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Pseudomonas aeruginosa is an opportunistic human pathogen that has been a constant
global health problem due to its ability to cause infection at different body sites and its
resistance to a broad spectrum of clinically available antibiotics. The World Health
Organization classified multidrug-resistant Pseudomonas aeruginosa among the top-
ranked organisms that require urgent research and development of effective
therapeutic options. Several approaches have been taken to achieve these goals, but
they all depend on discovering potential drug targets. The large amount of data obtained
from sequencing technologies has been used to create computational models of
organisms, which provide a powerful tool for better understanding their biological
behavior. In the present work, we applied a method to integrate transcriptome data
with genome-scale metabolic networks of Pseudomonas aeruginosa. We submitted both
metabolic and integrated models to dynamic simulations and compared their performance
with published in vitro growth curves. In addition, we used these models to identify
potential therapeutic targets and compared the results to analyze the assumption that
computational models enriched with biological measurements can provide more selective
and (or) specific predictions. Our results demonstrate that dynamic simulations from
integrated models result in more accurate growth curves and flux distribution more
coherent with biological observations. Moreover, identifying drug targets from
integrated models is more selective as the predicted genes were a subset of those
found in the metabolic models. Our analysis resulted in the identification of 26 non-host
homologous targets. Among them, we highlighted five top-ranked genes based on lesser
conservation with the humanmicrobiome. Overall, some of the genes identified in this work
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have already been proposed by different approaches and (or) are already investigated as
targets to antimicrobial compounds, reinforcing the benefit of using integrated models as a
starting point to selecting biologically relevant therapeutic targets.

Keywords: Pseudomonas aeruginosa, metabolic network, transcriptome data, integrated model, therapeutic target

INTRODUCTION

Infectious diseases are a concerning public health problem
worldwide. Among the most life-threatening infectious
diseases are the bacterial infections caused by the “ESKAPE”
pathogens, an acronym for Enterococcus faecium, Staphylococcus
aureus, Klebsiella pneumoniae, Acinetobacter baumannii,
Pseudomonas aeruginosa, and Enterobacter spp., which are
known for their ability to escape the action of multiple drugs
(Pachori, Gothalwal, and Gandhi 2019). As result, the World
Health Organization classified some of these multidrug-resistant
pathogens like P. aeruginosa as a critical priority on the pathogens
list for new antibiotics research and development (World Health
Organization 2017). P. aeruginosa is an opportunistic human
pathogen known for its metabolic versatility, virulence factor
diversity, and great intrinsic and acquired antibiotic resistance.
These traits allow the bacterium to cause infections in different
areas, e.g., the lower respiratory tract, skin, urinary tract, eyes,
leading to bacteremia, endocarditis, and other complications
(Lister, Wolter, and Hanson 2009; Silby et al., 2011).

Identifying potential targets for new drug discovery or drug
repurposing is achieved when crucial biological processes are
well-characterized. The complete genome of P. aeruginosa PAO1,
widely used as a reference strain, was sequenced two decades ago
by Stover et al. (2000). Furthermore, the ongoing advance of
“omics” technologies had provided even more details to unveil
the functioning of P. aeruginosa. From a systems biology
perspective, these data are the fundamentals of different
computational approaches such as the reconstruction of
biological networks, a mathematical representation of cell
molecules and their interactions. The most common types of
biological networks are the metabolic, gene regulatory, and
signaling networks (Koutrouli et al., 2020). Genome-scale
metabolic networks (GEMs) encompass a set of known
biochemical reactions of an organism using gene-protein-
reaction (GPR) associations, constrained in some models by
thermodynamic directionality, transcription factor activity,
gene expression level, and others. The growth rate of an
organism in a given condition or the production rate of a
metabolite of interest can be predicted from a GEM using
optimization methods such as flux balance analysis (FBA)
(Ruppin et al., 2010; Hyduke, Lewis, and Palsson 2013).

