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The coronavirus disease 2019 (COVID-19) pandemic unfolded due to the widespread
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission reinforced
the urgent need for affordable molecular diagnostic alternative methods for massive
testing screening. We present the clinical validation of a pH-dependent colorimetric
reverse transcription loop-mediated isothermal amplification (RT-LAMP) for SARS-CoV-
2 detection. The method revealed a limit of detection of 19.3 ± 2.7 viral genomic
copies/µL when using RNA extracted samples obtained from nasopharyngeal swabs
collected in guanidine-containing viral transport medium. Typical RT-LAMP reactions
were performed at 65◦C for 30 min. When compared to reverse transcriptase–
quantitative polymerase chain reaction (RT-qPCR), up to cycle-threshold (Ct) value 32,
RT-LAMP presented 98% [95% confidence interval (CI) = 95.3–99.5%] sensitivity and
100% (95% CI = 94.5–100%) specificity for SARS-CoV-2 RNA detection targeting E
and N genes. No cross-reactivity was detected when testing other non–SARS-CoV
virus, confirming high specificity. The test is compatible with primary RNA extraction–free
samples. We also demonstrated that colorimetric RT-LAMP can detect SARS-CoV-2
variants of concern and variants of interest, such as variants occurring in Brazil named
gamma (P.1), zeta (P.2), delta (B.1.617.2), B.1.1.374, and B.1.1.371. The method meets
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point-of-care requirements and can be deployed in the field for high-throughput COVID-
19 testing campaigns, especially in countries where COVID-19 testing efforts are far from
ideal to tackle the pandemics. Although RT-qPCR is considered the gold standard for
SARS-CoV-2 RNA detection, it requires expensive equipment, infrastructure, and highly
trained personnel. In contrast, RT-LAMP emerges as an affordable, inexpensive, and
simple alternative for SARS-CoV-2 molecular detection that can be applied to massive
COVID-19 testing campaigns and save lives.

Keywords: COVID-19, RT-LAMP, SARS-CoV-2, molecular test, respiratory virus, diagnostic test

INTRODUCTION

Emerging viral infections continue to pose a major threat
to global public health. In the past decades, different viral
emergencies have been reported including the severe acute
respiratory syndrome coronavirus (SARS-CoV), H1N1 influenza,
Middle East respiratory syndrome coronavirus, Ebola vírus, Zika
virus, and most recently, the new coronavirus has been described,
which cause coronavirus disease 2019 (COVID-19; Wang et al.,
2020; Zhu et al., 2020). COVID-19’s etiologic agent is SARS-CoV-
2, which belongs to the Coronaviridae family, Betacoronavirus
genus (Gorbalenya et al., 2020; Rambaut et al., 2020). People with
COVID-19 have a wide range of symptoms reported such as fever,
cough, anosmia, ageusia, headache, fatigue, muscle or body aches,
sore throat, and shortness of breath or difficulty breathing. Some
of these symptoms help spread the virus; however, human-to-
human transmission from infected individuals with no or mild
symptoms has been extensively reported (Bai et al., 2020; Rothe
et al., 2020). This outbreak has spread rapidly; as of September
2021, there were more than 230 million confirmed COVID-19
cases with more than 4.7 million deaths recorded worldwide1.
Isolation and quarantine of infected individuals are essential to
viral spread and community dissemination of airborne pathogens
and require an accurate, fast, affordable, readily available tests
for massive population testing. In contrast to antibody detection,
which may take weeks after the onset of the infection, detection
of viral RNA is the best way to confirm the acute infection phase,
the most important phase for viral shedding, so that rationally
managed social distancing and lockdown can be implemented
(Long et al., 2020; Wang et al., 2020).

Reverse transcriptase–quantitative polymerase chain reaction
(RT-qPCR) is considered the gold-standard method for SARS-
CoV-2 RNA detection, mainly targeting combinations of viral
genome regions that codes for nucleocapsid protein (N),
envelope protein (E), RNA-dependent RNA polymerase (RdRp),
and other targets on the open reading frame (ORF1ab; Esbin
et al., 2020). Although RT-qPCR assays have played an important
role in the SARS-CoV-2 diagnosis, the technique has limitations
for massive population testing such as processing time; it requires
sophisticated equipment, infrastructure, and highly trained staff,
as well as costly reagents with high demand and shortages around
the world. Thus, developing complementary, inexpensive point-
of-care (PoC) methods that are rapid and simple and allowing

1https://coronavirus.jhu.edu/

the use of alternative reagents for COVID-19 diagnosis test are
urgently needed. Methods gathering these features can make
affordable massive testing campaigns, including contact tracing
strategies in highly dense countries, saving lives (Baek et al.,
2020; Dudley et al., 2020; Song et al., 2021; Godfrey et al.,
2020; Park et al., 2020; Wang, 2020; Yan et al., 2020; Yu et al.,
2020; Anahtar et al., 2021). In this regard, reverse transcription
loop-mediated isothermal amplification (RT-LAMP) has been
shown to be an affordable technique applied to detect different
pathogens (Mori and Notomi, 2009; Li et al., 2017). RT-LAMP
has been used during Ebola outbreak (Kurosaki et al., 2016a,b)
and for tracking Zika virus (da Silva et al., 2019) or Wolbachia
(Gonçalves et al., 2014) in Brazilian mosquitoes. The method
relies on specific DNA amplification at constant temperature
without the need for sophisticated thermal cyclers (Zhang et al.,
2020a). The amplified products can be visually detected through
magnesium pyrophosphate precipitation, fluorescence emission
from DNA intercalating dyes, agarose gel electrophoresis,
lateral flow immunochromatography, magnesium chelating color
indicators (Bhadra et al., 2021), and pH-dependent colorimetric
reaction that changes from fuchsia (pink) to yellow (positive
result) due to proton release during nucleic acid amplification
(Tanner et al., 2015; Figure 1). The possibility of accessing
results by the naked eye made RT-LAMP an exciting alternative
that facilitates the use of COVID-19 molecular testing. Simple,
scalable, cost-effective RT-LAMP–based alternatives for SARS-
CoV-2 detection have emerged during pandemics including
protocols for viral inactivation, quick run, RNA extraction–free
and LAMP-associated CRISPR/Cas strategies (Baek et al., 2020;
Broughton et al., 2020; Chow et al., 2020; Dudley et al., 2020; Song
et al., 2021; Godfrey et al., 2020; Joung et al., 2020; L’Helgouach
et al., 2020; Park et al., 2020; Rabe and Cepko, 2020; Bektaş et al.,
2021; Bokelmann et al., 2021). On April 14, 2020, the RT-LAMP
received the emergency use authorization from the United States
Food and Drug Administration (FDA) for SARS-CoV-2 detection
in COVID-19 diagnostics.

In this study, we optimized and validated a colorimetric RT-
LAMP assay to detect SARS-CoV-2 RNA in clinical samples
collected in different parts of Brazil, including samples with
known SARS-CoV-2 variants of interest (VOIs) and concern
(VOCs). After testing different primer sets for SARS-CoV-
2 RNA detection by RT-LAMP, best results were achieved
when using N gene or N/E genes-based strategies. 367
nasopharyngeal swabs collected in a guanidine-containing viral
transport medium (VTM; Faria et al., 2021) from suspect
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FIGURE 1 | Reverse transcription loop-mediated isothermal amplification (RT-LAMP) for SARS-CoV-2 RNA detection and COVID-19 testing. Inactivated saliva
samples or from nasopharyngeal swabs can processed for RNA extraction previously or be directly added to RT-LAMP reaction. Colorimetric output can be
achieved by different sensors and can be read by naked eye. The whole procedure is rapid and simple and does not require complex infrastructures. Created with
biorender.com.

patients were tested. The clinical validation revealed a sensitivity
of 98% [95% confidence interval (CI) = 95.3–99.5%] with
samples of cycle-threshold (Ct) values ranging from 15 to 32
with 100% specificity. We also demonstrated that RT-LAMP
is affordable for the detection of more transmissible SARS-
CoV-2 variants encompassing a number of genomic nucleotide
changes. Part of the results presented here is the research
basis of OmniLAMP R© SARS-CoV-2 kit, which was approved
by the Brazilian Heath Regulatory Agency for COVID-19
molecular testing (Anvisa no: 10009010368) as an alternative
for massive decentralized diagnostic in Brazil, which records the
third-highest number of COVID-19 cases worldwide (see text
footnote 1). Together with vaccination, RT-LAMP for COVID-
19 diagnosis could help to improve better life quality during
the pandemic, offering an alternative molecular testing for
monitoring lockdown measures; traveling restrictions; the return
of universities, schools, kindergartens; and sport league activities
with worldwide impact.

