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Abstract: Identifying the species of the subfamily Anophelinae that are Plasmodium vectors is impor-
tant to vector and malaria control. Despite the increase in cases, vector mosquitoes remain poorly
known in Brazilian indigenous communities. This study explores Anophelinae mosquito diversity in
the following areas: (1) a Yanomami reserve in the northwestern Amazon Brazil biome and (2) the
Pantanal biome in southwestern Brazil. This is carried out by analyzing cytochrome c oxidase (COI)
gene data using Refined Single Linkage (RESL), Assemble Species by Automatic Partitioning (ASAP),
and tree-based multi-rate Poisson tree processes (mPTP) as species delimitation approaches. A total
of 216 specimens collected from the Yanomami and Pantanal regions were sequenced and combined
with 547 reference sequences for species delimitation analyses. The mPTP analysis for all sequences
resulted in the delimitation of 45 species groups, while the ASAP analysis provided the partition of
48 groups. RESL analysis resulted in 63 operational taxonomic units (OTUs). This study expands our
scant knowledge of anopheline species in the Yanomami and Pantanal regions. At least 18 species of
Anophelinae mosquitoes were found in these study areas. Additional studies are now required to
determine the species that transmit Plasmodium spp. in these regions.
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1. Introduction

Despite many control and elimination efforts, malaria remains one of the most impor-
tant public health problems globally and affects mainly developing countries [1]. In 2020,
there were estimated 241 million cases of malaria worldwide and 620,000 deaths. Cases in
the Americas, Brazil, Colombia, and Venezuela (Bolivarian Republic of) account for 77% of
all cases in this region [2]. In Brazil, malaria cases increased by 3% from 2015 (138,004) to
2020 (142,124) [3]. The distribution of malaria cases within Brazil is highly heterogeneous,
with the Amazon Region accounting for more than 99% of cases [4].

Malaria transmission dynamics in the Amazon is shaped by multiple factors, such
as high temperature and humidity, mining activities, deforestation, human migration,
road and hydroelectric plant construction, and human settlement near forested areas [5–7].
Changes to the anthropogenic and climatic environment can alter mosquito population
size, habitat, and behavior, leading to increased Plasmodium transmission [8,9].

In Brazil, 54 species of mosquitoes among the Nyssorhynhus, Kerteszia, and Anopheles
genera [10,11] are involved in Plasmodium transmission as primary or secondary vec-
tors. Anopheles and Nyssorhynchus species are present throughout the Amazonian and the
southeastern states, whereas Kerteszia species are associated with humid forests rich in
bromeliads [12]. A recent study detected up to thirteen new species of mosquitoes in the
Amazon region [13], demonstrating that anopheline diversity can be underestimated in
poorly sampled areas.

The Yanomami people are the largest indigenous group in the Amazon. They inhabit
an area of approximately 192,000 km2 between the extreme north Brazil (Amazonas and
Roraima states) and southern Venezuela [14]. The open housing structure of settlements
and geographic remoteness of Yanomami communities, taken together, result in persistent
population exposure to mosquito bites and a major challenge for malaria control [15]. In
addition, illegal land grabbing, mining, and logging increase the risk of acquiring malaria
and create havoc for this highly vulnerable population [16]. Malaria is an increasing cause
of morbidity among Yanomami communities [17], where multiple Plasmodium species
circulate, with a predominance of low-density infections, especially among children, who
are highly susceptible [18].

The Pantanal Brazilian Central Wetlands is one of the main extra-Amazon malaria-
prone biomes in Brazil [19]. It is the smallest Brazilian biome but occupies almost 140,000
km2 of a seasonally flooded area in the Paraguay river basin, mostly in the states of Mato
Grosso and Mato Grosso do Sul [20]. Despite the high biodiversity in this biome [21], few
studies have explored Culicidae diversity there [22–27].

Among mosquito vectors of malaria protozoans in Brazil, many exist within cryptic
species complexes, making correct species identification, based on morphology alone,
difficult [28–30]. However, accurate species identification is essential for biodiversity
studies [31], vector incrimination [32], and delineating interventions for malaria control
focused on the species that disperse Plasmodium parasites [33].

