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The members of the Cryptococcus neoformans and Cryptococcus gattii species complexes
are the main etiological agents of cryptococcosis, a life-threatening fungal infection affecting
mostly immunocompromised people, but also immunocompetent hosts or those with
unrecognized risk factors. These encapsulated basidiomycete yeasts, which are widely
distributed in the environment, are responsible for thousands of cases of pneumonia
and meningoencephalitis globally. Despite important improvements in antifungal and
antiretroviral therapy, cryptococcal meningitis, the main presentation of cryptococcosis,
is still associated with high morbidity and mortality around the world and remains a
significant clinical and economic burden in adults from many countries where there is a high
HIV seroprevalence. Every year, about 250,000 people suffer from cryptococcal meningitis,
with an estimation of more than 180,000 attributable deaths [1]. The goal of this special
issue is therefore to provide an update on the most current studies on the pathogenesis,
virulence factors, antifungal susceptibility, population genetics, and identification of C.
neoformans and C. gattii, as well as on the epidemiology, clinical aspects, diagnosis, and
treatment of cryptococcosis, both through reviews and original research articles.

Currently, there are four serotypes (A, B, C and D) amongst the members of the
C. neoformans and C. gattii species complexes, which have long been recognized, and can be
distinguished by the polysaccharide that makes up the capsule of these yeasts. However,
by combining data from different genotyping studies and methodologies carried out
in several laboratories from around the world, it was possible to initially identify four
major molecular types in C. neoformans (VNI to VNIV) and four in C. gattii (VGI to VGIV).
These molecular types have been extensively recovered not only from human clinical
samples, but also from veterinary samples and environmental sources, some of them being
responsible for outbreaks. More recently, by extending the molecular studies of the agents
of cryptococcosis, three other molecular types, represented by fewer isolates and being more
restricted geographically, were recognized. In C. neoformans, the molecular type VNB was
reported in Botswana and later in Brazil [2,3], while in C. gattii the molecular type VGV was
reported in environmental isolates in the Zambezian region [4], and VGVI in clinical isolates
from Mexico and Argentina [5,6]. Even though seven of these molecular types have been
proposed to be raised to species level [5], the issue of species definition is still controversial
amongst the research community working on cryptococcal infection. Besides, between and
within the major molecular types/species, there are differences in the ecology, epidemiology,
clinical manifestations, virulence, and antifungal susceptibility, which emphasize the need
to carry out additional molecular studies to characterize biological, clinical, and diagnostic
features of all possible cryptococcal species as well as the need for a continuous global
surveillance of these fungi.
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With the increasing affordability of whole genome sequencing (WGS), several genomes
of strains of C. neoformans and C. gattii recovered worldwide from endemic areas, as well as
from sporadic cases, have been sequenced. This has contributed to a better understanding
of the origin, speciation, evolution, and diversification of these yeasts, which has allowed
for the recognition of associations between genetic variants and virulence [7]. Using WGS,
it has also been possible to compare outbreak lineages and recognize various genetic
differences, such as mutations, deletions, transpositions, and recombination events, which
are potentially related to habitat adaptation, virulence, and pathology [8,9]. This has
also offered the possibility to identify biomarkers, which should be able to guide clinical
treatment to reduce mortality in patients based on the early detection of strains with a
specific tissue tropism or clinical manifestations. Even so, further advances in genomics
and other approaches, including proteomics, lipidomics, and metabolomics, will surely
contribute to the comprehension of how the members of the C. neoformans and C. gattii
species complexes are such successful pathogens.

Pathogenesis and virulence factors in the C. neoformans and C. gattii species complexes
have been studied for several years to establish the relevance and role of these fungal factors
and phenotypes in human disease. The capsule, melanin, and phospholipase activity are
the most studied virulence factors as they are protective components against the attacks
of the host immune system [10]. During infection, several degrading enzymes, such as
proteases and lipases, and other enzymes, such as urease, have also been identified as major
virulence factors that cause damage in the host. Apart from the virulence factors per se,
several mechanisms to avoid phagocytosis and enable persistence intracellularly in tissues
and organs, as well as morphogenesis, such as the increase in cell size, have been identified
in C. neoformans and C. gattii [10,11]. Nevertheless, the full contribution to the cryptococcal
pathogenesis of known virulence factors needs further research.

Therapy for cryptococcal infection is still a major challenge, and from the scarce
arsenal of antifungal agents that exist, only three classes, namely polyenes, flucytosine, and
azoles, are currently used to treat this mycosis [12]. The combination of amphotericin B
deoxycholate (AmBd) with 5-fluorcytosine (5-FC) produces the best therapy results in the
induction phase of the treatment [13]. However, AmBd toxicity together with the limited
availability of 5-FC limit their combined use, and even though there are some liposomal
formulations of amphotericin B that are less toxic, the high price of these formulations limits
their availability in resource-poor settings. Fluconazole, which can be used alone or in
combination with 5-FC in the induction therapy, is the drug of choice for the consolidation
and maintenance phases, yet this azole is much less effective at fungal clearance from
cerebrospinal fluid, and resistance has been documented during prolonged use, leading to
treatment failure [13,14]. Considering the dearth of drugs, together with toxicity and the
threat of the development of resistance, there is an urgent need for either the discovery of
new antifungals or for the modification of existing molecules with anticryptococcal activity.

Given the ongoing high global incidence and mortality from cryptococcal meningi-
tis, not only in the rising HIV population, but also in solid organ transplant recipients,
chemotherapy patients, other immunosuppressed hosts, and even in those immunocom-
petent, the cryptococcal species pose a significant risk to modern medicine [15]. The
emergence of outbreaks, the potential for antifungal resistance, and the expansion of the
ecological niche of cryptococcal species have increased the need for more in-depth stud-
ies. The collection of reports to be gathered in this special issue will assist in improving,
integrating, and enriching our knowledge and understanding of cryptococcosis, to a better
comprehension of the different aspects of the biology and ecology of the members of the
C. neoformans and C. gattii species complex as well as investigating their global spread.
Even though these yeasts have served as a fungal model for more than 3 decades, new
clinical and laboratory studies are needed to gain better insights into Cryptococcus and
cryptococcosis. This special issue is planned to coincide with the 11th International Con-
ference on Cryptococcus and Cryptococcosis, which is scheduled to be held in Kampala,
Uganda, in January 2023. The community working on new studies related to these yeast



Microorganisms 2022, 10, 13 3 of 3

pathogens and this mycosis are therefore welcome to contact the guest editors and submit
their manuscripts to be considered for publication in this special issue “Recent Advances
in Cryptococcus and Cryptococcosis”.
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