In addition, we can integrate different types of networks or
incorporate additional biological measurements into a single
network to provide more robust computational models.
Despite the challenge of integrating gene expression data with
GEMs, there are several methods proposed to achieve this task.
The majority is based on FBA-driven algorithms considering
experimentally measured RNA levels to turn off or to constrain
the reactions, such as PROM, E-Flux, CoRegFlux, TRFBA, and

others (Blazier and Papin 2012; Banos, Trébulle, and Elati 2017;
Cruz et al., 2020). PROM is one of the first methods developed to
be applied to genome-scale networks in an automated manner.
PROM uses transcriptome data to define gene activation or
repression, and interactions between regulators and targets.
However, it requires a large amount of data (Chandrasekaran
and Price 2010). E-Flux defines the reaction maximum flux to the
gene expression level, while CoRegFlux applies a statistical
approach to infer the gene regulatory network from
transcriptome data (Colijn et al., 2009; Banos, Trébulle, and
Elati 2017). TRFBA uses the gene expression level converted
by the constant parameter C to constrain the reaction upper
bound. TRFBA does not require a large amount of data nor
previous knowledge of the regulator-target relationship
(Motamedian et al., 2017; Malek Shahkouhi and Motamedian
2020).

The growth rate assessment using biological networks enables
the prediction of drug targets since gene knockout can result in
growth arrest or growth loss. Likewise, the cell response to
antimicrobial compounds can be predicted (Chavali et al.,
2012; Chung et al., 2021). Indeed, this approach was applied
to several pathogens, including ESKAPE Gram-negative bacteria
as A. baumannii, K. pneumoniae, and P. aeruginosa, to identify
novel targets and to evaluate the impact of last-resort antibiotics
on the metabolism (Presta et al., 2017; Ramos et al., 2018; Zhu
et al., 2018; Norsigian et al., 2019). Moreover, it is possible to
simulate the temporal and spatial dynamics of the growth
process, i.e., in the first step of the simulation, biomass and
metabolite production rates calculated using FBA update the
extracellular concentrations. In the next step, uptake rates of
compounds required for FBA calculation are subjected to the
previous updated extracellular concentrations and could lead to
environmental changes for the following time step. The process
may continue until there are no more substrates available in the
extracellular space (Scott et al., 2018).

In this work, we applied the TRFBA method for integrating
transcriptome data with two metabolic reconstructions of PAO1.
Next, we used the ACBM, an agent and constraint-based
modeling approach, to simulate the temporal dynamics of the
growth process. The primary goals were: 1) to generate an
integrated computational model of P. aeruginosa, which
incorporates gene expression data in the GEM; and 2)
compare the dynamics of metabolic and integrated models to
analyze if the progressive inclusion of biological data results in
more reliable computational models capable of simulating the
biological growth of P. aeruginosa. Then, we investigated the
hypothesis that identifying potential targets from integrated
models is more accurate than from metabolic models that do
not consider information from other cellular processes. We used
the algorithm FindTargetsWEB (Merigueti et al., 2019) to find
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these targets from bothmodels and compare them to discuss their
accuracy. The goal is to show improved selectivity and (or)
specificity of target prediction from integrated models
compared to metabolic models.

MATERIALS AND METHODS

Data Selection
The genome-scale metabolic models of P. aeruginosa PAO1 used
in this work were iMO1056 and iPAO1 (Oberhardt et al., 2008;
Zhu et al., 2018). The iMO1056model contains 992 reactions, 858
metabolites, and 1,042 genes encompassed in the cytoplasmic and
extracellular compartments. This metabolic model is the first
genome-scale metabolic model of P. aeruginosa, also used
extensively in the literature. The iPAO1 model contains 4,365
reactions, 3,022 metabolites, and 1,458 genes encompassed in the
cytoplasmic, periplasmic, and extracellular compartments. It is
the only model of P. aeruginosa that includes the periplasmic
space. We edited the iMO1056 model by adding calcium and
chloride ions into the biomass reaction, and their corresponding
exchange and transport reactions, because they are essential
molecules to the cellular homeostasis and components of the
growth media used in our work. Based on biological
measurements obtained from Pseudomonas genus, we also
adjusted the non-growth-associated maintenance value to
3.96 mmol ATP gDW−1 h−1 in both models (van Duuren et al.,
2013). The transcriptome data used in this work are available
under the access number E-MTAB-8374 at Array Express
database and was performed by Dolan et al. (2020), where
total RNA was isolated from cells grown in MOPS minimal
medium supplemented with glycerol or acetate as the carbon
source. Furthermore, to reproduce these same biological
conditions, we properly adjusted the lower and upper bounds
of exchange reactions in both computational models.

