δ
(0.25-4), γ (0.25-4), ip (0.25-4), uh (0.25-4), sa(T ) (0.25-4) ; for Londrina
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Figure 45 – Sensitivity Analysis residues regarding sum of square errors (SSE) from
model simulations and simulations parameters with the respecting range
of possibilities: Ot(T )(0.25-4), vt(0.25-0.4), K (0.25, 4), a(T ) (0.25-4), im
(0.25-4), pmh (0.25-1), phm (0.25-1), fv (0.25-1.5), ue (0.25-4), uv (0.25-4), δ
(0.25-4), γ (0.25-4), ip (0.25-4), uh (0.25-4), sa(T ) (0.25-4) ; for Serra
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Figure 46 – Sensitivity Analysis residues regarding sum of square errors (SSE) from
model simulations and simulations parameters with the respecting range
of possibilities: Ot(T )(0.25-4), vt(0.25-0.4), K (0.25, 4), a(T ) (0.25-4), im
(0.25-4), pmh (0.25-1), phm (0.25-1), fv (0.25-1.5), ue (0.25-4), uv (0.25-4), δ
(0.25-4), γ (0.25-4), ip (0.25-4), uh (0.25-4), sa(T ) (0.25-4) ; for Vila Velha
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Figure 47 – Sensitivity Analysis residues regarding sum of square errors (SSE) from
model simulations and simulations parameters with the respecting range
of possibilities: Ot(T )(0.25-4), vt(0.25-0.4), K (0.25, 4), a(T ) (0.25-4), im
(0.25-4), pmh (0.25-1), phm (0.25-1), fv (0.25-1.5), ue (0.25-4), uv (0.25-4), δ
(0.25-4), γ (0.25-4), ip (0.25-4), uh (0.25-4), sa(T ) (0.25-4) ; for Joinville
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