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Abstract

Transcriptional profiling is a powerful tool to investigate and detect human diseases. In this

study, we used bulk RNA-sequencing (RNA-Seq) to compare the transcriptomes in skin

lesions of leprosy patients or controls affected by other dermal conditions such as granu-

loma annulare, a confounder for paucibacillary leprosy. We identified five genes capable of

accurately distinguishing multibacillary and paucibacillary leprosy from other skin condi-

tions. Indoleamine 2,3-dioxygenase 1 (IDO1) expression alone was highly discriminatory,

followed by TLR10, BLK, CD38, and SLAMF7, whereas the HS3ST2 and CD40LG mRNA

separated multi- and paucibacillary leprosy. Finally, from the main differentially expressed

genes (DEG) and enriched pathways, we conclude that paucibacillary disease is character-

ized by epithelioid transformation and granuloma formation, with an exacerbated cellular

immune response, while multibacillary leprosy features epithelial-mesenchymal transition

with phagocytic and lipid biogenesis patterns in the skin. These findings will help catalyze

the development of better diagnostic tools and potential host-based therapeutic interven-

tions. Finally, our data may help elucidate host-pathogen interplay driving disease clinical

manifestations.

Author summary

Despite effective treatment, leprosy is still a significant public health issue in more than

120 countries, with more than 200 000 new cases yearly. The disease is caused mainly by

Mycobacterium leprae, a slow-growing bacillus still uncultivable in axenic media. This lim-

itation has hampered basic research into host-pathogen interaction and the development

of new diagnostic assays. Currently, leprosy is diagnosed clinically, with no standalone

diagnostic assay accurate enough for all clinical forms. Here, we use RNA-seq transcrip-

tome profiling in leprosy lesions and granuloma annulare to identify mRNA biomarkers
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with potential diagnostic applications. Also, we explored new pathways that can be useful

in further understanding the host-pathogen interaction and how the bacteria bypass host

immune defenses. We found that IDO1, a gene involved with tryptophan catabolism, is an

excellent candidate for distinguishing leprosy lesions from other dermatoses. Addition-

ally, we observed that a previous signature of keratinocyte development and cornification

negatively correlates with epithelial-mesenchymal transition genes in the skin, suggesting

new ways in which the pathogen may subvert its host to survive and spread throughout

the body. Our study identifies new mRNA biomarkers that can improve leprosy diagnos-

tics and describe new insights about host-pathogen interactions in human skin.

Introduction

Leprosy is a chronic infectious disease caused mainly by the slow-growing intracellular patho-

gen Mycobacterium leprae that does not grow in axenic media. This bacterium resides prefer-

entially in skin macrophages and Schwann cells in peripheral nerves, inducing dermatosis

and/or neuritis. Patients can present several distinct clinical forms according to their immune

response, histopathological characterization, and bacterial load. A localized tuberculoid form

(TT) is characterized by low bacterial counts and a strong cellular immune response. Con-

versely, in the opposite lepromatous (LL) pole, a disseminated form, patients exhibit several

lesions, a predominantly humoral response, and a high bacterial load in the tissues [1–3]. Bor-

derline forms are classified according to their proximity to the poles. For operational and treat-

ment purposes, leprosy is classified by the World Health Organization as paucibacillary (PB)

or multibacillary (MB), based on the number of skin lesions, association with nerve involve-

ment or the bacilli detection in slit-skin smears [4].

Early and precise diagnosis is instrumental to leprosy control since delay in diagnosis leads

to late multidrug therapy, higher disability risk, and continuing transmission, as highlighted

by the 200,000 new cases consistently reported annually in the last 10 years [4,5]. However,

bacteriological, immunological, genetics or molecular methods are not sufficient for specific

diagnosis when used alone. Diagnosis most commonly relies on clinical evaluation, occasion-

ally complemented with histopathological examination and bacterial counts, but these proce-

dures are mostly performed in national reference centers [4,6].

Efforts have been deployed to improve leprosy diagnostics using cutting-edge technologies,

such as molecular identification of M. leprae, serological tests for specific bacterial antigens,

and quantification of host biomarkers in plasma or in vitro whole blood assays (WBA) [7–9].

Overall, all methods outperform standard clinical diagnosis and can compensate for the low

accuracy in detecting PB patients [4,7,8,10–14]. Yet, until now such investigations involved

comparing confirmed leprosy cases against healthy endemic controls, who are not representa-

tive of individuals with suspected leprosy. Here, other skin conditions represent a better

comparator.

Identification of markers for early infection is hindered by our poor understanding of path-

ogenicity and the mechanism by which patients develop one or the other form of leprosy, and

nerve injuries [15]. Gene expression signatures have been used as diagnostic tools for several

illnesses, from infectious [10–12,14] and autoimmune diseases [16,17] to cancer [18–20].

Some signatures have already been approved for clinical use [12,21–23]. In leprosy, findings

from past studies indicate the great potential of expression profiling for disease diagnosis [24–

27]. Nonetheless, they were limited by the number of patients [28], or lacked proper epidemio-

logical controls, such as differential diagnosis groups.
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Here, we applied a combination of bulk RNA sequencing and quantitative validation by

RT-qPCR on RNA extracted from skin biopsies of various leprosy forms and from non-leprosy

patients to define a specific leprosy host signature applicable to diagnosis. Then, we explored

gene expression patterns to improve our understanding of the immunopathogenic mecha-

nisms towards leprosy polarization.

Results

Discrimination of leprosy vs. non-leprosy lesions based on mRNA

expression

RNA sequencing was used for pinpointing host candidate genes capable of differentiating lep-

rosy lesions from one of the commonest differential diagnoses of leprosy, granuloma annulare

(GA), and from healthy skin. RNA from skin lesions of all leprosy clinical forms (n = 33), plus

GA (n = 4) and healthy skin (n = 5) were sequenced (S1 Table). Differentially expressed genes

(DEG) in leprosy vs. non-leprosy (GA + healthy skin) samples resulted in 1160 DEG with a |

log2FC|� 1 and FDR� 0.01, with 961 upregulated in leprosy forms compared to non-leprosy

(Fig 1A, 1B and S2 Table). Exploratory hierarchical clustering of the DEG with |log2FC|� 1

and FDR< 0.01 grouped all patients’ samples into roughly two clusters, except for two: one

BL leprosy and one GA that clustered apart from samples with the same diagnosis (Fig 1C).