Transcriptome Data Analysis
First, we assessed the raw reads of RNA-sequencing experiment
in fastq format using FastQC (Andrews 2010). Then, we
performed quality and adapter filtering using Trimmomatic
with default parameters when necessary (Bolger, Lohse, and
Usadel 2014). For the alignment of the processed reads to the
PAO1 genome (available at GenBank database under the
accession number NC_002516), we used HISAT2 (version
2.2.0) (Kim et al., 2019). We used the featureCounts program
to count the number of reads mapped to each coding sequence of
the PAO1 genome (Liao, Smyth, and Shi 2014) and we
normalized the transcript abundance by applying the
transcripts per million measure (Wagner, Kin, and Lynch 2012).

Integration of Metabolic Network and
Transcriptome Data
We used the TRFBA algorithm in its linear form, i.e. the version
which integrates a metabolic network with expression data to
model a specific condition, to construct the integrated models of
PAO1 from iMO1056 and iPAO1 models, and the chosen

transcriptome data (Motamedian et al., 2017; Malek
Shahkouhi and Motamedian 2020). First, the TRFBA converts
all reactions in the model to their irreversible form. Given a
reversible reaction R: A%B, the algorithm splits R into
R1: A→B and R2: B→A; thus, each direction of R is written
in its irreversible form. For the following steps, the integration
process requires GPR statements. GPR is the association between
the enzyme(s) that catalyzes the reaction and the gene(s) that
codifies this (ese) enzyme(s). If the GPR contains enzymes that
catalyze the same reaction but are coded by different genes
(isozymes), the expression of either protein is required to the
catalysis, and the GPR is represented with the logic operator OR.
Given a reaction R associated with isoenzymes coded by different
genes g, the algorithm replicates R as {Rg1, . . . , Rgn}, where n is
the number of isozymes. Thus, each isozyme is individually
associated with one copy of R. If the reaction is catalyzed by
an enzyme composed of subunits coded by different genes, the
expression of all subunits is required and the GPR is represented
with AND. Therefore, no modifications are required. After these
rules are applied, the upper bound of all reactions in the model is
constrained according to the lower expression level among all
associated genes (limiting rate) multiplied by the constant
parameter C, representing the maximum rate supported by
one unit of a gene expression level.

Flux Balance and Variability Analysis
FBA is a constraint-based mathematical approach used to
calculate the fluxes of a metabolic network under the steady-
state by optimizing an objective function through linear
programming (Orth, Thiele, and Palsson 2010). In this work,
we set growth rate as the objective function to be maximized. As
the optimal growth rate is calculated, FBA returns a single flux
distribution. However, different flux distributions are possible for
the same maximal growth. Flux variability analysis (FVA) is a
mathematical approach used to determine the minimum and
maximum flux value for each reaction in a given model obeying
the same constraints and the same objective value as FBA within
the solution space (Mahadevan and Schilling 2003;
Schellenberger et al., 2011). We used the functions
optimizeCbModel (FBA) e fluxVariability (FVA) from COBRA
Toolbox to perform these analyses.