RESULTS

Reverse Transcription Loop-Mediated
Isothermal Amplification Targeting
SARS-CoV-2 N/E Genes Can Detect as
Low as 19 Viral Copies/µL
In order to access absolute analytical sensitivity of the
colorimetric RT-LAMP for SARS-CoV-2 detection, we calculated
the limit of detection (LoD), which is the lowest detectable
concentration of viral nucleic acid, here represented in viral
copies per microliter (/µL), which was determined based on

FIGURE 2 | Analytical sensitivity as revealed by the limit of detection (LoD).
RNA was extracted from VTM-nasopharyngeal swab, and the genome viral
copies input was calculated based on SARS-CoV-2 E gene-harboring plasmid
(Bioclin #K228-1) calibration curve. RT-LAMP reaction was performed at 65◦C
during 30 min using WarmStart R© colorimetric master LAMP mix (NEB
#M1800) in 20 µL final volume (upper panel). Amplicons were resolved in 2%
agarose gel and stained with GelRed R© (Biotium #41003) to confirm DNA
amplification (bottom panel). cps/µL, viral genome copies per microliter; NTC,
nontemplate control; VTM, viral transport medium (Bioclin #G092-1).

a calibration curve from a known copy number load standard
E gene-harboring plasmid. Purified SARS-CoV-2, obtained
from infected Vero E6 cells, revealed an LoD equivalent to
0.44 ± 0.2 copies/µL, whereas RNA obtained from clinical
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FIGURE 3 | Colorimetric RT-LAMP for COVID-19 diagnosis validation using 100 clinical samples. Clinical samples were collected from symptomatic and hospitalized
patients by nasopharyngeal swabs in partnership with CT-Vacinas/UFMG, Belo Horizonte, Brazil. Samples were obtained from different parts including Brazilian
Southeast and Northeast regions. The reaction was performed at 65◦C during 30 min using WarmStart R© colorimetric LAMP master mix (NEB #M1800) in 20 µL final
volume. The RT-LAMP reaction targeted SARS-CoV-2 N gene. Yellow content indicates positive reaction, whereas the pink pattern reveals nonreagent samples.
Amplicons were resolved in 2% agarose gel and stained with GelRed R© (Biotium #41003) to confirm DNA amplification. Latter pattern confirmed specific SARS-CoV-2
amplification that matches with yellow output tubes, which is not observed in pink nonreagent tests. +C, positive control using RNA extracted from laboratory-Vero
E6 cultured inactivated SARS-CoV-2; NTC, nontemplate control. Clinimetric parameters from these samples are presented in Supplementary Figure S1.

samples (nasopharyngeal swab in VTM) resulted in an LoD of
19.3 ± 2.7 copies/µL. Validation was performed using clinical
samples, confirming the LoD by colorimetric RT-LAMP, as
well as by the visualization of the amplified DNA in agarose
gel (Figure 2).

SARS-CoV-2 Detection by Reverse
Transcription Loop-Mediated Isothermal
Amplification on Clinical Samples
Presents 100% Specificity, Whereas
Sensitivity Varies From 100 to 84%,
Depending on the Viral Load
The diagnostic accuracy for RT-LAMP was compared to the
“gold-standard” technique RT-qPCR. The relative sensitivity
was accessed in a panel of 367 clinical specimens from
nasopharyngeal swab collected in VTM, including 254 positive
and 113 negative samples according to the colorimetric RT-
LAMP output that were previously characterized by RT-qPCR
(Table 1). The colorimetric output was correlated with the
visualization of amplified DNA after agarose gel electrophoresis
(Figure 3).

The overall accuracy of colorimetric RT-LAMP compared to
RT-qPCR was 99%, considering Ct values ranging from 15 to
40, with relative sensitivity of 84% (95% CI = 79.4–88%) and
100% (95% CI = 94.5–100%) specificity (Table 1). However,
considering samples with equivalent RT-qPCR Ct value ≤ 32,

RT-LAMP sensitivity is 98% (95% CI = 95.3–99.5%) and reaches
100% (95% CI = 94.5–100%) in samples with Ct value ≤ 30,
whereas specificity is always 100% (Table 1), which means there
are no false-positive hits. It is noteworthy that Ct > 32 RT-LAMP
starts to present false-negative outputs (Table 1 and Figure 4);
however, 55 samples were detected as positive on RT-LAMP
with RT-qPCR Ct values ranging from 32 to 39 (Figure 4A).
Receiver operating characteristic curve confirmed high sensitivity
at RT-PCR equivalent Ct value > 32 for RT-LAMP on COVID-
19 diagnostics (Figure 4B). The aforementioned results were
achieved when using a multiplexed set of primers targeting E
and N genes combined. However, prior to this, we performed
the evaluation of N gene alone in 100 clinical samples (60
positive and 40 negative results) derived from hospitalized
patients (Supplementary Figure 1). In this set of samples, we
were also able to validate high sensitivity/specificity, absence of
cross-reactivity with non–SARS-CoV viruses, and the capacity of
SARS-CoV-2 variant detection (Supplementary Figure 1).

Reverse Transcription Loop-Mediated
Isothermal Amplification Targeting
SARS-CoV-2 Does Not Cross-React With
Other Viruses, Including Respiratory
Ones
The analytical specificity was confirmed by performing RT-
LAMP for SARS-CoV-2 on putative cross-reacting viruses such
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TABLE 1 | Estimated values comparing clinimetric parameters between colorimetric RT-LAMP and RT-qPCR on the detection of SARS-CoV-2 for molecular
diagnosis of COVID-19.

RT-qPCR Colorimetric RT-LAMP Metrics % (95% CI)

Ct value Positive Negative Sensitivity Specificity Accuracy PPV NPV

15–30 171 0 100 (98–100) 100 (94.5–100) 100 100 100

15–32 199 4 98 (95–99.5) 100 (94.5–100) 99.95 100 99.95 (99.8–100)

15–34 221 13 94 (90.7–97) 100 (94.5–100) 99.90 100 99.9 (99.7–100)

15–36 245 29 89 (85.1–93) 100 (94.5–100) 99.74 100 99.7 (99.6–99.8)

15–40 254 48 84 (79.4–88) 100 (94.5–100) 99.60 100 99.6 (99.5–99.7)

Negative 0 65

Sensitivity: probability that the test result will be positive when the disease is present (true positive rate) = true positive/(true positives + false negatives); Specificity:
probability that a test result will be negative when the disease is not present (true-negative rate) = true negatives/(true negatives + false positives); accuracy, PPV, and
NPV depending on COVID-19 disease prevalence that was considered here as 2.5% according to the average value of two surveys during May and June 2020 (Hallal
et al., 2020). PPV is the probability that the disease is present when the test is positive, whereas NPV is the probability that the disease is not present when the test
is negative, and both are calculated as follows: PPV = sensitivity × prevalence/sensitivity × prevalence + (1 – specificity) × (1 – prevalence); NPV = specificity × (1 –
prevalence)/(1 – sensitivity) × prevalence + specificity × (1 – prevalence); accuracy is the overall probability that a patient is correctly classified and is calculated as
follows: =sensitivity × prevalence + specificity × (1 – prevalence). All calculations were performed using MedCalc (https://www.medcalc.org/) and VassarStats—Clinical
Research Calculators (http://vassarstats.net/).

FIGURE 4 | Colorimetric RT-LAMP for SARS-CoV-2 RNA detection. (A) Box-and-whisker representation of colorimetric RT-LAMP SARS-CoV-2–positive
and –negative output (x axis) plotted in function of their respective RT-PCR Ct values (y axis). Forty-eight false negative samples were detected on RT-LAMP after Ct
32 despite other 55 being positive from Cts ranging from 32 to 39. (B) Receiver operating characteristic (ROC) curve constructed based on data presented in A. As
summarized in Table 1, high-sensitivity values were obtained at the predicted cutoff.

as pathogens that colonize the human upper respiratory tract
or that are associated with seasonal outbreaks in Brazil. None
of the tested viruses [human influenza A virus/H1N1, influenza
B virus, human respiratory syncytial virus (hRSV), dengue,
Zika, Chikungunya, and yellow fever viruses] presented cross-
reactivity on RT-LAMP using E an N gene as SARS-CoV-2
target (Figure 5). Similar results were obtained when using N
gene alone as target (Supplementary Figure 1E). It reinforces
the high specificity observed on clinical validation with no
false-positive results (Figure 3). Thermodynamic and alignment
analyses were performed on SARS-CoV-2 N, E, and RdRp RT-
LAMP primer sets, revealing that there is no cross-reactivity

over more than 300 non–SARS coronaviruses–derived genomes
(Supplementary Table 1).