Gene Ontology enrichment analysis of up-regulated genes in leprosy compared to non-leprosy

showed enrichment for biological processes associated with leukocyte activation, T-cell activa-

tion, immune response, response to the bacterium, neutrophil degranulation, cell killing, cyto-

kine secretion, purinergic receptor signaling pathway, and regulation of defense response to

viruses by the host (Fig 1D and S3 Table).

A total of 15 genes with the largest effect size (|log2FC|� 1.5, FDR< 0.001), highest area

under the curve (AUC), and plausible involvement with leprosy pathogenesis (S4 Table) were

then validated using a two-step RT-qPCR with a new, larger, and more heterogeneous dataset

including skin lesion samples from leprosy patients (n = 25), and other common dermatoses

(n = 23) (S1 Table). Other dermatological diseases (ODD) included dermatitis (n = 7), eczema

(n = 1), erythema (n = 4), GA (n = 6), lichen planus (n = 2), psoriasis (n = 2) and pityriasis alba

(n = 1) (S1 Table). A total of 12 samples per group was estimated to be sufficient to attain a

power of 85% based on the Welch t-test (PB vs. ODD, MB vs. ODD) with alpha set at 0.03 to

replicate the standardized effect size (log2FC/SD) estimated from RNA sequencing. Relative

expression using the new sample set by RT-qPCR is shown in Fig 2A. Indeed, the validation

data are in agreement with RNA sequencing, because 11 tested genes were replicated by RT-

qPCR in terms of difference between mean expression (effect size in log2FC), except for

STAP1, GBP3, APOL3 and CCR7 in PB vs. ODD comparison and CCR7 in MB vs. ODD (Fig

2B, 2C and S5 Table). As for differentiating leprosy per se vs. ODD, genes IDO1, BLK (exon

11), CD38, CXCL11, and SLAMF7, all had an area under the curve (AUC) of at least 96% with

their lower bound 97% confidence intervals above 90% (Figs 2A, 3C and S6 Table).

Next, hierarchical clustering with RT-qPCR data including missing values for some genes

(no target gene amplification by RT-qPCR) was performed to examine all samples simulta-

neously. The analysis roughly revealed three major clusters (Fig 3A). At the highest tree subdi-

vision, one small cluster (n = 6) with the dendrogram grouped in light brown was composed

of ODD samples with lower expression levels (Fig 3A). Due to several ODD having missing

values, we confirmed that these samples had similar gene expression for the reference genes,

thereby eliminating the possibility of insufficient cDNA input. Another cluster, grouped in the

light purple dendrogram, included all MB and most PB samples (except four in light yellow

dendrogram). GA samples displayed two patterns, the first with two samples showing
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Fig 1. Differentially expressed genes from RNA-seq in leprosy vs. non-leprosy. (A) Volcano plot depicting DEG from leprosy vs. non-

leprosy, where violet dashed line marks |log2FC| = 1. For clarity, gene symbols are shown only for the largest log2FC. (B) Heatmap with

hierarchical clustering of samples based on expression of the DEG from leprosy vs. non-leprosy comparison. Color scale ranges from

lower expression (blue) to higher expression (red). Library size is given in millions. LIB, logarithmic index of bacilli. (C) Biological

processes from GO enriched for up-regulated DEG from leprosy vs. non-leprosy comparison. FDR, false discovery rate; NL, non-

leprosy; GA, granuloma annulare; non-leprosy: GA + healthy individuals.

https://doi.org/10.1371/journal.ppat.1009972.g001
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Fig 2. Technical and biological validation for selected DEG discovered from RNA sequencing. (A) Tukey boxplots

with RT-qPCR normalized (2–3 reference genes) log2 expression values (A.U) according to clinical and histopathological

diagnosis. ODD samples are colored according to M. leprae 16S rRNA qPCR status as positive (blue) or negative (green).

(B) log2FC from MB-ODD and PB-ODD comparisons estimated from Bayesian linear mixed models and their 95%

credible intervals. (C) Tukey boxplot highlighting IDO1 RT-qPCR normalized log2 expression values by final diagnosis

grouped into ODD category. Missing values are omitted.

https://doi.org/10.1371/journal.ppat.1009972.g002
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undetectable IDO1 expression (Fig 3A, bottom star symbols). The second set (n = 4) is scat-

tered among other ODD samples (Fig 3A). It can be seen that GA and PB samples show highly

similar expression profiles for some genes (Fig 3A bottom diamond symbols), reinforcing the

difficulty in clinically discriminating between these two conditions, and underlining the rele-

vance of their inclusion in our comparisons [29–31].

Fig 3. Hierarchical clustering of RT-qPCR replicated DEG and ROC analysis. (A) Hierarchical clustering with scaled and centered

normalized log2 RT-qPCR expression values (arbitrary units) and annotated according to group and specific diagnosis. Dendrogram

tree was cut arbitrarily and cluster analysis is for hypothesis generating purposes only. Two samples had more than 13 missing

expression values and were removed from A. (B) Principal component analysis (PCA) with 15 genes measured by RT-qPCR and using

log2 normalized scaled data. For PCA only, missing values were imputed by the gene arithmetic mean. NA, not amplified, i.e., Cp> 40.

In this regard, there were two outliers (psoriasis and erythema), which are samples with high numbers of NA values and that were

imputed using the gene arithmetic mean. (C) Receiver operating characteristic analysis for genes with largest AUC (97% confidence

intervals) from RT-qPCR replication samples (complete data are shown in S6 Table). See also S1 Appendix.

https://doi.org/10.1371/journal.ppat.1009972.g003
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Then, by applying principal component analysis (PCA) to the 15 gene signature obtained

with the expanded sample panel tested by RT-qPCR, we uncovered two major patterns sepa-

rating leprosy lesions from ODD (Fig 3B). As expected, MB samples appeared more homoge-

neous than PB and ODD samples, while the latter were more dispersed revealing

heterogeneous expression patterns (Fig 3B).