Dynamic Simulations of Metabolic and
Integrated Models
We used the user-friendly ACBM framework to simulate the
growth of P. aeruginosa PAO1 over time using both metabolic
and integrated models (Karimian andMotamedian 2020). Briefly,
it uses agent and constraint-based modeling to apply intracellular
and extracellular restrictions to the cell population in a three-
dimensional space, where each cell, metabolite (carbon source),
and environment are modeled as an agent. ACBM requires the
input of several parameters such as initial cell amount, radius,
length, mass, initial metabolite amount, and volume of the
simulated environment. The movement of metabolites and
cells in the environment is predicted based on stochastic
simulations and FBA or TRFBA are used to predict growth. In
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each time step, if there is a metabolite close to the cell, it consumes
the metabolite, moves at random, and the metabolite is removed
from the environment. If there is no metabolite, the cell moves at
random. All possible events, such as biomass generation,
production, or consumption of metabolites are calculated and
updated to the next step. If the cell mass doubles, a new cell object
is included in the environment (cell division). Cells are removed
from the environment when they do not find metabolites during
their survival time (cell death). This process continues until the
simulation time ends or until all cells die. The computational
models and parameters given as input to ACBM (Supplementary
Table 1: https://github.com/medeirosfilho1/Integration-
paeruginosa/blob/main/Supplementary_table_1.xlsx) were
based on experimental data obtained in previous studies
(Dolan et al., 2020; H. ; Zhang et al., 2016).

Identification of Potential Therapeutic
Targets
We used the FindTargetsWEB online application to identify
potential therapeutic targets in PAO1 metabolic and integrated
models (Merigueti et al., 2019). The samemodels used to perform
dynamic simulations were converted from MAT to SBML level 3
format using the writeSBML function from COBRA Toolbox,
which is the file format required by FindTargetsWEB (all files are
available at: https://github.com/medeirosfilho1/Integration-
paeruginosa). The application is composed of nine steps. The
first step evaluates if the model generates a biomass value greater
than zero. As a second step, FindTargetsWEB uses FVA to filter
reactions whose flux range is equal to zero. Since those reactions
do not accept any variation, they may be more susceptible to
perturbations (Oberhardt et al., 2010). However, the results of
this step are only maintained if the user chooses to perform the
FBA + FVA analysis. Therefore, we used the FBA + FVA option
for identifying potential targets. The following steps comprise the
knockout of single reactions followed by gene knockouts if GPR
associations are available. When knockout simulation results in a
biomass value of zero, the reaction GPR and (or) gene
information is stored. If the knocked-out gene is included in
the stored reaction GPR, this gene is considered essential. When
GPR associations are not provided, FindTargetsWEB retrieves EC
numbers from the KEGG database through the reaction
compounds. Otherwise, EC numbers are retrieved through
gene ID. Then, EC numbers are used to query the DrugBank
database to obtain protein name, organism, and UniProt ID. The
UniProt ID is used to perform blastp searches against the genome
of the model organism. Proteins with identity ≥30% are kept.
Finally, FindtargetsWEB uses the recovered UniProt IDs to
search for inhibitors in the DrugBank database. After
obtaining the results from FindTargetsWEB, we filtered the
application output to keep only hits with identity ≥60% and
coverage ≥70% and used these proteins to carry out the analysis to
prioritize targets according to non-host homology and
microbiome conservation. First, we performed a blastp search
against the human proteome (GRCh38. p13 release available at
RefSeq database under the accession number GCF_000001405.
39) using E value ≤ 1e-5 and coverage ≥70% as parameters. Next,

hits with identity ≥40% were filtered out. Likewise, the remaining
proteins were compared to the proteome of 454 organisms
(Supplementary Table 2: https://github.com/medeirosfilho1/
Integration-paeruginosa/blob/main/Supplementary_table_2.
xlsx) from the gastrointestinal tract of NIH Human Microbiome
Project (Human Microbiome Project Consortium 2012a; 2012b).
Alignments with identity ≥40% were considered as a hit.

Technical Specifications
TRFBA algorithm, ACBM framework, FBA, and FVA analysis
were performed using the MATLAB program (R2020b version
9.9) with the COBRA Toolbox (version 2.0.0) and the gplk solver
(version 2.7) in the Java runtime environment (version
1.8.0_281).