Six clinical samples previously confirmed as SARS-CoV-
2 positive by RT-qPCR were subclassified as presenting low,
medium, or high Ct values targeting E gene. All of them were
tested by colorimetric RT-LAMP in independent reactions to test
the performance of N, E, and RdRp genes as target to detect
SARS-CoV-2. The samples with low Ct values (18.9 and 21.7)
were positive for all tested primer sets, whereas E and RdRp
genes started to present false-negative results from medium (26.6
and 28.4) Ct values (Figure 6). It indicates that the SARS-
CoV-2 N gene is a better target for colorimetric RT-LAMP,

Frontiers in Microbiology | www.frontiersin.org 5 November 2021 | Volume 12 | Article 713713

https://www.medcalc.org/
http://vassarstats.net/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-713713 November 12, 2021 Time: 14:43 # 6

Alves et al. Colorimetric RT-LAMP for SARS-CoV-2 Detection

FIGURE 5 | Microbial cross-reactivity assay to test SARS-CoV-2 RT-LAMP
analytical sensitivity. The test was performed using potentially cross-reacting
respiratory viruses or local occurring arboviruses. RT-LAMP reaction was
performed at 65◦C during 30 min, with additional 10 min, to confirm the
absence of cross-reactivity when targeting SARS-CoV-2 E and N genes. The
assay was performed using the WarmStart R© colorimetric LAMP 2× master
mix (NEB #M1800). Yellow (positive) reaction is observed only when the
template is SARS-CoV-2 viral RNA. hRSV, human respiratory syncytial virus;
NTC, nontemplate control; M, molecular size marker. RT-LAMP amplification
products were resolved in 2% agarose gel and stained with GelRed R© (Biotium
#41003) to confirm DNA amplification. DENV3, dengue virus serotype 3; ZIKV,
Zika virus; CHIKV, Chikungunya virus; YFV, yellow fever virus; Influenza A
(H1N1/H3N2); and influenza B (Yamagata/Victoria).

detecting viral RNA in samples with equivalent RT-qPCR Ct
values > 30 (Figure 6).

Colorimetric RT-LAMP sensitivity depends on the set of
LAMP primers that can vary even within the same target. When
RT-LAMP was performed on low viral load samples (Ct value
for E gene ranging from 31.8 to 36.2), the N gene_Set1 was able
to identify 4 of 12 (33.3%) true-positive samples. In contrast,
N gene_Set2 or primer multiplex strategy (N gene Set1/Set2)
allowed the detection of 11 of 12 (91.6%) true-positive samples
(Supplemental Table 2).

Colorimetric Reverse Transcription
Loop-Mediated Isothermal Amplification
Can Be Performed on Clinical Samples
Without RNA Extraction
Reverse transcription loop-mediated isothermal amplification
performed in clinical samples, without any chemical or physical
pretreatment or RNA extraction, returned positive output color
in three of five samples (Figure 7A). In this assay, we used
laboratory-cultured and inactivated SARS-CoV-2 and clinical
samples without previous RNA extraction, showing that it is
possible to use direct patients’ samples without preprocessing
(Figure 7A). However, this should be taken with caution, as crude

clinical samples may contain interferents that can block RT-
LAMP reaction. Previous heat inactivation can be used to reduce
this possibility. Here, only 1 µL of 1:10 solution of hydrochloride
guanidine-containing VTM from nasopharyngeal swabs was
added as a template to the SARS-CoV-2 LAMP reaction. Further
analyses are being performed to establish the method sensitivity
and feasibility for massive patient screening. All five samples
had previous RNA extraction, for RT-PCR analysis, supporting
that extraction process can increase detection sensitivity. We
also tested the incubation time at 65◦C reaction temperature.
All SARS-CoV-2 control samples turned reaction color from
fuchsia to yellow as indicative of DNA amplification, confirming
positive reaction from the earliest time point tested (Figure 7B).
In all tested intervals nontemplate controls were pink/fuchsia
(negative) as expected, without any spurious late amplification,
as confirmed by agarose gel electrophoresis showing no
amplification bands on it (Figure 7B).

Colorimetric Reverse Transcription
Loop-Mediated Isothermal Amplification
Allows the Detection of New
SARS-CoV-2 Variants of Interests and
Variants of Concern
As a worldwide concern, SARS-CoV-2 VOI and VOC molecular
detection could fail when applying S region–based RT-qPCR
diagnostic methods due to mutations that would prevent primer
annealing. In order to provide experimental evidences that RT-
LAMP is a powerful molecular tool for detecting SARS-CoV-2
RNA, including VOCs and VOIs, we performed the tests on
clinical samples that were previously identified as VOCs/VOIs
by complete genome sequencing. All tested variants, including
gamma (P.1 or B.1.1.28.1) and zeta (P.2 or B.1.1.28.2), originally
reported in Brazil, and delta (B.1.167.2), first detected in India,
were detected in colorimetric SARS-CoV-2 RT-LAMP (Figure 8),
either by N gene alone as target (Supplementary Figure 1D)
or by multiplex strategy using N2/E1 primer set, indicating
that none of the mutant polymorphisms prevent specific primer
annealing on RT-LAMP COVID-19 diagnosis (Figure 8).

DISCUSSION

The COVID-19 pandemics demanded a rapid global response in
massive diagnostic solution to face the worldwide crisis. In this
context, the RT-qPCR—considered the gold-standard technique
for SARS-CoV-2 RNA detection—requires high-cost equipment,
trained staff, and specialized laboratory infrastructure. In
addition, during the COVID-19 pandemic, several health care
centers and private laboratories competed for RT-qPCR kits
and related products to meet the high diagnostic demand. In
order to overcome the lacking of molecular testing and provide
affordable alternatives, RT-LAMP had become one of the main
hopes. Because of its simplicity, accuracy comparable with RT-
qPCR to detect SARS-CoV-2 RNA, the fact that it does not
require PCR machine, and for offering a naked eye readable
colorimetric output, RT-LAMP is the focus of massive testing
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FIGURE 6 | Colorimetric RT-LAMP for SARS-CoV-2 detection using genes N, E, and RdRp as target. Selected SARS-CoV-2–positive clinical samples by RT-qPCR
were classified as low (Ct 18.9 and 21.7), medium (Ct 26.6 and 28.4), and high (Ct 31.6 and 35.2) Ct values for E gene. They were included as input for colorimetric
RT-LAMP reaction using primers targeting N, RdRp (A), and E genes (B). RT-LAMP SARS-CoV-2 false-negative samples were more frequent when using E and
RdRp genes as target (C). RT-LAMP reaction was performed at 65◦C during 30 min, using the WarmStart R© colorimetric LAMP 2× master mix (NEB #M1800).
RT-LAMP amplification products were resolved in 2% agarose gel and stained with GelRed R© (Biotium #41003) to confirm DNA amplification. +C, positive control
using SARS-CoV-2 RNA extracted from laboratory-cultured inactivated SARS-CoV-2; NTC, nontemplate control.

FIGURE 7 | Colorimetric RT-LAMP to detect SAR-CoV-2 in RNA extraction–free clinical samples (A) or laboratory-cultured virus (B). Clinical samples were derived
from nasopharyngeal swabs placed on guanidine-containing viral transport medium, diluted 1:10. The RT-PCR Ct values for SARS-CoV-2 based on E gene are as
follows: CS134 = 31.8, CS135 = 15.3, CS138 = 18.4, CS139 = 21.7, and CS140 = 24.6. RT-LAMP reaction was performed in 20 µL final volume, incubated at
65◦C during 30, 40, or 50 min (inactivated virus) using WarmStart R© colorimetric LAMP master mix (NEB #M1800). Both clinical samples and viruses are RNA
extraction–free samples. The amplification products (amplicons) were migrated in agarose gel at 2% to confirm amplification, as indicated by the characteristic ladder
highlighted by GelRed R© staining. NTC, nontemplate control; CS, clinical sample; and +C, positive control.

campaigns (Chow et al., 2020; Dudley et al., 2020; Song et al.,
2021). This screening strategy is compatible with home, primary
care clinics, point of entry (borders), schools, universities, sport
leagues, and companies and can help to achieve a safe back-to-
work and quarantine monitoring (Chow et al., 2020; Dudley et al.,
2020; Song et al., 2021; Godfrey et al., 2020; Bokelmann et al.,
2021). Since April 14, 2020, the United States FDA issued the
emergency use authorization of Color SARS-CoV-2 RT-LAMP
Diagnostic Assay from Color Health, Inc. (EUA no. EUA200539).