Next, we quantified the individual classification potential of these genes in distinguishing

leprosy from ODD using ROC analysis on RT-qPCR data. IDO1 expression alone was found

to be 98% accurate using an arbitrary threshold, followed by BLK (exon 11), CD38, CXCL11,

and SLAMF7 (Fig 3C and S6 Table). Finally, to confirm the causal link between mycobacteria

and our gene-set, we evaluated the mRNA profiles induced by other live-mycobacteria using a

public RNA-seq dataset [32]. We observed that most gene expression signatures, including

IDO1, could be successfully replicated as induced by either M. leprae and/or other mycobacte-

ria (S1 Appendix and S7 Table). By contrast, some of the tested genes such as BLK, CXCL9,

MS4A1, and TLR10 were not differentially expressed in any of the in vitro assays with myco-

bacteria (S1 Appendix and S7 Table).

MB and PB gene expression profiling and mRNA-based classifier

To define a small subset of genes with high classificatory potential (i.e. with non-overlapping

expression values) to distinguish MB from PB lesions, we performed a penalized logistic

regression (LASSO) model with k-fold cross-validation trained on the public microarray data-

set [24]. This dataset was chosen because of the higher number of PB/MB samples compared

to our RNA-seq dataset. As a result, three genes with non-zero coefficients were selected by

the cross-validated LASSO model: HS3ST2, CD40LG, and CCR6, but only the first two genes

were most frequently (~80%) selected across 10,000 bootstrapped samples within the training

dataset (Fig 4A and 4B). The median misclassification error estimated by the resampling was

about 4% (±5.4% median absolute deviation), ranging from 0% to 32% (Fig 4C). Instability

assessment in the number of selected genes by LASSO (Fig 4D) showed that most iterations

resulted in four non-zero genes (range, 1–20). The final model containing the three genes

(HS3ST2, CD40LG, and CCR6) was evaluated on two test RNA-seq datasets: our dataset and

the one from Montoya et al. including MB (n = 9) and PB (n = 6) groups [28]. Penalized logis-

tic regression demonstrated an accuracy of 100% (lower 95% CIs: 86.8% and 78.2%, respec-

tively) in classifying MB from PB samples in both test RNA-seq datasets; yet, the Brier score

indicated a better performance in Montoya’s et al. dataset, probably due to a more homoge-

nous sampling (Fig 4E and 4F). The HS3ST2 gene was consistently more expressed in MB lep-

rosy lesions compared to PB, whereas the opposite was observed for CD40LG (Fig 4E and 4H)

and CCR6 (S1 Fig). In both datasets, the combined expression levels of HS3ST2 and CD40LG
showed good discrimination between the two groups (Fig 4E and 4H). However, given the

sample size and the bootstrapped estimates, it is not currently possible to exclude CCR6 from

the model without additional replication.

Next, to assess the dichotomy beyond cellular vs. humoral response in leprosy lesions

[33,34], a comparison of gene expression in MB leprosy (LL+BL+BB) vs. PB (TT+BT) skin

lesions was performed. Differential expression analysis with |log2FC|� 1 and FDR� 0.01

resulted in 112 DEGs; 69 up-regulated and 43 down-regulated (Fig 5A and S8 Table). In addi-

tion, we compared DEG to the public microarray data available in Gene Expression Omni-

bus (GEO) from Belone et al. [24,35] using only the FDR cutoff. With an FDR < 0.01, 161

DEGs were common to both studies, all except one showed concordant modulation char-

acterized by an overall high correlation coefficient and concordance index, irrespective of

the technology used, the sample processing, and the data analysis methods (Fig 5B).
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Fig 4. Gene candidates identified with the penalized logistic regression (LASSO) model as the most important to distinguish PB and MB

leprosy lesions. (A) Coefficients (log odds) from the top 10 most selected genes (i.e., non-zero) across 10,000 bootstrap samples using the microarray

from Belone et al. as training dataset. (B) Frequency of non-zero coefficients across all bootstrap samples. (C) Misclassification error distribution

estimated from 4-fold cross-validation (k-) across 10,000 bootstrap samples, with median error of 3.70% (±5.4% median absolute deviation). (D)

Number of genes kept across all resamples. Predicted probability from the final model performance on this study test RNA-seq (E) and Montoya
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Functional enrichment analysis of the RNA-seq up-regulated genes (i.e., more expressed

in MB than PB) revealed processes involved with regulation of immune response, humoral

immunity, phagocytosis, cholesterol metabolism, complement activation among others

(Fig 5C and S9 Table). On the contrary, enrichment analysis of genes more expressed in

PB revealed biological processes such as leukocyte differentiation, lymphocyte differentia-

tion, lymphocyte-mediated immunity, B cell activation, STAT cascade activation/regula-

tion, and JAK-STAT cascade activation (Fig 5D and S10 Table), which are consistent with

exacerbated responses in granulomatous diseases. Localized clinical forms, i.e., BT and

TT, show a gene expression pattern indicative of differentiation towards epithelioid trans-

formation and granuloma assembly, which is also observed in cutaneous or pulmonary

sarcoidosis [36,37].

Epithelial-mesenchymal transition (EMT) in the skin of multibacillary

leprosy patients

To make the most of our dataset, we sought to test a previous hypothesis generated from our

group’s microarray meta-analysis results, in which we have identified a consistent down-regu-

lation of cornification, keratinocyte differentiation, and epidermal development-related genes

in leprosy lesions, predominantly in MB [35]. We first hypothesized that such regulation could

result from M. leprae inducing dedifferentiation of keratinocytes, similar to the phenomenon

described previously in infected Schwann cells [38], and also seen in skin cancer by a process

known as epithelial-mesenchymal transition (EMT) [39,40]. To test the hypothesis that such

modulation was involved with EMT, we correlated the expression of the previously identified

down-regulated genes in leprosy [35] with a collection of genes involved with previously

Schwann cell dedifferentiation by M. leprae (Masaki et al. [38] signatures for EMT and non-

EMT genes), positive markers of EMT (from literature), as well as annotated EMT and mesen-

chymal-related genes from Reactome (R.HSA.452723, R.HSA.5619507.3, R.HSA.2173791) and