Molecular tools are now routinely used to help resolve species identification in mor-
phologically similar complexes, and the cytochrome c oxidase (COI) gene has become the
marker of choice to establish molecular species barcodes [13,34–36]. Clearly, single locus
approaches to species delimitation have limitations, with processes such introgression
and incomplete lineage sorting potentially leading to shared genetic variation between
closely related species [34,37]. However, the broad utility of the marker across species
makes use of the COI barcode an important first step in species delimitation studies, which
can be complemented by multi-gene, genomic, ecological, and morphological analyses. A
range of species delimitation tools are now available to explore diversity within species
complexes of Anophelinae, and the most popular of these for barcoding data can be
divided into distance-based (Refined Single Linkage (RESL) [38], Automated Barcode
Gap Discovery (ABGD) [39], Assemble Species by Automatic Partitioning (ASAP)) [40],
phylogeny-based (Generalized Mixed Yule Coalescent (GMYC)) [41,42], and Poisson tree
processes (PTP)) [43] approaches.
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Little is known about the vector species and Anophelinae species complexes of the
Pantanal [27] and the Yanomami territories [18,44,45]. A better understanding of species
distribution, bionomic characteristics and vector status in these regions would provide im-
portant information for the development of more effective public health and malaria control
strategies. The current study explored anopheline species diversity in these regions using
COI gene data and a range of distance and phylogeny-based species delimitation tools.

2. Materials and Methods
2.1. Study Areas

This study was conducted in four localities in Brazil: (1) Parafuri (3◦17′1.68′ ′ N,
63◦51′2.16′ ′ W, 440 m, Roraima State), (2) Toototobi (1◦45′54.72′ ′ N 63◦37′7.68′ ′ W, 128 m,
Amazonas State), (3) Marari (01◦09′39.616′ ′ N, 64◦55′10.145′ ′ W, 139 m, Amazonas State) in
the Yanomami Indian Reserve in the Brazilian Amazon biome, and (4) Salobra (20◦12′40” S,
56◦29′30” W, 117 m, municipality of Miranda, Mato Grosso do Sul State) in the Pantanal
biome, Paraguay river basin (Figure 1).
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Figure 1. Specimen collection sites in Parafuri village (Roraima state), Toototobi and Marari villages (Amazonas state) in the
Yanomami Indian Reserve, Brazilian Amazon, and Salobra (Mato Grosso do Sul state) in the Pantanal.

The Yanomami are the major indigenous group living in semi-isolated communities.
Each community inhabits ecologically distinct areas with diverse geomorphologic and hy-
drologic characteristics [18]. Mosquito collections were conducted in the abovementioned
communities 1–3 [44,45]. The Parafuri community is in Roraima state, in the Amazonian
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submontane tropical rainforest ecoregion at 440 m altitude. The Roraima submontane
ecoregion is located exclusively inside the Yanomami Reserve at 350–650 m [46]. Mosquito
collections were undertaken in 4 Parafuri villages—Komomassipe, Warareu along the Inajá
River, and Makabey and Xaruna on the Parima River. Toototobi community is located 170
km south of Parafuri, in a lowland tropical rainforest ecoregion with a maximum of 150
m altitude [46]. Mosquito collections in Toototobi were carried out in 5 villages—Koiobi,
Maraxipora, Apiahik, and Raxasi along the Toototobi River, a tributary of the Demini
River. Marari community at 139 m altitude is in a lowland Amazonian rainforest area with
first to third order rivers and surrounded by high mountains. The mosquito collections
were carried out in 4 villages—Taibrapa, Gasolina, Alapusi, and Ahima/Castanha. In
Marari, malaria transmission is perennial and periodically intense, and the community
is characterized by villages with high population density and high risk of year-round
immigration of Plasmodium-carriers from highly endemic areas outside the Yanomami
territories (Supplementary Table S1).