In order to provide an affordable SARS-CoV-2 detection
tool, we validate a colorimetric RT-LAMP for the COVID-19

diagnosis using clinical samples collected from different parts
of Brazil. The country has a flawed screening performance,
testing fewer than 220 individuals per 1,000 people (May 2021)2

where the majority of tests rely on antibodies-based rapid tests,
which are not the most reliable and recommended for mass
screening and decision making to control local outbreaks. The
test sensitivity of RT-LAMP is comparable to the gold standard
RT-qPCR and clearly relies on the target choice, incubation
time, viral load (asymptomatic patients, days of symptoms, and

2https://www.worldometers.info/coronavirus
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FIGURE 8 | Colorimetric RT-LAMP allows the detection of SARS-CoV-2 VOCs and VOIs. RT-LAMP reaction was performed at 65◦C for 30 min, using the
WarmStart R© colorimetric LAMP 2× master mix (NEB #M1804), using multiplex N2/E1 primer sets. The amplicons were migrated in agarose gel at 2% to confirm
amplification, as indicated by the characteristic ladder highlighted by GelRed R© staining. NTC, nontemplate control; CS, clinical sample; and +C, positive control. The
top panel shows a schematic representation of SARS-CoV-2 spike protein (upper) and where the main mutations are highlighted and represented in SARS-CoV-2
virions (right hand side) present in VOC gamma (B.1), delta (B.1.167.2), and VOI zeta (P.2). The VOCs alpha (B.1.1.7) and beta (B.1.3.51), first reported in the
United Kingdom and South Africa, respectively, are also represented. K417N: lysine-to-asparagine substitution at position 417 of spike protein at the receptor biding
domain (RBD); V445A: valine-to-alanine substitution at position 445 and so on. L, leucine; Q, glutamine; E, glutamic acid; Y, tyrosine; T, threonine; P, proline; H,
histidine; D, aspartic acid; S, serine; F, phenylalanine. del, deletion. Segments of SARS-CoV-2 protein NTD, N-terminal domain; CTD2, C-terminal domain 2 or C
terminus of S1 fragment after furin cleavage; FP, fusion peptide; HR1, heptad repeat region 1. SARS-CoV-2 variants were previously sequenced. Variants of interest
B.1.1.371 and B.1.1.374 were first reported in Saudi Arabia and Finland, respectively, (https://cov-lineages.org/). Created with biorender.com.

correct sampling), output reading, sample integrity, and quality
(viral transport media, sample storage condition, preanalytical
treatments, extraction procedure, and crude RNA extraction–
free samples), and sample type (nasal, nasopharyngeal, saliva,
sputum, and gargle lavage; Table 2).

Upon RNA extraction from nasopharyngeal swab–derived
clinical samples, we found an LoD of 20 viral genomic copies/µL,
confirming previous studies based on N SARS-CoV-2 target
(Anahtar et al., 2021; Bokelmann et al., 2021; González-González
et al., 2021). It is worth noting that when using nonclinical SARS-
CoV-2 extracted RNA or synthetic target, the LoD reaches less
than 0.5 copies/µL. This can be explained by the presence of
interferents such as VTM, host cells, and enzymes that could
reduce the yield (Dudley et al., 2020; Nawattanapaiboon et al.,
2021). In this regard, we have to be careful when interpreting
LoD calculated using nonclinical samples. Nevertheless, extracted
samples are rich enough in viral genomic copies to meet SARS-
CoV-2 clinically relevant levels.

Clinical validation of RT-LAMP for COVID-19 diagnosis
relies on calculating parameters, such as sensitivity, specificity,
positive predictive value, negative predictive value, and accuracy

compared to the gold standard RT-qPCR. We have to be
careful when associating the RT-LAMP sensitivity, and indirect
assumption on RT-qPCR viral load is not straightforward because
of some technical concerns. It is well accepted that Ct values
can be representative of viral load. However, this parameter
could lead to misinterpretation when comparing different kits,
targets, and nonstandardized samples. A survey conducted by the
College of American Pathologists on more than 700 laboratories,
reported a variation as much as 14 cycles among different
methods on the same batch material. Single laboratories using
different platforms and targets in SARS-CoV-2 molecular testing
can represent a potential variability on Ct values (Rhoads et al.,
2020). Considering previous convergent reports and presuming
different targets and platforms, the data from the literature show
that with an RT-qPCR Ct 30 cutoff, RT-LAMP sensitivity for
SARS-CoV-2 detection is close to 100% (Schermer et al., 2020;
Thi et al., 2020; de Oliveira Coelho et al., 2021; García-Bernalt
Diego et al., 2021) and eventually with a higher threshold Ct 35
as well (L’Helgouach et al., 2020; de Oliveira Coelho et al., 2021).
Indeed, we confirm that up to Ct 30 RT-LAMP returned 100%
sensitivity for SARS-CoV-2 detection, reaching 98 and 94% when
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considering Ct values up to 32 and 34, respectively. Curiously,
Kim et al. (2021) found that samples from hospitalized patients
presenting Ct value of 28.4 or less were infective to human
cell culture (Kim et al., 2021), an evidence based on in vitro
extrapolation that RT-LAMP sensitivity is compatible with the
threshold of infectivity. This reinforces that simple, robust,
and reliable RT-LAMP meets clinical requirements, presenting
similar COVID-19 diagnostic accuracy as RT-qPCR (Österdahl
et al., 2020; Inaba et al., 2021; Jang et al., 2021).

The choice of SARS-CoV-2 genomic target plays an important
role when selecting the RT-LAMP method for COVID-19
diagnosis. Several research groups have tested different regions
on SARS-CoV-2 genome with the potential to generate RT-
LAMP primers. Once the majority of primers were designed
using the open source software Primer Explorer, it is expected
that at some point, the default algorithm returned the same result
or overlapping regions, independently identified in a context
where molecular biology scientists everywhere in the world are
working to tackle COVID-19 (Figure 9). According to our data
compilation, N gene and ORF1ab regions (overlapping NSP3,
As1e, and RdRp-coding sequences) were the most frequent targets
chosen for SARS-CoV-2 RT-LAMP (Table 2 and Figure 9).
Ganguli et al. (2020) and Zhang et al. (2020b) arrived at the same
conclusion when selecting the SARS-CoV-2 N gene-targeting
primer set after confirming better performances for RNA viral
detection when compared to other targets (Ganguli et al., 2020;
Zhang et al., 2020b). When testing N, E, and RdRp genes in true-
positive, previously RT-qPCR–characterized clinical samples, we
observed more false-negative outputs from assays using E and
RdRp genes, corroborating what was previously reported. We
also highlight that primer subsets within the same N target
gene can contribute differentially to RT-LAMP test sensitivity
(Supplementary Table 2). Furthermore, multiplexing different
primer sets is encouraged in order to increase sensitivity
(Figure 9; Kim et al., 2019; Mautner et al., 2020; Zhang et al.,
2020b).

Another important (almost neglected) point is the fact that,
although inspired by RT-qPCR target selection, few SARS-CoV-
2 RT-LAMP approaches reported an internal control target to
confirm the presence of human RNA and monitor sampling
or extraction process (de Oliveira Coelho et al., 2021). Wilson-
Davies et al. (2021) pointed out that the lack of amplification
can happen for different reasons concerning the whole reaction,
a specific well, or due to inhibitory substances, highlighting the
importance of including internal control even before nucleic
acid extraction, in order to be considered a reliable SARS-CoV-2
LAMP assay (Wilson-Davies et al., 2021). In this study, all clinical
samples were previously characterized by RT-qPCR, including
human RNAse P as housekeeping gene (internal control). In the
current OmniLAMP R© assay, we included human b-actin RNA
(rACTB) as internal control. Other constitutive targets for SARS-
CoV-2 RT-LAMP include BPIFA1 (Bektaş et al., 2021), human
18S RNA (de Oliveira Coelho et al., 2021), and Statherin RNA
(Sherrill-Mix et al., 2021a; Table 2).

Similar to its high sensitivity, obtained in this work and
by other studies, the SARS-CoV-2 RT-LAMP specificity is
undoubtedly high and is frequently reported as 100% without any

cross-reactivity with other respiratory or SARS-CoV–unrelated
viruses (Chow et al., 2020; Mohon et al., 2020; Park et al.,
2020; Aoki et al., 2021; Nawattanapaiboon et al., 2021). We
also confirm that the SARS-CoV-2 RT-LAMP solution presented
here is highly specific and does not cross-react with Brazilian
occurring seasonal influenza A and B, hRSV, or arboviruses.