Gene Ontology (GO0001837) databases. Briefly, the normalized log2 expression matrices were

filtered to retain only genes of interest. Then, the pairwise expression correlation for all genes

was calculated using the Spearman’s rank correlation procedure. Finally, after adjusting the P-

values for multiple testing, the genes with any pairwise correlation passing FDR� 1 × 10−4

and rho� -0.8 were visualized using a heat plot. As result, with this study’s RNA-seq, we

found a consistent moderate negative correlation between keratinization, cornification, and

epidermal development genes (Fig 6A, blue stars, AQP3, DMKN, DSG1, DSP, EFNB2, JAG1,

JAG2, KRT5, KRT10, KRT15, KRT19, OVOL2, PKP1, TACSTD2) with those involved with

canonical/alternative EMT and mesenchymal phenotypes (Fig 6A, green stars, CTSZ, MMP9,

PSAP, RHOA, TGFBR1, TGIF2, ZEB2, TGFB1). Interestingly, the strongest correlations with

epidermal/keratinocyte genes was with TGFβ-EMT-related genes (Fig 6A blue block), as

opposed to Masaki et al. non-EMT and other mesenchymal/pluripotency pathways. Next, we

replicated these observations with Belone et al. microarray [24] and Montoya et al. RNA-seq

datasets [28], respectively. In Fig 6B and 6C the strongest and representative correlations from

TGFβ-EMT-related pathway and a keratinocyte/epidermal gene signature are shown in detail,

while the remaining are available in S2 and S3 Figs.

Overall, these results showed a decreased expression pattern of EMT-related genes in

healthy skin samples, and a linear expression increase in PB and MB patients, especially with

et al. RNA-seq (F). Normalized log2 gene expression (z-score) of the two most frequently selected variables for distinguishing MB from PB samples

in the (G) microarray training dataset and (H) this study test RNA-seq. PB, paucibacillary leprosy; MB, multibacillary leprosy. Tukey box plots with

1st, 2nd and 3rd quartiles ± 1.5 × inter quartile range (IQR) whiskers. See also S1 Fig.

https://doi.org/10.1371/journal.ppat.1009972.g004

PLOS PATHOGENS Insights from leprosy lesions transcriptomics

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009972 October 25, 2021 9 / 27

https://doi.org/10.1371/journal.ppat.1009972.g004
https://doi.org/10.1371/journal.ppat.1009972


the microarray dataset, except for MMP9 (Fig 6C). This was accompanied by the previously

reduced expression of cytokeratins and epidermal development genes observed in leprosy. From

these results, we hypothesize that in addition to TGFβ-dependent immunosuppression in MB

Fig 5. Differentially expressed genes from multibacillary (MB) vs. paucibacillary (PB) leprosy lesions. (A) Volcano plot showing DEG from the MB vs. PB

comparison, where blue points are DE with |log2FC|�1 and FDR< 0.1. (B) Scatter plots with the 161 DEG common between this study and Belone et al. (24) microarray

for the same comparison. Red and green dashed lines indicate log2FC of -1 and 1, respectively. Blue points are genes with the same modulation signal and red indicates

discordancy. Rho, Spearman’s rank correlation coefficient. CCC, Lin’s concordance correlation coefficient. Venn diagram on the right displays the number of DEG in

each study according to FDR< 0.01. (C) Biological processes from GO enriched from up-regulated and (D) down-regulated DEG. FDR, false discovery rate.

https://doi.org/10.1371/journal.ppat.1009972.g005
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Fig 6. Strongest correlations between keratinocyte and EMT-related genes in leprosy lesions. (A) Heat plot with Spearman’s rho
correlation coefficient of the strongest correlations after multiple testing adjustment with at least one gene-pair passing FDR� 0.0001 and

rho� -0.8. Correlations with FDR> 0.1 are filled with white. Row colored squares identify gene annotations. Scatter plots of average log2

expression calculated with keratinocyte/epidermal development-related genes previously documented as down-regulated in leprosy skin

against dedifferentiation-related genes using either (B) this study RNA-seq dataset or (C) Belone et al. microarray (GSE74481). Lines were
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patients, activation of this pathway could be slowing or arresting keratinocyte cornification pro-

cesses in leprosy lesions thereby both facilitating survival and/or spread of M. leprae. If not

involved with dedifferentiation of keratinocytes or other epithelial cells, an alternative explanation

would be loss of epithelial barrier in MB patients, possibly enlightening a new M. leprae transmis-

sion route. Further mechanistic experiments ought to determine the causality of our observations

and test these findings in light of our hypothetical explanations of the phenomenon.

Discussion

One of the priorities in leprosy research is the development of reliable and accurate laboratory

diagnosis tools for all leprosy forms to provide efficient treatment and prevent disability [41].

This goal includes diagnosing patients with early forms of the disease, those with low or mild

apparent symptoms, thus assisting with ambiguous differential diagnoses, and even classifying

the disease for treatment (MB vs. PB) [4].

Host response to infection as measured by gene expression in skin biopsies offers diagnos-

tic, prognostic and predictive potential. By applying host transcriptomics to skin lesions from

leprosy patients and other common confounding dermatoses that challenge clinicians and

pathologists [9,30], we identified a small set of genes that provide a promising expression sig-

nature capable of distinguishing PB leprosy cases from other confounding dermatological dis-

eases. The top candidate, IDO1, is a gene involved in nutritional immunity and metabolism

[42–45]. Alone, the expression of this gene was able to differentiate leprosy from non-leprosy

lesions with high accuracy in our dataset and in others. According to the latest data from sin-

gle-cell analysis [46], IDO1 has been shown to be differentially expressed in Langerhans cells

from leprosy lesions compared to healthy skin, corroborating our findings. However, IDO1
expression is also increased in other mycobacterial diseases such as tuberculosis [47,48], which

might decrease its specificity. The accuracy of classification could be improved by combining

measurement of IDO1 expression with that of four other biomarker genes BLK, CXCL11,

CD38, TLR10 and SLAMF7, which also showed high classification accuracy in the replication

dataset. In parallel, the penalized logistic regression model, evaluated on two independent

datasets, demonstrated that HS3ST2 and CD40LG hold potential to differentiate between MB

and PB lesions. In parallel, the penalized logistic regression model, evaluated on two indepen-

dent datasets, demonstrated that HS3ST2 and CD40LG hold potential to differentiate between