In the Pantanal biome, collections were carried out in Salobra village, located by
the Miranda River. The Pantanal is one of the largest wetlands in the world [47,48]
extending over 147,574 km2 in Brazil. It is located south of the Brazilian Amazon, with
seasonal flooding and dry regimes [47] and low-height shrubs characteristic of savannah-
like vegetation (Cerrado vegetation). The Pantanal Region extends into areas of Mato Grosso
and Mato Grosso do Sul states, as well as parts of Bolivia to the north and Paraguay to the
south [47].

2.2. Mosquito Collections and Species Identification

The specimens sequenced in this study were field-collected adults and F1-adult
progeny. In Parafuri and Toototobi sampling was done bimonthly from January 2013
to July 2014. In the Marari region, collections were done in March 2013 and August 2013,
and during the dry season, from September 2014 to March 2015, 4 collections were con-
ducted [44,45]. In Salobra, mosquitoes were collected in September and November 2010,
and January, March, May, and July 2011 [27]. Specimens were morphologically identified
using the key of Forattini [49] and stored dry individually with silica gel at room tempera-
ture for subsequent analysis. The taxonomic nomenclature adopted in this study is that
proposed by Foster et al. [11] and defended by Lamas et al. [50].

2.3. DNA Extraction

Genomic DNA was extracted from 1 or 2 legs of each anopheline specimen. For
each extraction, the legs were macerated in 10 µL of NaCl 0.9%, after which 20 µL of
Chelex-100 5% was added. The solution was vortexed, incubated at 99 ◦C for 10 min, and
then centrifuged at 13,000 rpm for 5 min at 25 ◦C. The supernatant was recovered, and an
aliquot was frozen at −20 ◦C for PCR amplification of the target gene region. The remnant
of the mosquito’s body and DNA were deposited and stored at −70 ◦C, respectively, in the
entomological collection of the Faculdade de Saúde Pública (FSP), São Paulo, Brazil.

2.4. DNA Amplification

Primers LCO1490 5′-GGTCAACAAATCATAAAGATATTGG-3′ and HCO2198 5′-
TAAACTTCAGGGTGACCAAAAAATCA-3′ were used to amplify the barcode region
of the COI gene, employing the protocol of Bourke et al. [13]. Each reaction was per-
formed with a final volume of 25 µL containing 1× PCR Buffer (Invitrogen), 1.5 mM MgCl2
(Invitrogen), 0.2 mM each dNTPs (Amresco), 0.1 µM each primer, 0.625 U Taq Platinum
polymerase (Invitrogen), 2 µL of DNA, and the remaining volume of ultra-pure water. The
thermocycler conditions consisted of 94 ◦C for 3 min, 5 cycles of 94 ◦C for 30 s, 45 ◦C for
90 s, 68 ◦C for 60 s, followed by 35 cycles of 94 ◦C for 30 s, 51 ◦C for 30 s, 68 ◦C for 60 s,
and a final extension at 68 ◦C for 10 min. PCR products were purified by polyethyleneg-
lycol (PEG) precipitation. For this purification, equal volumes of PCR product and PEG
(20% polyethyleneglycol 8000/2.5 M NaCl) were homogenized and incubated at 37 ◦C for
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15 min. Then, it was centrifuged at 13,000 rpm for 15 min at 25 ◦C and the supernatant was
removed. To the pellet were added 200 µL of 70% cold ethanol and then centrifuged at
13,000 rpm for 15 min at 4 ◦C. The supernatant was discarded, and the wash was repeated.
To the dry pellet, 10 µL of ultra-pure water were added.

2.5. Sequencing and Alignment

Sequencing was performed in both directions using a Big Dye Terminator cycle
sequencing kit v3.1 (Applied Biosystems, Foster City, CA, USA) and the same set of
PCR primers. The sequencing products were purified using Sephadex G50 columns (GE
Healthcare, Chicago, IL, USA) and analyzed in an Applied Biosystems 3130 DNA Analyzer
(PE Applied Biosystems). Sequences were edited in Sequencher v.4.9 software (Genes
Codes Corporation, Ann Arbor, MI, USA) and the primer regions removed. Sequences
from GenBank or those previously processed in the Systematics Molecular Laboratory
(FSP) were also included to serve as references in the analyses. The COI gene sequences
were aligned by nucleotide using the muscle algorithm [51], implemented in SeaView [52],
and then by amino acid using TranslatorX [53].