RESULTS

Dynamic Simulations of Metabolic and
Integrated Models
The iMO1056 and iPAO1 metabolic models were modified to
reproduce the experimental environment used by Dolan et al.
(2020). First, we adjusted the lower and upper bounds of all
exchange reactions to zero except those related to the MOPS
minimal medium compounds and carbon source, which were set
to −1,000 (lower bound) and 1,000 (upper bound). Then, we
performed the FBA analysis of metabolic models. The iMO1056
model generated a biomass reaction flux of 11.26 h−1 for acetate
as a carbon source and 21.90 h−1 for glycerol as a carbon source.
The iPAO1 model generated a biomass reaction flux of 8.68 h−1

and 17.32 h−1 for acetate and glycerol, respectively. After, the
ACBM framework was used to dynamically simulate P.
aeruginosa PAO1 growth in MOPS minimal medium with
acetate (Figures 1A,B) or glycerol (Figures 1C,D) as a carbon
source. Since ACBM executions are computationally expensive,
the environment volume simulated is only 0.16 μL. Therefore,
due to the randomness and discretization effects, it would be
improper to directly compare experimental results generated in a
counting unit (CFU/mL) and computational results generated in
a concentration unit (g/L), whereas the numbers obtained during
simulations are relatively low. Instead, we choose to compare the
exponential phase duration, entry points in the stationary phase,
and growth curve shapes. Simulations revealed that the growth
curve reached the stationary phase after 1 hour. In the same way,
the carbon sources were consumed in less than 1 hour.

The next step was to insert experimentally measured uptake
rates for both carbon sources as input to the ACBM framework.
The default uptake upper bound value is 1,000 mmol gDW−1 h−1.
In line with Dolan et al. (2020), we adjusted this parameter to
30.4 mmol gDW−1 h−1 for acetate and 9.2 mmol·gDW−1 h−1 for
glycerol. Figure 2 shows a predicted behavior closer to the
observed biologically depicting a sigmoidal curve typical of
bacterial growth. When acetate was the carbon source, cells
reached the stationary phase after 7 and 8 h of simulation
from the iMO1056 and iPAO1 models, respectively, almost
depleting acetate concentration (Figures 2A,B). When glycerol
was the carbon source, cells reached the stationary phase at 21
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and 22 h of simulation from the iMO1056 and iPAO1 models
respectively, almost depleting glycerol concentration
(Figures 2C,D).

According to Motamedian et al. (2017), we calculated the C
constant value for both metabolic models in each growth
condition using the transcriptome data of P. aeruginosa PAO1.
The resulting C values were 0.605 and 0.172 mmol gDW−1 h−1 in
acetate to iMO1056 and iPAO1 models, and 0.063 and
0.043 mmol gDW−1 h−1 in glycerol to iMO1056 and iPAO1
models respectively. We used these values to perform the
integration using the TRFBA algorithm adjusting the growth
rates to approximately 0.80 h−1 (acetate) and 0.37 h−1 (glycerol)
as experimentally measured by Dolan et al. (2020). The dynamic
simulations with the integrated models predicted growth curves
with a shape more similar to the in vitro growth curve (Figure 3).
In acetate, cells entered the stationary phase after 6 h for both
integrated models (Figures 3A,B). Likewise, in glycerol, cells
reached the stationary phase at 19 h of simulation
(Figures 3C,D).

Flux Balance and Variability Analysis
The flux distribution in the central metabolism of P. aeruginosa
PAO1 during growth in acetate or glycerol was experimentally
measured by Dolan et al. (2020). Based on the results, we analyzed
the predicted flux flow through the network upon carbon source
uptake for both models in all growth conditions using FBA and

FVA. The analysis revealed that the fluxes predicted from the
iMO1056 and iPAO1 models with acetate as carbon source
agreed with the biological pathway (Figure 4 and
Supplementary Table 3: https://github.com/medeirosfilho1/
Integration-paeruginosa/blob/main/Supplementary_table_3.
xlsx). It is noteworthy that the known utilization of isocitrate by
tricarboxylic acid cycle and glyoxylate shunt was computationally
reproduced by all models (Figure 4, reaction 15 to reactions 16
and 22). However, the reaction numbered as 21 in Figure 4,
although catalyzed by the same enzyme, the malate
dehydrogenase, showed a slight difference between metabolic
and integrated models. The flux in the metabolic adjusted models
was mainly going through the reaction using ubiquinone as a
cofactor, while in the integrated models, the flux passed through
the reaction with nicotinamide adenine dinucleotide as a cofactor.
Regarding the flux values, the predicted acetate uptake rates
ranged from 460 to 600 mmol gDW−1 h−1; consequently, the
enchained reactions also had high flux values. FBA analysis
from integrated models revealed acetate uptake rates coherent
with those experimentally measured ranging from 45 to
52 mmol gDW−1 h−1.