MB and PB lesions. We recognize that there is no clinical utility in classifying MB from PB

lesions with laboratory assays because this can be done during anamnesis alone. Hence, we

aimed at identifying molecular features differing not only in the measure of effect (log2FC) but

also having little overlap between the lesion types, as this may point to previously unexplored

genes and pathways relevant to future investigation. Considering the functional evidence for

HS3ST2 [49], it is possible that this gene may be involved with granuloma disassembly, tissue

permeability, and cellular migration in leprosy, which would explain its overexpression in MB

lesions. On the contrary, CD40LG (also known as CD154) is more expressed in PB patients

when compared to MB with a predominant role in the activation of the microbicidal Th1
response associated with PB lesions [50]. After mechanistic validation of our findings, quanti-

fying expression levels of HS3ST2 and CD40LG from leprosy lesions could be useful to assess

immune responsiveness against M. leprae, help patient stratification and/or provide a basis for

host-based adjuvant treatment for leprosy lesions.

drawn based on intercept and beta parameters estimated from robust linear regression for all samples (black line) or separately for PB (blue

line), and MB (red line). Spearman’s rho coefficient along with 95% nominal confidence intervals are shown inside scatter plots calculated

from all samples. See also S2 and S3 Figs.

https://doi.org/10.1371/journal.ppat.1009972.g006
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One of the challenges in translating gene expression signatures into medical diagnosis is the

cost of measuring a large number of genes and transforming these values into a unique contin-

uous or binary classifier. So far, we were able to reproduce the findings using both bulk RNA-

sequencing and relative RT-qPCR, with the latter being more accessible to clinicians at least in

reference centers or central hospitals. Although there are successful approved RT-qPCR rela-

tive gene expression-based diagnostic tests for diagnosing sepsis [12], clinical support for pros-

tate [22], and breast cancer [18], there is a need for alternatives to reduce the cost and

complexity of such assays. Quantification of mRNA based on isothermal amplification either

with NASBA [51,52], RT-LAMP [53,54] or CRISPR-Cas12 [55] is conceivable for less special-

ized settings without high-end equipment. Besides, combining a multi-target expression-based

diagnostic test with qPCR detection of M. leprae DNA could increase the specificity and sensi-

tivity of leprosy diagnosis [56]. Alternatively, an ELISA assay measuring the levels of IDO1

protein from skin interstitial fluid, for example, could be proven useful [57]. Further studies

ought to be done selecting tangible diagnostic thresholds and devising a proper classification

system to allow the biomarker to function unsupervised.

In parallel with poor diagnosis, lack of fundamental understanding of leprosy pathogenesis

has misled scientists for centuries [5,6]. Herein, we also compared the two leprosy poles, MB

and PB, and identified several pathways already known to be associated with leprosy, such as

the humoral immune response, phagocytosis, and complement activation. Genes involved

with cholesterol and fatty acids were more expressed in MB lesions, as already reported [58–

60]. Interestingly, B-cell-related genes were more expressed in PB than MB. In fact, it seems

that both poles modulate this pathway by a distinct set of genes. Involvement of B lymphocytes

in PB leprosy pathogenesis has been described by a few groups, which may indicate differential

involvement of such cells depending on the disease pole [61,62].

M. leprae subverts host cell metabolism [63] by inducing lipid biosynthesis, while avoiding

type II (IFN-gamma) responses through a type I IFNs mechanism, following the phagolysoso-

mal breach that releases DNA into the cytosol [64]. However, exactly how the bacilli spread

throughout the body and bypass the microbicidal immune response remains unknown. Here,

we provide robust evidence indicating that M. leprae may induce EMT in the skin within kera-

tinocytes and macrophages, as described in Schwann cells [38]. Indeed, M. leprae induced

dedifferentiation of infected Schwann cells into an immature stage resembling progenitor/

stem-like phenotype [38]. These reprogramming events induced by long-term infection with

M. leprae resulted in mesenchymal cells capable of migratory and immune-permissive behav-

ior, which in turn facilitated M. leprae spread to skeletal and smooth muscles and furthered

macrophage recruitment [38,65]. In our previous work, we identified a down-regulated signa-

ture of keratinocyte differentiation and cornification gene markers in MB skin lesions [35].

Here, we showed that such genes are inversely correlated with genes involved with EMT, espe-

cially the members of the TGFβ-EMT pathway, such as TGFB1, TGFBR1, TGIF2, PSAP, ZEB2
[66,67]. Some of these genes are directly or indirectly associated with EMT, such as a PSAP
[68], WAS [69], RHOA [70–73], CTSZ [74], MMP9 [75], LOXL3 [76], HIF1A [77,78] among

others.

Our hypothesis that M. leprae is inducing dedifferentiation or slowing the cornification

process in keratinocytes is plausible, given the evidence in Schwann cells and a few reports of

infection in this cell type (Fig 7) [79,80]. Nevertheless, other phenomena could explain EMT’s

role in leprosy pathogenesis, such as wound healing or loss of the epithelial barrier. Although,

given its obligatory intracellular lifestyle, M. leprae induces dedifferentiation in other cell

types, either directly as in Schwann cells or indirectly via chemokine and cytokine production

in lesions. Besides inducing keratinocyte dedifferentiation to mesenchymal cells, M. leprae
might benefit from a decreased or alternative immune activation of these cells [81,82]. Further
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functional confirmatory experiments should elucidate the causality of this correlation and pro-

vide definitive evidence of the relationship between the bacilli and other cell types, such as ker-

atinocytes, fibroblasts, and epithelial cells.