2.6. Species Delimitation

Three methods were employed for species delimitation analysis: Assemble Species by
Automatic Partitioning—ASAP [40]; multi-rate Poisson tree processes—mPTP [54]; Refined
Single Linkage—RESL [38]. ASAP is a method of species delimitation that uses pairwise
genetic distances and ascending hierarchical clustering to build a list of best partitions.
The partitions are ranked by score, which is a combination of two metrics: probability of
panmixia and the barcode gap width. This method does not require any a priori knowledge
of number of species, the species composition, or any biological information, such as
a phylogeny or intraspecific distances. Multi-rate Poisson tree processes (mPTP) is a
phylogeny-aware method that uses differences in mutation rate in a phylogenetic tree
to resolve interspecific and intraspecific diversity. It does not rely on a priori distance
thresholds but requires a bifurcating, non-ultra-metric phylogenetic tree for input. A
maximum likelihood (ML) tree was generated with RAxML-HPC BlackBox 8.2.10 [55]
on the CIPRES Science Gateway [56], using gene partitioning by codon under the model
GTR + G, bootstrapping halted automatically using MRE-based, boot-stopping criterion. A
minimum branch length value for the RAxML best tree was calculated (–min_br) to control
for very similar sequences and over splitting. This branch length was used as input for the
MCMC delimitation analysis. To assess convergence, four independent MCMC analyses
were performed. Convergence was reached at 100 million steps. The average standard
deviation of delimitation support values among MCMC runs was <0.00005 and they each
provided >0.95 support for the ML delimitation. RESL, which is available within the BOLD
workbench (www.boldsystems.org, accessed on 24 August 2021), uses p-distances, an
intraspecific threshold of 2.2% and single linkage clustering to create groups that are then
refined using Markov Clustering and the Silhouette Criterion.

3. Results
3.1. Species Identification

A total of 763 sequences (216 new sequences—199 from Yanomami and 17 from Pan-
tanal collections, and 547 reference sequences) from Anopheles, Kerteszia, and Nyssorhynchus
and Chagasia (outgroup) genera were used in mPTP, ASAP, and RESL analyses (Supple-
mentary Tables S2 and S3).

With the exclusion of the outgroup, the mPTP ML delimitation of collected and reference
specimens found 45 COI clusters, while the ASAP analysis delimited 48 (Figures 2 and 3,
Supplementary Table S4). RESL analysis resulted in 63 clusters, with 5 showing maximum
intraspecific variation close to or greater than 3% (2.9–3.9%) (Figures 2 and 3, Supplemen-
tary Table S5).

www.boldsystems.org
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3.2. Genus Anopheles

Sequences of specimens of Anopheles species collected the Yanomami and Pantanal
areas showed few differences in the delimitation of the clusters across analyses (Supplemen-
tary Table S4). Anopheles costai was split into two clusters. The first cluster, An. near costai
G1, was found in Parafuri (RR) and clustered with sequences from Colombia (GenBank
accession: JX205128, KF698865), Acre (Brazil), and Amazonas (Brazil). Sequences of the
second cluster, An. near costai G4, were generated from specimens collected in Toototobi
and Marari (AM) and were clustered with reference sequences from Acre, Amazonas, and
Colombia (GenBank accession: HM022403, HM022404, JX205127) in RESL analysis. Anophe-
les near costai G4 clustered with reference sequences from Rondônia in ASAP analysis, and
with Anopheles forattinii in mPTP analysis. Both clusters displayed a maximum intraspecific
variation of 2.6% in RESL analysis (Supplementary Table S5).