Despite the advantages presented by purified and nucleic
acid–enriched samples for SARS-CoV-2 RT-LAMP, RNA
extraction–free protocols have attracted attention as they can
be noninvasive (saliva-based), do not require additional steps
and equipment, and fulfill point-of-sampling requirements.
Indeed, the preanalytical phase on RT-LAMP is the bottleneck
for PoC applications. For this reason, several studies highlighted
the feasibility of primary RNA extraction–free approaches for
SARS-CoV-2 RNA detection (Asprino et al., 2020; Ben-Assa
et al., 2020; Dudley et al., 2020; Esbin et al., 2020; L’Helgouach
et al., 2020; Schermer et al., 2020; Srivatsan et al., 2020; Anahtar
et al., 2021; Lalli et al., 2021; Wei et al., 2021). Pretreatment
of saliva samples includes heat sample inactivation, and the
use of lysis/stabilizing buffers that can contain proteinase K,
TCEP, EDTA, and DTT could help the viral RNA assessment
maintaining its integrity (Ben-Assa et al., 2020; Lamb et al.,
2020; L’Helgouach et al., 2020; Smyrlaki et al., 2020; Lalli et al.,
2021; Newman et al., 2021; Yang et al., 2021). Caution must be
taken when running colorimetric RT-LAMP as pretreatment
could interfere on result outputs. One of the main limitations
for direct sample test by colorimetric RT-LAMP based on pH-
sensing is the false-positive result upon input sample addition
(previous to amplification) because of naturally acidic samples
(Thi et al., 2020; Bokelmann et al., 2021). To prevent spurious
amplification due to the presence of DNA from oral microbiome,
food, or host cells on primary samples, Bokelmann et al. (2021)
treated samples with λ exonuclease that acts by preferentially
digesting 5′-phosphorylated DNA, leaving nonphosphorylated
primers or LAMP products intact (Bokelmann et al., 2021).
Here we showed the preliminary results on RNA extraction–
free (also pretreatment free) diluted 10× in hydrochloride
guanidine-containing VTM nasopharyngeal samples directly
accessed to compare colorimetric results. Three of five RT-qPCR
true-positive, directly accessed samples returned positive yellow
output on colorimetric RT-LAMP for SARS-CoV-2 detection.
This provides clues on the use of unextracted samples for massive
COVID-19 testing campaigns with a trade-off on cost-benefits
for LoD and test sensitivity. A recent study on 559 swabs and
86,760 saliva samples performed a sample preparation method
for RNA extraction–free and found diagnostic sensitivity of 70.35
and 84.62%, respectively, for swab and saliva samples (Kidd et al.,
2021). Most of the high and medium viral load samples will be
detected on unextracted protocols. However, to meet RT-qPCR
detection sensitivity levels, this requires some type of purification
step and RNA concentration (Broughton et al., 2020; Park et al.,
2020; Zhang et al., 2020a).

We are currently observing rapid converging evolution
of SARS-CoV-2 during the COVID-19 pandemic worldwide.
Several reports alert for the emergence of VOIs and VOCs
such as the alpha (B.1.1.7), first detected in England
(ECDC threat assessment brief on December 20, 2020;
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TABLE 2 | Comparison of SARS-CoV-2 RT-LAMP solutions, including key parameters on clinical validation.

Commercial
name or
acronym

Sample
source

Transport
medium

Target Internal
control

RNA
extraction

Kit/output Program Sensitivity/
specificity

LoD Clinical
sample
tested

Local References

OmniLAMP Nasopharyngeal VTM N, E and
RdRp genes

NA Yes NEB #M1800;
#M1804
Color

65◦C/30 min 100%/100%
Up to RT-qPCR
Ct value 30

20 copies/µL
using clinical
samples

467 CT-Vacinas-
Fiocruz/UFMG, Belo
Horizonte, Brazil

This study

Nasopharyngeal Saline N gene and
ORF1a

Human actin B
gene

No NEB #M1800
Color

65◦C/30 min 87.5%/100% 25 copies/µL 62 Massachusetts
General Hospital,
Boston, MA,
United States

Anahtar et al.,
2021

Yes 90%/100% 40

NI NI N gene;
ORF1ab

NI Yes NEB #M1800
Color

65◦C/30 min 100%/100% 240 copies/Rx 62 Paraná Central
Laboratory, Curitiba,
Brazil

Aoki et al., 2021

Saliva NA N gene NI No, heated NI 63◦C/30 min 78.9%/100% NI 244 Sírio-Libanês
Hospital, São Paulo,
Brazil

Asprino et al.,
2020

Nasal NI N gene NI Yes NEB #M1800
Color

65◦C/30 min NI 10−7 (equivalent
to Ct 34 in
RT-PCR)

14 National Medical
Center, Republic of
Korea

Baek et al., 2020

ALERT Nasal, saliva PBS N gene BPIFA1 gene Yes or without
extraction
(lysate
samples)

NEB Bst 3.0 and
RTx;
#M1800
Fluorescence

63◦C/45 min 95%/97%–100% 2 copies/µL 47 Hôpital Saint Louis,
Paris, France;
Pontifica Universidad
Católica, Santiago,
Chile

Bektaş et al., 2021

Throat and
nasopharyngeal

UTM N gene; NI No
(lysate
samples)

NEB #M1800 65◦C/30–40 min 71.15%/96.77%
(30 min)
76,9%/96/77%
(35 or 40 min)

NI 180 Rambam Health
Care Campus, Haifa,
Israel

Ben-Assa et al.,
2020

LAMP-OSD Nasopharyngeal
and oropharyngeal
and
SARS-CoV-2
spiked saliva

N gene;
ORF1ab
(NSP3 and
RdRp genes)

NI Yes NEB Bst 2.0
polymerase;
WarmStart RTx +
betaine and
additional MgCl2
+ FAM
Fluorescence

65◦C/90 min NI 10 copies/Rx NA NA Bhadra et al., 2021

Cap-iLAMP Gargle lavage NA N gene;
ORF1ab

No, heated
samples

NEB #M1800
Color + SYTO9
Fluorescence

65◦C/25–30 min 97,1%/ 500 copies/Rx 192 NI Bokelmann et al.,
2021

Nasopharyngeal
and oropharyngeal

BD UVTM N gene
and
E gene

Human actin B
gene

Yes NEB
#M1800
Color +
QuantiFluor
(Fluorescence)

65◦C/30–40 min 95.6%/99.2% 8 copies/µL 857 New York
Presbyterian Hospital
Weill Cornell Medical
Center, NY,
United States

Butler et al., 2020

COVID-19-
LAMP

Nasopharyngeal,
sputum, and throat

ORF3a, E
gene

NI Yes NEB colorimetric
WarmStart

63◦C/60–90 min 98.2%/100% 42 copies/Rx 223 University of
Hong Kong Hospital,
China

Chow et al., 2020

Nasal and oral PBS ORF1a human 18S
RNA

Yes NEB colorimetric
WarmStart

63◦C/30 min 93.8%/90.4% 100 copies/Rx
up to Ct 35

466 Erasto Gaertner
Hospital, Curitiba,
PR, Brazil

de Oliveira Coelho
et al., 2021
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TABLE 2 | (Continued)

Commercial
name or
acronym

Sample
source

Transport
medium

Target Internal
control

RNA
extraction

Kit/output Program Sensitivity/
specificity

LoD Clinical
sample
tested

Local References

Nasopharyngeal SPS N gene and
ORF1ab

NI Yes NEB Bst 2.0, 3.0,
RTx
WarmStart
+EvaGreen
Color and
Fluorescence

8.3%–
100%/100%

200 copies/Rx University Hospital of
Salamanca, Spain

García-Bernalt
Diego et al., 2021

Nasopharyngeal UTM, VTM
or PBS

ORF1a NI No NEB #E1700
Fluorescence

63◦C/40 min 81%/100% 62.5 copies/µL 137 University of
Wisconsin – Madison
Hospital and Clinics,
United States

Dudley et al., 2020

Penn-RAMP
RPA+
LAMP

Nasal (spiked
samples)

NA ORF1ab NI NA OptiGene
Isothermal
Mastermix
(ISO-001) +
EvaGreen dye
Loopamp
2019-SARS-CoV-2
Detection Reagent
Kit (Eiken
Chemical, Tokyo,
Japan) + Leuco
Crystal Violet