Fig 7. Hypothetical hourglass model contextualizing the observed findings for leprosy clinical outcomes. The host-pathogen

interaction in the skin leads to opposing leprosy clinical forms. Upon infection, M. leprae induces baseline metabolic alterations such as

an increase in glucose uptake, modulation of lipid biosynthesis, reduction of mitochondrial metabolism, and upregulation of IDO-1 and

type I IFN. Eventually, progression towards an unspecified inflammatory state can be observed where three ways could be anticipated: I)

self-healing; II) progression towards the tuberculoid pole; or III) progression to lepromatous pole. These outcomes are driven by specific

environmental and host genetic factors. It is expected that lower (or shorter) M. leprae exposure, food shortage, BCG vaccination, and

polymorphisms in genes controlling autophagy/granuloma formation (NOD2, LRRK2, PRKN) all contribute to developing leprosy per

se. Excessive inflammation is one phenotype observed, that is also seen in other granulomatous diseases (e.g., cutaneous sarcoidosis,

granuloma annulare), especially in paucibacillary lesions. On the other pole, epithelial-mesenchymal transition and local

immunosuppression are present due to a probably higher (and/or longer) M. leprae exposure, combined with host single-nucleotide

polymorphisms (SNPs) at key genes, like lipid biogenesis (APOE) and central metabolism (HIF1A, LACC1/FAMIN), culminating in

disease progression.

https://doi.org/10.1371/journal.ppat.1009972.g007
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Our preliminary data also showed that the enriched pathways among PB skin lesions were

consistent with profiles observed in other granulomatous diseases, such as noninfectious sar-

coidosis and granuloma annulare, or chronic infectious diseases like tuberculosis [37,83–85].

Our findings revealed that PB (TT/BT) lesions have, among others, JAK-STAT cascade activa-

tion, which has been implicated in sarcoidosis and GA. Remarkably, the JAK-STAT specific

biological inhibitor, tofacitinib, has a potent effect promoting rebalance of exacerbated immu-

nity among sarcoidosis and granuloma annulare patients reestablishing homeostasis [83].

Another compound, everolimus, has been shown in experimental models to achieve the same

response [37] suggesting that these drugs could be useful to treat PB, but not MB, leprosy.

To conclude, our combined findings provide highly discriminatory mRNA signatures from

skin lesions that could distinguish leprosy from other dermatological diseases and allow dis-

ease classification by monitoring only a handful of genes. In addition, we report new genes

and pathways that are likely informative regarding how M. leprae interacts with and subverts

host cells to promote its spread within the body and subsequent transmission.

Materials and methods

Ethics statement

All patients were enrolled after informed written consent was obtained with approval from the

Ethics Committee of the Oswaldo Cruz Foundation, number 151/01.

Patient cohort

Leprosy clinical forms were classified according to the criteria of Ridley and Jopling [2]. Lep-

rosy patients were treated according to the operational criteria established by the World Health

Organization [4]. Leprosy and patients with other dermatological diseases were eligible if their

diagnosis was confirmed by clinical and histopathological findings. Additionally, detection of

M. leprae DNA by qPCR routinely performed in our laboratory could be employed to support

diagnosis [56,86]. HIV and hepatitis B positive patients were not included in this study, in

addition, we excluded individuals with a current or previous history of tuberculosis. No other

comorbidities were used to exclude patients and further individual information is available in

S1 Table. Skin biopsy specimens containing both epidermis and dermis were obtained with 3

mm (diameter) sterile punches following local anesthesia from the lesion site. Skin biopsies

were immediately stored in one milliliter of RNALater (Ambion, Thermo Fisher Scientific

Inc., MA, USA) according to the manufacturer’s instructions and stored in liquid nitrogen

until RNA isolation. Healthy skin biopsies were from lesion-free sites of patients diagnosed

with indeterminate or pure neural leprosy.

Study design

The main objective of this research was to identify host gene expression patterns capable of

distinguishing leprosy (including the PB forms) from other differential diagnosis of skin

lesions. Our working hypothesis was that leprosy lesions, despite their morphological and his-

topathological similarity to other skin diseases, may induce distinct patterns of gene expression

in at a small subset. We predefined the comparison of leprosy (PB+MB) from non-leprosy

including GA in addition to healthy patients for RNA sequencing experiment. In addition, we

predetermined comparisons between leprosy poles: MB vs. PB. Our samples are representative

of a population of individuals attending the Sousa Araujo Outpatient Clinic based in Rio de

Janeiro, Brazil, which also receives patients from surrounding municipalities.
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RNA isolation

Snap frozen skin biopsies were thawed in wet ice and processed using TRIzol Reagent

(Ambion, Thermo Fisher Scientific Inc., MA, USA) according to the manufacturer’s instruc-

tions with the help of Polytron Homogenizer PT3100 (Kinematica AG, Switzerland). RNA was

treated with DNAse using the DNAfree kit (Thermo Fisher Scientific Inc., MA, USA) accord-

ing to the standard manufacturer’s protocol, prior to use for library preparation and RT-

qPCR. RNA integrity was assessed in 1% agarose gel electrophoresis or TapeStation RNA

ScreenTape (Agilent Technology, CA, USA). During RNA isolation, samples were randomly

assigned to extraction batches and freeze-thaw cycles to minimize batch effects and the intro-

duction of technical artifacts. All procedures applied to samples were carried out using

reagents from the same lot. The first author conducted the experiments aware of each sample

group during the entire process, therefore, no blinding scheme was used, although we do not

rely on perceptual/abstract measurements or analyses nor did we purposefully exclude

samples.

Library preparation and Illumina RNA sequencing

RNA-seq libraries were prepared with 1 μg of total RNA for each sample using the Illumina

TruSeq mRNA kit (Illumina, USA) as recommended by the manufacturer using the Illumina

CD RNA indexes (Illumina, USA). Libraries were quantified and qualified using a qPCR quan-

tification protocol guide (KAPA Library Quantification Kits for Illumina Sequencing plat-

forms) and TapeStation D1000 ScreenTape (Agilent Technologies, USA), respectively. The

resulting libraries (fragment size 200-350bp) were multiplexed (17, 17, and 19 libraries, respec-

tively) and sequenced using the NextSeq 500 platform (Illumina, USA), generating approxi-

mately 520 million single-end reads of 75 nucleotides in length.