Anopheles fluminensis s.l. sequences from Parafuri did not cluster with reference
sequences of An. fluminensis s.s. (GenBank accession: MF381677, MF381699) but with
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samples from Acre (GenBank accession: MH844300-MH844310) and were named An. near
fluminensis G1.

In the RESL analysis, Anopheles mattogrossensis did not cluster with reference sequences
as in the mPTP and ASAP analyses. Anopheles medialis (new name for An. intermedius)
and Nyssorhynchus tadei (formerly known as Ny. konderi B) each clustered separately
across all species delimitation analyses. Two clusters that were delimited across analyses
could not be identified with the inclusion of reference sequences and are herein named
Anopheles aff. guarao because of morphological similarities with both Anopheles guarao and
Anopheles shannoni.

3.3. Genus Nyssorhynchus

Delimitation of the Nyssorhynchus sequences from the Yanomami and Pantanal areas
showed notable differences across analyses (Supplementary Table S4). Nyssorhynchus
goeldii, Ny. nuneztovari, and Ny. dunhami were clustered together and wholly unresolved
across analyses. This was also the case for Ny. konderi C, Ny. evansae, and Ny. oswaldoi s.s.
The maximum intraspecific variations of the first and second cluster were 3.91% and 1.69%,
respectively (Supplementary Table S5).

Although ASAP analysis identified Ny. oswaldoi A as a single cluster, mPTP and RESL
analyses partitioned Ny. oswaldoi A into two clusters. In the mPTP and RESL analyses,
Nyssorhynchus konderi s.l. was split in two clusters. Nyssorhynchus konderi C clustered with
reference sequences of Ny. oswaldoi s.s., Ny. evansae, and Ny. konderi from Paraná and
Rondônia, whereas Ny. konderi s.l. was well delimited. Nyssorhynchus nuneztovari s.l, Ny.
darlingi, and Ny. triannulatus were all clearly delimited across all analyzes and Ny. oswaldoi
B was well delimited in RESL and mPTP analyses.

3.4. Genus Kerteszia

Kerteszia sequences were delimited into a Kerteszia lepidota cluster and three Kerteszia
neivai clusters across analyses (Supplementary Table S4). All three Ke. neivai clusters were
collected in Parafuri. The first cluster was identified as Ke. neivai s.s. while the remaining
two clusters are herein denoted as Kerteszia neivai A and Kerteszia neivai B.

3.5. Summary of Species Delimitation for Collection Specimens

With respect to the full dataset (test and reference sequences), the mPTP partition
was the most conservative (n = 45) while the RESL partition was the least (n = 63). Rel-
ative to test sequences only, between 18 and 21 clusters were detected (Table 1 and
Supplementary Table S4). Of these, only the Ny. dunhami/Ny. goeldi/Ny. nuneztovari
and Ny. triannulatus clusters showed maximum intraspecific variation greater than 3%
(Supplementary Table S5).

Table 1. Species and putative species data collected in Yanomami and Pantanal areas.

Species Status Plasmodium Vector [Reference] References for Species
Found in This Study

An. mattogrossensis Its role as Plasmodium vector is poorly known in Brazil [57]
An. medialis Its role as Plasmodium vector is poorly known in Brazil [58,59]
Ke. lepidota It is a Plasmodium vector in Colombia [60]
Ke. neivai It is a Plasmodium vector in localities on Pacific Coast, Colombia [61]

Ny. darlingi It is the dominant Plasmodium vector in several regions of the Brazilian
Amazon [62]

Ny. dunhami It has been found naturally Plasmodium infected in Iquitos, Peru [63]

Ny. goeldii It has been found naturally Plasmodium infected in locations across the
Brazilian Amazon [62]

Ny. nuneztovari It is a primary Plasmodium vector in Venezuela and Colombia [64,65]
Ny. evansae Unknown [66]

Ny. oswaldoi s.s. Unknown [29,67]
Ny. oswaldoi B Potential Plasmodium vector in Putumayo, Colombia [68]
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Table 1. Cont.