Likewise, during the simulated growth in glycerol, the uptake
rate ranged from 360 to 400 mmol gDW−1 h−1 in the metabolic
models and 13–14 mmol gDW−1 h−1 in the integrated models.
However, the reaction numbered as 5 in Figure 4 of the iPAO1
metabolic models, an essential step to glycerol entrance in the

FIGURE 1 |Comparison between P. aeruginosa growth curves predicted by ACBM from themetabolic models and growth curvesmeasured by Dolan et al. (2020).
(A,B) MOPS minimal medium with acetate as carbon source. (C,D) MOPS minimal medium with glycerol as carbon source. The graphics include the carbon source
consumption over time (dashed lines). All measurements were made at least in triplicates, and curves represent the mean of all replicates. Error bars are the standard
deviation of the mean.
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central metabolism, had no flux suggesting the flow was shifted
through reaction steps not observed biologically. After
integration, the flux through reaction 5 was restored. The flux
distribution calculated for all models is available in the
Supplementary Material.

Identification of Potential Therapeutic
Targets
We used the FindTargetsWEB application (Merigueti et al., 2019)
to analyze the selectivity of integrated models in identifying
therapeutic targets compared to metabolic models with
adjusted carbon source uptake rates, which do not consider
gene expression data. Among the eight models analyzed,
FindTargetsWEB identified a total of 68 different drug targets.
However, the application applies an identity cutoff of 30% to
search for similar DrugBank proteins in the target organism. We
choose to apply a more conservative filter using an identity
greater than 60% and coverage greater than 70%. The number
of targets decreased to 32. In addition, to avoid undesirable host-
drug interactions, we filtered out P. aeruginosa proteins
homologous to any human proteins resulting in a final list of
26 targets. Considering both models and no growth condition, 18
of the 26 targets were also predicted from the integrated models,
while 8 were unique from adjusted metabolic models (Figure 5
and Table 1).

Several organisms inhabit the host gastrointestinal tract, and
antimicrobial effects upon the normal microbiota could result in

adverse effects. Although we do not consider homology an
excluding factor, we used blastp results of the predicted targets
against the human microbiome to compute a score and suggest a
prioritization. The score was the ratio between the number of
organisms that presented at least one hit with the target protein
sequence and the total number of organisms from the
gastrointestinal tract (Table 1). Table 1 emphasizes the
selectivity of the integrated models showing the targets
predicted by each model in the different growth conditions. It
is noteworthy that targets found in integrated models are proper
subsets of the targets found in the corresponding metabolic
adjusted models. Except for specific genes of the iMO1056
model, there are no differences in the prediction between
growth conditions.

DISCUSSION

Evolving antibiotic resistance profiles emphasize the need to
research and develop drug targets and effective therapies
against infections caused by P. aeruginosa. In the last few
decades, computational approaches have become essential
tools to help researchers screen new drug targets and hasten
drug discovery and design. Reconstruction of biological networks
from “omics” data is one of these tools. Moreover, integrating
different networks (e.g., metabolic, gene regulatory, signaling
networks) is expected to yield more comprehensive
computational models that allow a more accurate prediction of

FIGURE 2 | Comparison between P. aeruginosa growth curves predicted by ACBM from the metabolic models with adjusted carbon source uptake rates and
growth curves measured by Dolan et al. (2020). (A,B) MOPS minimal medium with acetate as carbon source. (C,D) MOPS minimal medium with glycerol as carbon
source. The graphics include the carbon source consumption over time (dashed lines). All measurements were made at least in triplicates, and curves represent the
mean of all replicates. Error bars are the standard deviation of the mean.
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any condition of interest. This work aimed to integrate GEMs of
P. aeruginosa PAO1 with publicly available gene expression data
to better reproduce the biological behavior and identify potential
therapeutic targets.