RNA-sequencing analysis

RAW bcl files were converted into.fastq using Illumina’s bcl2fastq script. Then, read quality

was assessed using FastQC version 0.11.8 [87]. Next, transcript counts were estimated using

Salmon (v.1.13.0) quasi-mapping (human transcriptome GRCh38_cdna sourced from

Ensembl/RefGenie plus pre-computed salmon index, http://refgenomes.databio.org/#hg38_

cdna) with default settings and—seqBias flag set [88]. Transcript counts were summarized into

ENSEMBL gene counts using the R v.3.6.1 package tximport v.1.12.0 [89,90] and biomaRt

v.2.40.5 [91]. The expression of sex-chromosome-specific genes, such as UTY and XIST, was

used to rule out sample mislabeling. Differential expression was estimated using DESEq2

v.1.24.0, after filtering out weakly expressed genes with less than 10 counts per million and less

than 15 total counts in 70% of samples [92–94]. In addition to the patient’s biological sex,

extraction batch and sequencing run, three surrogate variables estimated with RUVseq

v.1.18.0 were included in DESeq2’s generalized linear model [95,96]. Nominal P-values were

inspected with histograms and adjusted for multiple testing according to the method [97] pro-

posed for controlling the false discovery rate (FDR). All log2 fold-changes were shrunken prior

to DE filtering with the apeglm [94] or normal algorithms. For visualization, counts per mil-

lion (CPM) were computed with edgeR’s cpm function v.3.26.1 and variance stabilized with

the parametric method [92]. Then, surrogate variables and covariates were regressed out from

the expression matrix using limma’s removeBatchEffect [98–100] before being visualized with

ggplot2 v.3.3.0 [101]. Hierarchical clustering, heatmaps, and ROC analysis were all performed

with the previously processed expression matrix. Heatmap with hierarchical clustering was

drawn with ComplexHeatmap v.2.0.0 [102] or pheatmap v.1.0.12 [103] using gene-wise scaled

and centered matrix with Euclidean distance and average agglomeration method.
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Overrepresentation analysis (ORA) was used to test for Gene Ontology Biological Process (GO

BP) enrichment with clusterProfiler v.3.12.0 [104] and org.Hs.eg.db v.3.8.2 annotations [105].

Up and down-regulated lists were used as inputs and the background list was composed of all

genes subjected to differential expression. P-values were adjusted for multiple testing using the

Benjamini-Hochberg method [97]. Raw and normalized RNA sequencing data are available in

EMBL-EBI’s ENA and ArrayExpress under accessions ERP128243 and E-MTAB-10318,

respectively.

RT-qPCR

A total of 2.5 μg of RNA was reversed transcribed into cDNA using 4 μL of Vilo Master Mix

(Thermo Fisher Scientific Inc., USA) according to the manufacturer’s instructions. Then,

cDNA was diluted to a final concentration of 5 ng/μL using TE buffer (10 mM Tris-HCL and

0.1 mM EDTA in RNAse-free water). RT-qPCR was performed using Fast Sybr Master Mix

(Thermo Fisher Scientific Inc., USA) in a final reaction volume of 10 μL. For each reaction,

performed in duplicate, 5 μL of Fast Sybr Green were combined with 200 nM of each primer,

10 ng of cDNA, and q.s.p of injection-grade water. Thermal cycling and data acquisition were

performed on Viia7 with 384 well block (Applied Biosystems, Thermo Fisher Scientific Inc.,

USA) following the master mix manufacturer cycling preset with a final melting curve analysis

(65˚C to 95˚C, captured at every 0.5˚C). All primers were designed with NCBI Primer-Blast

[106–109] to either flank intron(s) or span exon-exon junction(s) to avoid gDNA amplifica-

tion (S11 Table). Further, primers were quality checked for specificity, dimers and hairpin

with MFEPrimer v.3.0 [110,111] and IDT’s oligoAnalyzer (https://www.idtdna.com/calc/

analyzer). Data were exported from QuantStudio software v.1.3 in RDML format, which was

imported to LinRegPCR v.2020.0 for RT-qPCR efficiency determination and calculation of the

N0 value [112,113]. Finally, N0 values were imported to R and normalized using as the denom-

inator the normalization factor (NF) calculated from the geometric mean of at least three refer-

ence genes (RPS16, RPL35 and QRICH1), which were previously tested for stability [114].

These N0 normalized values were used for visualization in Fig 2A. For mean difference estima-

tion between groups, RT-qPCR data were analyzed in a Bayesian framework (Markov Chain

Monte Carlo sampling, MCMC) using generalized linear mixed effect models under lognor-

mal-Poisson error with MCMC.qpcr v.1.2.4 [115,116]. Per-gene efficiency estimates from Lin-

RegPCR were used in conjunction with Cp (crossing point) calculated in QuantStudio

software v.1.3 to generate the counts table. Then, the generalized linear mixed-effect model

was fitted using three reference genes (allowing up to 20% between-group variation) with

550,000 iterations, thin = 100, and burn-in of 50,000. The model specification included the

sample (factor with 51 levels) as a random effect and the diagnosis group (factor with 3 levels)

as a fixed effect. MCMC diagnostics were done by inspecting chain mixing plots and linear

mixed model diagnostic plots. Ninety-five percent credible intervals were drawn around the

posterior means and MCMC equivalent P-values were also computed.

Reanalysis of public gene expression datasets

Belone and collaborators GSE74481 [24] and de Toledo-Pinto and cols. GSE35423 [64] micro-

array datasets were reanalyzed as described elsewhere [35]. Blischak and cols. [32] RNA-seq

dataset (GSE67427) was reanalyzed from counts per sample file from the author’s Bitbucket

repository (https://bitbucket.org/jdblischak/tb-data/src/master/). Briefly, a normalized log2

expression matrix was regressed out for RNA integrity number and extraction batch variables.

Then, differences in gene expression (48h post-infection) for specific genes and treatments

were tested using a gene-wise linear mixed model with a random intercept per sample
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(replicate) followed by Dunnet comparison against a “mock” group using emmeans v.1.5.3.

Montoya and collaborators’ dataset was retrieved from GEO (GSE125943) already normalized

(DESeq2 median ratio method) and transformed with base 2 logarithm with no further pro-

cessing [28].