Species Status Plasmodium Vector [Reference] References for Species
Found in This Study

Ny. konderi C Unknown [13]
Ny. konderi s.l. Unknown [13,35]

Ny. nuneztovari s.l. Nyssorhynchus nuneztovari A is a local Plasmodium vector in localities
across the Brazilian Amazon [58,69–71]

Ny. oswaldoi A Potential Plasmodium vector in Acre [72]
Ny. tadei Local vector of Plasmodium across the Brazilian Amazon [4]

Ny. triannulatus It was found naturally Plasmodium infected in localities across the
Brazilian Amazon [58,62]

An. aff. guarao Unknown -
An. aff. guarao Unknown -

An. near costai G1 Unknown [13]
An. near costai G4 Unknown [13]

An. near fluminensis G1 Unknown [13]
Ke. neivai A Unknown -
Ke. neivai B Unknown -

4. Discussion

Correct species identification is a prerequisite for describing vector distribution and
biology and is essential for effective malaria management and vector control. However, the
morphological identification of adult female mosquitoes can be impaired by the presence
of overlapping characters between species [73]. Under such circumstances, molecular data
and the COI barcode region are particularly useful for species identification [13,74,75].

The Amazon region harbors numerous species of Anophelinae and some of them
are recognized as vectors of Plasmodium spp. [13]. This region is also where most of the
Brazilian malaria cases occur [76] and the people at greatest risk of infection are those
from the indigenous community [77,78]. However, due to the geographical isolation and
inaccessibility of the Yanomami territories, little is known about the vectors of Plasmodium
spp. present in the area [45]. There are also few studies on malaria vectors in the Pantanal
region [19], despite being a potentially important region for Plasmodium transmission [27].
Our study has therefore sought to expand on the limited knowledge of Anophelinae
fauna in Salobra (Pantanal) and in three Yanomami communities (Toototobi, Marari, and
Parafuri).

4.1. Nyssorhynchus and Kerteszia Genera

The genera Nyssorhynchus [4,76,79] and Kerteszia [80] include species that are the
dominant vectors in the Amazon and Atlantic Forest regions, respectively. Concerning the
Yanomami territory, Sánchez-Ribas et al. [45] found Ny. darlingi in Parafuri and Marari, but
not in the Toototobi locality, suggesting that other species are likely involved in malaria
transmission, such as Ny. triannulatus and Ny. nuneztovari that have been found infected
with Plasmodium spp. in areas throughout the Amazon River basin [4,79].

Analyses of COI and ITS2 sequences have previously supported the separation of
at least five species in the Oswaldoi–Konderi Complex: Nyssorhynchus oswaldoi s.s., Ny.
oswaldoi A, Ny. oswaldoi B, and at least two of Ny. konderi (Ny. konderi of Sallum and Ny.
near konderi or Ny. konderi B) [34,35,81], after Ny. konderi was removed from synonymy
with Ny. oswaldoi [82]. Nyssorhynchus konderi is susceptible to Plasmodium infection [83],
but its epidemiological importance is still unknown. Based on morphological and molec-
ular data, Saraiva and Scarpassa [84] identified the group informally denoted Ny. near
konderi [35] or Ny. konderi B [34] as the new species, Nyssorhynchus tadei (named Anopheles
(Nyssorhynchus) tadei).

This study reveals two COI clusters, or putative species, of Ny. konderi and Ny. tadeiin
Salobra. The first cluster is formed by “Ny. konderi of Sallum” [35] and here denoted
Ny. konderi s.l. Specimens of this putative species have previously been recorded in Acre
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and Amapá (referred to as Ny. konderi in Bourke et al. [13]). The second cluster includes
specimens previously named Ny. konderi C and the reference sequences of Ny. konderi
from Paraná and Rondônia [13]. Nyssorhynchus oswaldoi s.s. and Ny. evansae sequences
clustered with Ny. konderi C. The observed clustering can be explained by the lack of
phylogenetic signal in the COI barcode fragment to separate the species that evolved
recently. Nyssorhynchus tadei was clustered with specimens from Acre, Amazonas, and
Ecuador, and previously referred to as Ny. near konderi in Ruiz-Lopez et al. [35] and
Bourke et al. [13].