63◦C/50 min 100%/NI 7 copies/Rx NA NA Song et al., 2021

Saliva; throat and
nasal

VTM N gene NI No, chelating
agent
treatment

NEB
Color

65◦C/30 min 90%100% 105 copies/mL 62 Rambam Health
Care Campus in
Haifa, Israel

Flynn et al., 2020

OptiGene
COVID-19
RT-LAMP

Nasopharyngeal VTM ORF1a NI Yes, also
tested without
RNA
extraction

OptiGene
GspSSD 2.0
Opti-RT
Fluorescence

65◦C/20 min 97%/99% 100–200
copies/Rx

196 Hampshire Hospitals
NHS Foundation
Trust,
United Kingdom

Fowler et al., 2021

Nasopharyngeal VTM ORF1a, ORF8,
S and N genes

No NEB Bst 2.0
+EvaGreen
Fluorescence

65◦C/60 min 100%/100% 50 copies/µL 20 OSF Healthcare.
Peoria, IL,
United States

Ganguli et al.,
2020

Nasopharyngeal NI N gene NI Yes NEB #M1800
Color
+EvaGreen
Fluorescence

65◦C/50 min NI 625 copies/Rx 14 Hospital Alfa Medical
Center, Guadalupe,
México

González-
González et al.,
2021

Throat VTM ORF1ab, S
gene and N
gene

Human actin B
gene

Yes NEB #M1800
Color

65◦C/30 min NI 2 copies/25 µL 16 Shenzhen Luohu
People’s Hospital in
China.

Huang et al., 2020

Nasopharyngeal BD UVTM NI NI Yes SARS-CoV-2
detection kit (Eiken
Chemical Co.)
Turbidimetry
Fluorescence

62.5◦C/35 min 56.6%/98.4% 6.7 copies/Rx 124 University Hospital,
Japan

Inaba et al., 2021

Nasopharyngeal NI NI NI Yes Loopamp
2019-SARS-CoV-2
Detection Reagent
Kit (Eiken
Chemical, Tokyo,
Japan)
Turbidity

62.5◦C/35 min 100%/97.6% 101 copies/µL 76 National Institute of
Infectious Diseases,
Japan

Kitagawa et al.,
2020
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TABLE 2 | (Continued)

Commercial
name or
acronym

Sample
source

Transport
medium

Target Internal
control

RNA
extraction

Kit/output Program Sensitivity/
specificity

LoD Clinical
sample
tested

Local References

EasyCOV Saliva VTM NI NI No NEB E1700 + 1 M
betaine/
fluorescence

65◦C/30 min 72.7%/95.7% Equivalent to Ct
35 in RT-PCR

123 Montpellier University
Hospital, France

L’Helgouach et al.,
2020

Saliva Saline N-A gene NI No, heat +
Prot. K lysis

NEB #M1800
Color

62.5◦C/30–
60 min

NI < 10 copies/µL
(200 copies/Rx)

5 Washington
University School of
Medicine;
Barnes-Jewish
Hospital; the Institute
of Clinical and
Translational
Sciences; Tissue
Procurement Core,
United States

Lalli et al., 2021

Throat NI N gene NI Yes NEB Bst 3.0;
WarmStart RTx;
Q5 HF DNA
polymerase
Color or
fluorescence

62.5◦C/30–
40 min

Sensitivity was
100% for 393
copies/Rx;
80% for 79
copies/Rx and
60% for 16
copies/Rx

118.6
copies/25 µL
or
4.7 copies/µL

56 Nantong Third
Hospital, China

Lu et al., 2020

Nasopharyngeal
and throat

NI RdRp NI Yes NEB #M1800
Color

65◦C/60 min 95.74%/99.95% 25 copies/Rx 2,120 Ramathibodi
Hospital, Mahidol
University, Bangkok,
Thailand

Nawattanapaiboon
et al., 2021

Nasopharyngeal VTM ORF1ab NI Yes, magnetic
bead
extraction

MicrosensDx
RapiPrep

65◦C/25 min 80%/100% Not determined 21 National Health
Service Care Home,
United Kingdom

Österdahl et al.,
2020

SARS-CoV-2
isolated from
MRC-5 infected
cells

NA NSP3
gene
(ORF1ab)
S gene;
N gene

NI Yes NEB Bst 3.0; +
SuperScript IV RT
Invitrogen
+ or leuko–crystal
violet
Color
NEB #M1800
+ SYTO-9
Fluorescence

69◦C or
65◦C/30 or
60 min

NI 100 copies/Rx
or
10−6 RNA
dilution

NA NA Park et al., 2020

Saliva, nasal and
nasopharyngeal

Saline ORF1ab
(As1/1e);
ORF1a-C and
N gene

NI No NEB #M1800 and
#E1700
Color and
fluorescence

65◦C/30–60 min NI 1 copy/µL NA NA Rabe and Cepko,
2020

LAMP-BEAC Nasopharyngeal
and saliva

NI E, N genes;
Orf1ab
(As1/1e);

Human
statherin
mRNA

No,
TCEP/EDTA
and heat
treated

NEB #E1700 and
labmade Bst FL
Fluorescence

60◦C–
65◦C/45 min

NI More than 100
copies/µL

82 NA Sherrill-Mix et al.,
2021a

Nasal and
nasopharyngeal

Amies
medium

ORF1a and N
gene

NI Yes NEB #M1800
Color

65◦C/30 min 100%/99.7% up
to Ct 25

100 copies/Rx
or
4 copies/µL

792 University Hospital
Heidelberg and
municipal COVID-19
testing station,
Germany

Thi et al., 2020
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TABLE 2 | (Continued)

Commercial
name or
acronym

Sample
source

Transport
medium

Target Internal
control

RNA
extraction

Kit/output Program Sensitivity/
specificity

LoD Clinical
sample
tested

Local References

Dry swab No, heat
treated or
directly
included in
LAMP reaction

65◦C/30 min 90.5%/99.5% up
to Ct 25 in
RT-PCR (hot
swab)

343

93.8%/94.1% up
to Ct 25 in
RT-LAMP (direct
swab)

235

One-pot
RT-LAMP

NA NA N gene NA pUC57-N
gene
(synthetic)

NEB Bst 3.0
DNA/RNA
polymerase
+ EvaGreen
+Rox
Fluorescence

59◦C/50 min NI 6 copies/µL NA NA Wang, 2020

Nasopharyngeal VTM ORF1ab NI No NEB #M1800
Color

63◦C/30 min 75%/100% 2.5 copies/uL
Spiked samples
on VTM

20 Columbia University
Irving Medical Center

Wei et al., 2021

Respiratory swabs
and
bronchoalveolar
lavage fluid

ORF1ab and S
gene

NI Yes Loopamp?
2019-SARS-CoV-2
Detection Reagent
Kit (Eiken
Chemical, Tokyo,
Japan)
Turbidity or
fluorescence (+
calcein)

63◦C/18–60 min 100%/100% 20–110
copies/Rx

130 PLA General
Hospital, Beijing,
China

Yan et al., 2020

iLACO Respiratory (not
detailed)

NI ORF1ab NI Yes NEB #M1800
Color

65◦C/ ≥20 min 89.9%/NI 10 copies/µL
(detection
threshold of 60
copies/µL);
equivalent to
35–37 Ct in
RT-PCR

248 Shenyang province,
China

Yu et al., 2020

Respiratory swabs
(not detailed)

VTM N gene and
ORF1a

NI Yes NEB #M1800 +
SYTO-9
Color and
fluorescence

65◦C/30 min NI 4.8 copies/µL 6 Wuhan Institute of
Virology, China

Zhang et al.,
2020a

Synthetic
SARS-CoV-2 RNA

NA N gene; E
gene and
As1e gene
(ORF1a)

Human actin B
gene

Yes NEB #M1800 +
SYTO-9
Color and
fluorescence

65◦C/20 min 87.5% 2 copies/µL NA NA Zhang et al.,
2020b
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FIGURE 9 | Schematic representation of SARS-CoV-2 genome indicating the amplicons for the COVID-19 molecular diagnostics by RT-LAMP. Structural
representation of SARS-CoV-2 virion shows the main particle parts. LAMP primer regions are indicated as previously reported (Baek et al., 2020; Ben-Assa et al.,
2020; Butler et al., 2020; Chow et al., 2020; Dudley et al., 2020; Song et al., 2021; Ganguli et al., 2020; Huang et al., 2020; Lamb et al., 2020; Lu et al., 2020;
Mohon et al., 2020; Park et al., 2020; Rabe and Cepko, 2020; Thi et al., 2020; Yan et al., 2020; Yu et al., 2020; Zhang et al., 2020a,b; Anahtar et al., 2021; Bhadra
et al., 2021; Bokelmann et al., 2021; González-González et al., 2021). ORF, open reading frame; RdRp, RNA-dependent RNA polymerase; NSP, nonstructural
protein. Schematic representation created using Snap Gene Viewer software version 5.0.7; N1, N2, and N3_CDC correspond to the amplicons for SARS-CoV-2
detection by RT-PCR. Created with biorender.com.