Correlation analyses

For RNA-seq datasets, normalized log2 counts-per-million values were used and log2 normal-

ized intensities for microarray. Spearman’s rank correlation method was chosen because it is

robust against outliers, does not rely on normality assumption, and also identifies monotonic

but non-linear relationships. Initially, a list of keratinocyte/cornification/epidermal develop-

ment genes that were DE in the meta-analysis was assembled [35]. Then, lists of target genes

were compiled from results of Masaki et al. [38]: EMT and non-EMT; from Reactome:

R-HSA-452723 (Transcriptional regulation of pluripotent stem cells), R-HAS-5619507.3 (Acti-

vation of HOX genes during differentiation), R-HAS-2173791 (TGFβ receptor signaling in

EMT); Gene Ontology GO:0001837 (EMT), and literature for EMT canonical markers. Next

pairwise Spearman correlation was calculated using the Hmisc’s rcorr function v.4.2–0 for

every pair of genes from keratinocyte/epidermal development and EMT gene lists. P-values

were adjusted for multiple testing using the BH method for FDR control for all tests [97].

Additionally, 95% nominal confidence intervals were calculated using the Fieller method

implemented by correlation R package v.0.5.0 [117,118]. To visualize the results, only genes

with at least one pairwise correlation with Spearman’s rho coefficient� -0.8 and

FDR� 0.0001 were selected. Additionally, the average log2 expression from genes involved

with keratinocyte/epidermal development was calculated and used in scatter plots against the

expression of the EMT genes. Scatter plots were drawn with ggplot2 v.3.3.3 showing lines from

coefficients estimated using default robust regression (MASS::rlm v.7.3–51.4) either for all

samples or stratified by group. No outliers were omitted.

Regularized (LASSO) logistic regression classification

Normalized log2 expression matrices regressed out for covariates and batches were used as

input predictors. The model was trained using the microarray dataset from Belone et al. [24]

with penalized regression (L1-norm, LASSO) and 4-fold cross-validation (k-fold CV) with the

negative binomial log-likelihood link function, glmnet v.4.1 [119–121]. Predictors were stan-

dardized to have mean zero and unit variance inside the cv.glmnet function. We opted for

L1-norm because it results in a smaller number of genes (#features� n) with non-zero coeffi-

cients, as compared to elastic-net or ridge regression counterparts. In addition, this model is

suitable for high-dimensional data as it combines feature selection during model tuning and

training, mitigating the effects of predictors’ collinearity and reducing overfitting. To assess

the coefficients’ error, misclassification error rate, feature stability and model size we used

non-parametric bootstrap (boot v.1.3.25) with 10,000 samples, with 4-fold cross-validation

inside each loop [122,123]. The final LASSO model selected by 4-fold cross-validation con-

tained three non-zero genes. Finally, independent RNA-seq test datasets were used to compute

the accuracy of the final model. Alternatively, the whole process was repeated with leave-one-

out cross-validation instead of k-fold. The results were practically indistinguishable, especially

regarding the feature stability.

Sample sizes

The sample size for RNA sequencing was selected based on previous leprosy work with micro-

arrays, aiming at detecting genes with at least a differential fold-change of two. For RT-qPCR
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validation, sample size calculation was performed using the per-gene standardized effect size

estimated from the RNA-seq data, aiming at a power of 85% and alpha = 0.03. No samples

were discarded after successful data collection (i.e. outliers). In the end, the sample sizes per

group for RT-qPCR were: MB = 14, PB = 11, ODD = 23. All RT-qPCR reactions were con-

ducted in duplicate for each biological unit (here, a fragment of a skin biopsy derived from an

individual).

RT-qPCR and ROC statistical analyses

Normalized RT-qPCR gene expression data were log2 transformed before use in data visualiza-

tion. Additionally, we checked if the Bayesian results remained consistent using a more com-

mon procedure. For this, the mean normalized expression (from N0) was compared pairwise

for the prior stipulated groups using Welch’s t-test implemented in R language, using the pre-

determined alpha of 0.03. Normality assumption was verified with normal quantile-quantile

plots (qqplots, car v. 3.0–2). In cases where quantile-quantile plots showed huge deviation

from theoretical normal distribution, the Wilcoxon Rank Sum was used to verify results.

Receiver Operating Curve (ROC) analysis was used to determine the accuracy (measured

by the area under the curve, AUC) and its respective best classification threshold, aiming at

maximizing AUC with equal importance for sensitivity and specificity. Confidence intervals

(95%) for AUC were calculated using the Delong non-parametric method as implemented in

pROC v.1.15.3 [124–126].

Supporting information

S1 Appendix. Linking expression profiles to mycobacteria species.

(DOCX)

S1 Fig. Gene expression in MB and PB groups from test and training datasets. Normalized

log2 expression values per group from (A) this study RNA-seq dataset or (B) Belone et al.
(GSE74481) [24]. The genes shown were selected in 25%–50% of the LASSO models (Fig 4B)

according to the bootstrap. MB, multibacillary leprosy; PB, paucibacillary leprosy; TT, tuber-

culoid leprosy; BT, borderline-tuberculoid; BB, borderline-borderline; BL, borderline-lepro-

matous; LL, lepromatous. Each point represents an independent skin biopsy from a patient. Y-

axis values are not comparable between panels A and B.

(PDF)

S2 Fig. Strongest correlations between the average expression of genes associated with ker-

atinocyte/cornification against dedifferentiation-related genes using Montoya et al. RNA-

seq dataset [28]. Scatter plots of scores (average normalized log2 expression) calculated from

genes with previously documented down-regulation in leprosy skin lesions against dedifferen-

tiation-related genes with Montoya et al. RNA-seq dataset (GSE125943) [28]. Lines were

drawn based on intercept and beta estimates from robust linear regression for all samples

(black) or separately for TL (tuberculoid leprosy, blue), and LL (lepromatous leprosy, red). X-

axis shows log2 normalized expression values. Spearman’s rho are shown along with nominal

95% confidence intervals inside the plots. Most genes shown have FDR< 0.1 and rho� -0.6.

Related to Fig 6.

(PDF)

S3 Fig. Strongest correlations between modulated genes from keratinocyte/cornification

and dedifferentiation-related genes using Belone et al. microarray dataset (GSE74481)

[24]. Heat plot with Spearman’s rho correlation coefficient of the strongest correlations from

all ontologies screened after multiple testing adjustment (BH-FDR). Most genes shown have
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