Nyssorhynchus oswaldoi s.s. has been found in the states of São Paulo, Espírito Santo [29],
Rio de Janeiro, Acre, and Amazonas (in the city of Coari) [35] and is herein registered in the
municipality of Salobra, Pantanal, state of Mato Grosso do Sul. This species is not involved
in the transmission of Plasmodium spp. [29,67]. A closely related species, Ny. oswaldoi B,
has a large geographical distribution, occurring in Putumayo, Antioquia, Caquetá, and
Norte Santander in Colombia; Ocama, Venezuela; Province Orellana, Ecuador; Amapá,
Brazil; and Saint Andrew/Saint David Island, Trinidad/Tobago. Results of this study
showed that the species also occurs in the region of the Toototobi community. Females
of Ny. oswaldoi B were found naturally infected with Plasmodium spp. in Putumayo,
Colombia [68], indicating the potential of the species involvement in Plasmodium spp.
transmission across its distribution area. In addition, Ruiz-Lopez et al. [35] pointed out that
Ny. oswaldoi B could be Ny. aquacaelestis, a species that was described based on specimens
collected in Panama and is currently the synonymy of Ny. oswaldoi s.s. Further research will
be necessary to define whether Ny. oswaldoi B is an undescribed species or Ny. aquacaelestis.
In the Toototobi and Parafuri communities, we also registered the presence of Ny. oswaldoi
A. This species has been found in areas across the Amazon River basin, in the states of
Acre, Amazonas, Mato Grosso, Pará, and Rondônia in Brazil, and in the department of
Amazonas, Colombia [35,85–87]. Nyssorhynchus oswaldoi A is provisionally involved in
malaria transmission in Acre, Brazil, because it was the only species registered in Acre
where females were found naturally infected with Plasmodium [72]. The mPTP analysis
splits Ny. oswaldoi A into two clusters, which are separated by a minimum K2P distance of
2.16%. Although this split could indicate a potential new species within Ny. oswaldoi A,
this hypothesis is not supported by the other analyses employed in the study. The potential
of both Ny. oswaldoi B and Ny. oswaldoi A involvement in the malaria transmission across
their geographical distribution needs further investigation.

The Nuneztovari Complex comprises Nyssorhynchus goeldii, Nyssorhynchus nuneztovari,
Nyssorhynchus nuneztovari A, and Nyssorhynchus dunhami [34]. Nyssorhynchus nuneztovari
s.s. is considered a primary vector in Venezuela and Colombia [64,65]. Mosquito females
identified as Ny. nuneztovari were found infected with Plasmodium parasites and considered
a vector in modified forest in the Brazilian Amazon [88]. Nyssorhynchus nuneztovari A is a
local vector in the Brazilian Amazon [58,69–71]. Nyssorhynchus dunhami has been identified
in several regions of the Brazilian Amazon [71] and was found naturally infected in the
peridomestic environment in Iquitos, Peru [63]. The role of these species as vectors in the
areas studied is unknown. The phylogenetic resolution of Ny. goeldii, Ny.nuneztovari, and
Ny. dunhami has previously proved difficult at the COI locus [13]; however, Foster et al. [34]
showed an unambiguous separation between Ny. dunhami and the cluster composed
of Ny. goeldii and Ny. nuneztovari using concatenated sequence data of the single copy
nuclear white and CAD genes, and the COI barcode region. Two specimens, from Marari
and Parafuri, that did not group with Nuneztovari Complex cluster, are here denoted Ny.
nuneztovari s.l.