European Centre for Disease Prevention and Control, 2020);
Beta (B.1.351), initially reported from South Africa (Tegally
et al., 2021); gamma (P.1 or B.1.1.28.1), which was identified
in Japan but obtained from a traveler from Brazil (Faria et al.,
2021); and more recently, the VOI kappa (B.1.617.1) and VOC
delta (B.1.617.2) detected in India, responsible for the majority
of new COVID-19 cases in many countries in different parts
of the world. The regional selection of SARS-CoV-2 VOC is
associated with higher transmissibility, mortality and reduced
neutralizing antibody response (Shah et al., 2020; Davies et al.,
2021a,b; Li et al., 2021). In Brazil, we observed the emergence of
different SARS-CoV-2 VOCs and VOIs, including gamma (P.1),
zeta (P.2; Resende et al., 2021a; Voloch et al., 2021), B.1.1.33.9
(N.9; Resende et al., 2021c), and B.1.1.33.10 (N.10; Resende
et al., 2020, 2021b). A plethora of mutations is observed in
these variants, including N501Y, E484K/Q, K417N/T, A570D,
and the 169–70 at the SARS-CoV-2 S protein sequence, which
was associated with detection failures by S-target RT-qPCR
methods (Brown et al., 2021). For SARS-CoV-2 RT-LAMP
detection, few studies selected S-coding protein region as a
target (Figure 9). In addition, isothermal amplification for
SARS-CoV-2 RNA detection strategies is commonly addressed
as multiplex targeted, making RT-LAMP a good choice even for
SARS-CoV-2 variant detection. Indeed, here we reported that
singleplex N gene-based or multiplex N2/E1-based RT-LAMP
was able to perfectly detect VOCs and VOIs circulating in
Brazil such as gamma (P.1), zeta (P.2), B.1.1.374, and B.1.1.371
(Figure 8 and Supplementary Figure 1D), the two latter first

detected in Finland and Saudi Arabia3. Recent efforts made by
Sherrill-Mix et al. (2021a,b) showed a beacon-based RT-LAMP
strategy designed to precisely identify alpha (B.1.1.7) SARS-
CoV-2 variant (Sherrill-Mix et al., 2021a,b), a promising tool
not only for massive screening but also to monitor VOC/VOI
SARS-CoV-2 spreading.

The colorimetric RT-LAMP is a reliable molecular tool
for detecting SARS-CoV-2, providing rapid and easy-to-read
results, compatible with high-throughput screenings and PoC
requirements. This test is especially important for nations
with poor diagnostic conditions, such as Brazil, where RT-
qPCR COVID-19 diagnostic is far from ideal to control disease
spreading. The RT-LAMP sensitivity can be equivalent to those
reported from the gold standard RT-qPCR method and also
present 100% specificity. Results are commonly obtained after 30-
min reaction and if needed, additional 20 min was not associated
with spurious unspecific amplification. Sample collection in
guanidine-containing VTM has been described as a useful
strategy to avoid contamination of health care workers during
sample manipulation. RT-LAMP primer selection can directly
interfere on sensitivity, being N genes the best target for SARS-
CoV-2 RNA detection with fewer false-negative results, especially
in low viral load samples, which is improved upon multiplexing
E/N targets. Colorimetric RT-LAMP is also compatible with
detecting SARS-CoV-2 VOIs and VOCs, being robust to cope
with the monitoring of emerging new SARS-CoV-2 variants and

3https://cov-lineages.org
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that can be easily adapted. We thus reinforce and recommend
the use of RT-LAMP for massive testing as a decentralized PoC
alternative to avoid SARS-CoV-2 spread and to tackle COVID-19.

MATERIALS AND METHODS

Clinical Samples, Reverse
Transcriptase–Quantitative Polymerase
Chain Reaction, and Ethics Statement
In total, 467 clinical samples were included in this study.
Initially, 100 nasopharyngeal clinical samples were obtained from
hospitalized patients in different parts of Brazil from April to
July 2020. The samples derived from this first batch were tested
by RT-LAMP using N gene alone as target, and the group
presented a median age of 60 years, and 60% of patients were
male. An additional 367 samples were included in the study. They
were obtained from symptomatic patients, considered COVID-
19 suspected cases, during September until November 2020 in
Belo Horizonte, Minas Gerais, Brazil. The samples from the latter
group were validated by RT-LAMP targeting E and N genes
combined and were characterized with a median age of 46 years
old, in whom 75% of patients were female.

Nasopharyngeal swabs were collected and maintained
in 2 mL VTM (Bioclin, Belo Horizonte, Brazil #G092-1) at
room temperature until RNA extraction or direct dilution
for LAMP reaction. The VTM contains guanidine chloride as
inactivation agent and to preserve viral RNA. All procedures
were performed inside a biosafety level 2 cabinet. RNA extraction
was performed using the QIAamp R© Viral RNA Mini Kit
(Qiagen #52906), following manufacturer instructions. The
molecular diagnostic routine was performed by RT-qPCR
using the SARS-CoV-2 commercial kits produced at Fundação
Oswaldo Cruz [Kit Molecular SARS-CoV-2 E/RP, from Bio-
Manguinhos/Fiocruz, based on Charité/Berlin protocol, and
Kit Biomol OneStep/COVID-19 from IBMP/Fiocruz, based
on China/Centers for Disease Control and Prevention (CDC)
protocol with recommended targets polyprotein ORF1ab and
N gene]. RT-qPCR was carried out using the 7500, ViiA 7
real-time PCR systems (Applied Biosystems, Foster City, CA,
United States) or the dual-channel Open qPCR machine (Chai,
Santa Clara, CA, United States), following the temperature
program profile of 95◦C for 3 min, followed by 40 cycles of
amplification (95◦C/15 s and 60◦C/1 min). Influenza and
hRSV samples were kindly provided by IOM/FUNED, and the
arbovirus samples are part of the collection from the Laboratório
de Imunologia de Doenças Virais at Oswaldo Cruz Foundation.
All procedures involving human participants and collection
and use of clinical samples and data were in accordance with
ethical standards and approved by the local Research Ethics
Committee involving human beings at Instituto René Rachou,
Fundação Oswaldo Cruz, under license protocol no. 4084902
and CAAE (certificate of presentation for ethical appreciation):
31984720300005091. The ethics approval was issued on June
12, 2020. SARS-CoV-2 VOCs and VOIs included in this study
were isolated from symptomatic patients (Ct value < 25, using
E gene as target on RT-qPCR—Kit Molecular SARS-CoV-2

E/RP Bio-Manguinhos Fiocruz), in the State Pernambuco,
Northeast Brazil (Bezerra et al., 2021; Supplementary Table 3).
The study was approved by the local Human Research Ethics
Committee (CAAE: 32333120.4.0000.5190). The genomes of
SARS-CoV-2 VOI and VOCs generated are deposited on GISAID
according to the following accession codes: EPI_ISL_2221860,
EPI_ISL_2221850, EPI_ISL_2221873, EPI_ISL_2221890,
EPI_ISL_2221902, EPI_ISL_2221885, EPI_ISL_2221844, and
EPI_ISL_2221866.

Reverse Transcription Loop-Mediated
Isothermal Amplification Primer Design
Reverse transcription loop-mediated isothermal amplification
primers were designed based on SARS-CoV-2 reference genome
(GenBank accession NC_045512.2) using the open source
software Primer Explorer V54 or the New England Biolabs
(NEB) LAMP primer design tool5. The free energy (1G) of
selected primers was less than –4 kcal/mol, as a parameter
chosen based on oligo stability (Parida et al., 2008). The set of
primers used in this study is listed in Table 3 and additional
information can be found in Figure 9 and Supplementary
Figures 4–6. We designed and validated different LAMP
primer sets, such as N gene Set1 and Set2 that appeared
in other independent researches (Figure 9 and Table 3). N2
and E1 primer sets were previously designed by Zhang et al.
(2020b). The oligos were purchased from Integrated DNA
technologies (IDT, Coralville, IA, United States) and from
Exxtend (Paulínia, SP, Brazil). All oligos were synthesized
at 25 nanomole scale and purified by standard desalting.
Thermodynamic evaluation of primers targeting SARS-CoV-2
N, E, and RdRp genes was performed as previously described
(Miranda and Weber, 2021). Briefly, hybridization temperature
of F3, FIP (F1c+F2), BIP (B1c+B2), LF, and LB primer sets
were calculated upon aligning to SARS-CoV or other coronavirus
(non-SARS) genomes, considering potential mismatches. The
SARS-CoV-2 coverage for each primer was also obtained
(Supplementary Table 1).