Species of the genus Kerteszia occupy habitats with abundant forest bromeliads and
high rainfall [89] and are associated with the so-called human bromeliad malaria and
zoonotic malaria [12,19]. In Brazil, the distribution of Kerteszia species is mainly in areas
of Serra do Mar in the Atlantic rainforest, although there are records of Kerteszia cruzii in
Parque do Iguaçu [90] and Ke. neivai in Jaú National Park in the state of Amazonas [91]. In
the present study, the Ke. neivai specimens collected in Parafuri were split into three clusters
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and denoted Ke. neivai s.s., Ke. neivai A, and Ke. neivai B. Kerteszia neivai s.s. is prevalent
on the Colombian Pacific coast, where it transmits Plasmodium spp. [61]. Although it was
once found infected with sporozoites by a non-identified Plasmodium spp. in the state
of Amazonas [92], its role as vector of human malaria in the Amazon is not yet known.
Kerteszia lepidota was also collected in Parafuri. Despite having been implicated previously
as a malaria vector in Colombia [60], subsequent studies found that Kerteszia lepidota was
misidentified and the local vector was Ke. pholidota [93,94]. Kerteszia lepidota is therefore not
considered to be an important vector in the Yanomami regions studied herein.

4.2. Anopheles Genus

Anopheles costai is morphologically similar to both Anopheles forattinii and Anopheles
mediopunctatus based on females characteristics [95,96], but these species can be easily
identified by the male genitalia, pupa, fourth instar larva, and scanning electron microscopy
of eggs. Sequence data can help to separate females of these species and uncover species
that remain undescribed, especially in remote areas that have been barely sampled, such as
the Yanomami region and other areas of the Brazilian Amazon. Recently, Bourke et al. [13]
showed that An. costai is a highly diverse species complex with three to six phylogenetic
lineages. In this study, the ASAP analysis resolves up to four clusters (An. costai s.s.,
An. near costai G1, An. near costai G2, and An. near costai G2/G4/G5) in the full dataset
(newly sequenced and reference sequences). In the localities sampled only An. near costai
G1 and An. near costai G4 were found. Having been previously collected in the states
of Acre and Amazonas in Brazil and in Colombia [13], these putative species are herein
recorded in Parafuri, in the state of Roraima, and Toototobi and Marari, in the state of
Amazonas, respectively.

The type-locality of Anopheles fluminensis is the municipality of Itaperuna (Rio de
Janeiro state). The species was registered in the states of São Paulo [97] and Paraná [98].
Neves et al. [99] found this species positive for Plasmodium malariae in an indigenous village
in the Vale do Rio Branco, Itanhaém, São Paulo. Bourke et al. [13] detected two clusters of
An. fluminensis in collections from rural settlements in Acre, the first denoted An. fluminensis
s.s. and the second An. near fluminensis G1. The present study identified the same two
clusters. Because the An. near fluminensis G1 cluster displays a maximum intraspecific
variation close to 3%, further investigation will be necessary to verify whether An. near
fluminensis G1 represents cryptic species. Anopheles medialis and An. mattogrossensis are
widely distributed in Brazil [45,100]. Despite the register of Plasmodium infection in An.
mattogrossensis [57] and An. medialis (as An. intermedius) [58,59], the role of these species in
Plasmodium transmission is poorly known in Brazil. Both species were found in the areas
studied in the Yanomami territories. Further investigations will be necessary to verify
whether these species are involved in the Plasmodium transmission in this region.

5. Conclusions

This study increases the scant knowledge of Anopheline species in the Yanomami and
Pantanal regions. At least 18 species were found in these regions. Our findings provide an
important basis for further studies that seek to explore the relative roles of Anophelinae
species in Plasmodium transmission among vulnerable indigenous communities in the
Amazon. Additionally, a baseline for mosquito and vector diversity in the Pantanal is
provided, where extant data are lacking, and a few malaria cases occurs yearly.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12121995/s1, Table S1: Information on distances, travel modalities, and times (during the
dry and rainy seasons) for the Yanomami Indian communities Tootootobi, Parafuri, and Marari and
villages were included in this study, 2014–2015, in Brazil, Table S2: Sample information of collection
specimens and GenBank accession number, Table S3: Reference sequences information, Table S4:
Species groups resulting from the ASAP, mPTP, and RESL analyses, Table S5: Cluster sequences from
RESL analysis.
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