Reverse Transcription Loop-Mediated
Isothermal Amplification Assays
All mix preparations for RT-LAMP reaction were performed
on ice inside a biosafety level 2 cabinet. RT-LAMP reactions
were performed according to NEB recommendations, containing
the following components: 10 µL of WarmStart R© Colorimetric
LAMP 2× Master Mix [NEB #M1800 or #M1804, the
latter contains dUTP UDG (uracil-DNA-glycosylase) to avoid
carryover contamination; composition of both are NEB’s
proprietary]—ready-to-use mixture of WarmStart R© Bst 2.0 DNA
polymerase and WarmStart R© RTx (reverse transcriptase for one-
step transcription/amplification reaction) in presence of a pH
sensor that turns from fuchsia (pink) to yellow in presence
of increased proton (acid pH) during DNA polymerization on
isothermal amplification, 1.6 µmol/L forward inner/backward
inner primers (FIP/BIP); 0.2 µmol/L forward and backward

4https://primerexplorer.jp/e/
5https://lamp.neb.com
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TABLE 3 | Sets of LAMP oligonucleotides used in this study.

LAMP primer Sequence (5′–3′) References

N_Set1_F3 TGGCTACTACCGAAGAGCT Ben-Assa et al., 2020;
Bhadra et al., 2021; Song

et al., 2021; Rabe and
Cepko, 2020; Thi et al.,

2020; Zhang et al., 2020a;
Anahtar et al., 2021; this

study

N_Set1_B3 TGCAGCATTGTTAGCAGGAT

N_Set1_FIP TCTGGCCCAGTTCCTAGGTA
GTGACGAATTCGTGGTGGTGA

N_Set1_BIP AGACGGCATCATATGGGTTGC
ACGGGTGCCAATGTGATCT

N_Set1_LF TGGACTGAGATCTTTCATTTTACCG

N_Set1_LB ACTGAGGGAGCCTTGAATACA

N_Set2_F3 TGGACCCCAAAATCAGCG Huang et al., 2020;
González-González et al.,

2021; this study

N_Set2_B3 GCCTTGTCCTCGAGGGAAT

N_Set2_FIP CCACTGCGTTCTCCATTCTGGTAA
ATGCACCCCGCATTACG

N_Set2_BIP CGCGATCAAAACAACGTCGGCCC
TTGCCATGTTGAGTGAGA

N_Set2_LF TTGAATCTGAGGGTCCACCAAA

N_Set2_LB GGTTTACCCAATAATACTGCGTCTT

E_Set1_F3 TGATGAGCCTGAAGAACATG This study

E_Set1_B3 CGCTATTAACTATTAACGTACCT

E_Set1_FIP TCGGTTCATCATAAATTGGTTCCAT
CAAATTCACACAATCGACGG

E_Set1_BIP ACGACTACTAGCGTGCCTTTGTCT
CTTCCGAAACGAATG

E_Set1_LF ACTGGATTAACAACTCCGGATGA

E_Set1_LB GTAAGCACAAGCTGATGAGTACGAA

RdRp_F3 CTGTCAAATTACAGAATAATGAGC This study

RdRp_B3 TCCATCACTCTTAGGGAATC

RdRp_FIP TGTCATCAGTGCAAGCAGTTTGCTG
TTGCACTACGACAGA

RdRp_BIP ATGCGTTAGCTTACTACAACACACC
CATTTCAAATCCTGTAAATCG

RdRp_LF ACCGGCAGCACAAGACA

RdRp_LB ACAAAGGGAGGTAGGTTTGTACT

N2_F3 ACCAGGAACTAATCAGACAAG Butler et al., 2020;
Zhang et al., 2020b

N2_B3 GACTTGATCTTTGAAATTTGGATCT

N2_FIP TTCCGAAGAACGCTGAAGCGGAAC
TGATTACAAACATTGGCC

N2_BIP CGCATTGGCATGGAAGTCACAATTT
GATGGCACCTGTGTA

N2_LF GGGGGCAAATTGTGCAATTTG

N2_LB CTTCGGGAACGTGGTTGACC

E1_F3 TGAGTACGAACTTATGTACTCAT Butler et al., 2020;
Zhang et al., 2020b

E1_B3 TTCAGATTTTTAACACGAGAGT

E1_FIP ACCACGAAAGCAAGAAAAAGAAG
TTCGTTTCGGAAGAGACAG

E1_BIP TTGCTAGTTACACTAGCCATCCTTA
GGTTTTACAAGACTCACGT

E1_LF CGCTATTAACTATTAACG

E1_LB GCGCTTCGATTGTGTGCGT

Ref, references where the DNA oligos where originally published or share the same
set of primers; F3/B3, outer forward (F) and backward primers; FIP/BIP, inner
primers; LF/LB, loop primers. For detailed information on targeted SARS-CoV-2
sequence used, refer to Supplementary Figures 4–6 and Figure 9.

outer primers (F3/B3), and 0.4 µmol/L loop forward and
loop backward primers (LF/LB); Ultra-pureTM DNAse/RNase-
free distilled water (InvitrogenTM #10977015) was added in
quantity enough to complete the final volume reaction of 20 µL;
isothermal amplification was performed on VeritiTM thermal
cycler (Applied Biosystems, Foster City, CA, United States) at
65◦C for 30 min. From clinical samples in the first batch, we
used as input, 1 µL of RNA extracted from nasopharyngeal
swab placed on guanidine-containing VTM, whereas upon
optimization, 5 µL source template was considered from the
samples in the second group.

When using raw RNA extraction–free samples, we initially
prepared a 1:10 ultrapure water diluted clinical sample (1 µL
of VTM sample in 9 µL water) and used 1 µL as RT-
LAMP reaction input. A similar strategy was applied to SARS-
CoV-2 VOC/VOI samples. Positive controls were performed
either by RNA extraction from Vero E6-derived inactivated
SARS-CoV-2, using synthetic SARS-CoV-2 N gene-harboring
plasmid (ECRA Biotech, Campinas, SP, Brazil #EB14-20) or
inactivated laboratory-cultured SARS-CoV-2, when aiming the
RNA extraction–free tests. For optimization purposes, incubation
time tested varied from 30 to 50 min. The first 100 RT-
LAMP reaction products were migrated in 2% agarose gel
to confirm specific amplification in positive reactions and
amplicon-free nontemplate controls. Gel images were taken using
the ImageQuantTM LAS 4000 with GelRedTM (Biotium #41003)
as intercalating dye. Non–SARS-CoV-2 RNA extracted samples
of influenza A, influenza B, hRSV, dengue, Zika, Chikungunya,
and yellow fever viruses were also added as 1-µL input.

Analytical Sensitivity
Absolute quantification was performed based on a calibration
curve prepared using the standard SARS-CoV-2 E gene–
harboring plasmid (2 × 105 copies/µL; Biogene COVID-19
PCR, Bioclin/Quibasa #K228-1; Lot: 0007), SARS-CoV-2 (2019-
nCoV) Charité/Berlin primer probe panel (IDT, #10006804), and
the GoTaq R© Probe 1-step RT-qPCR System (Promega #A6120),
according to manufacturer instructions, as indicated by the US
CDC. Real-time RT-PCR program was performed as follows: first
stage (×1) 15 min at 45◦C, second stage (×1) 2 min at 95◦C,
and third stage (×40) 3 s at 95◦C followed by 30 s at 55◦C.
Linear regression was performed using Prism software, version 9
(GraphPad Software, San Diego, CA, United States) leading to the
equation: Y = –3.6383X + 38.771 and coefficient of correlation
R2 = 0.9938 (Supplementary Figure 3). Viral RNA either
from Vero E6-derived SARS-CoV-2 (SARS-CoV-2 isolate HIAE-
02: SARS-CoV2/SP02/human/2020/BRA GenBank accession no.
MT126808.1) or obtained from clinical nasopharyngeal swabs
was quantitated based on the Ct value for E gene.
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https://www.gisaid.org/, The genomes of SARS-CoV-2 VOI and
VOCs generated are deposited on GISAID according to the
following accession codes: EPI_ISL_2221860, EPI_ISL_2221850,
EPI_ISL_2221873, EPI_ISL_2221890, EPI_ISL_2221902,
EPI_ISL_2221885, EPI_ISL_2221844, and EPI_ISL_2221866.
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