The dynamic simulations performed from both metabolic and
integrated models have demonstrated that as we include more layers
of biological information in the computational model, the more
precise the predictions are. According to Dolan et al. (2020), cells
grown in MOPS minimal medium with acetate as carbon source
show a growth rate of 0.80 h−1 and an exponential phase that ranges
from 2 up to 8 h. However, the cells grew slower in glycerol
(0.37 h−1), starting the exponential phase at 12 h of growth and
reaching the stationary phase at 20 h. The predictions based on
metabolic models show cells reaching the stationary phase before the
first hour of simulation, also depleting all carbon sources available
(Figure 1). This growth rate is not consistent with biological
behavior. Once we adjust carbon source uptake rates to values
measured experimentally, the growth curve based on metabolic
models showed a more suitable shape. Indeed, in acetate, cells
reached stationary phase at closer times than in vitro growth,
showing a growth rate of 0.82 h−1 to iMO1056 and 0.71 h−1 to
iPAO1 model (Figures 2A,B). Likewise, in glycerol, the shape of the
growth curves is less incoherent, showing a growth rate of 0.55 h−1 to
iMO1056 and 0.48 h−1 to the iPAO1 model (Figures 2C,D). These
results show that the addition of a single biological measure could
improve the accuracy of simulations. The next step was to analyze
the dynamics of models after the integration process. Both growth
curves had a shape closer to the observed experimentally.

In acetate, cells reached the stationary phase after 6 h of
simulation from both models (Figures 3A,B). In glycerol,
cells reached the stationary phase at 7 h of simulation from
both models, considering the starting point of 12 h, it was
equal to 19 h of growth (Figures 3C,D). As part of the
integration process, the growth rates of integrated models
were equal to those measured by Dolan et al. (2020). However,
it is noteworthy that simulations from integrated models
showed carbon source uptake rates close to 30.4 (acetate)
and 9.2 (glycerol) mmol gDW−1 h−1. In addition, we analyzed
the internal flux distribution. FBA uses linear programming
to find reaction fluxes based on maximizing an objective
function. In this work, the objective function is biomass
production. An optimal solution can obtain non-zero flux
values to reactions that are not part of a known biological
pathway but are still correct from a mathematical perspective.
We observed that sometimes the optimal solution found
included fluxes not observed experimentally. However, we
could observe that the integration of metabolic networks with
transcriptome data allowed the flux to pass through the
correct biological pathways. Integrated models have a
reduced solution space compared to non-integrated
models, which may be related to the flux reorientations
observed in the former. These results indicate that the
definition of constraints based on expression gene levels
allowed the system to approximate to better approximate
the experimental growth curve dynamics compared to the
previous approaches.

FIGURE 3 | Comparison between P. aeruginosa growth curves predicted by ACBM from the integrated models and growth curves measured by Dolan et al.
(2020). (A,B) MOPS minimal medium with acetate as carbon source. (C,D) MOPS minimal medium with glycerol as carbon source. The graphics include the carbon
source consumption over time (dashed lines). All measurements were made at least in triplicates and curves represent the mean of all replicates. Error bars are the
standard deviation of the mean.
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Identification of potential drug targets frommetabolic networks
is commonly employed. There are different approaches to identify
targets from genomic-scale metabolic networks, with several levels

of automation. In this work, we used FindTargetsWEB, which is an
online application developed to identify targets based on gene
essentiality under a given condition. Although metabolic networks
are a valuable resource, we could observe that as we include more
biological measurements in a computationalmodel, the predictions
based on this model are more accurate. Furthermore, since we
observed better growth dynamics with integrated models, we
suggest identifying targets from these models could also be
more reliable. In order to analyze this hypothesis, we submitted
both metabolic and integrated models to FindTargetsWEB and
compared the results.We found that 18 of the genes identified from
the integrated models as potential drug targets were a subset of the
26 genes identified from the metabolic models with adjusted
carbon source uptake rates. This observation is a consequence
of the solution space reduction due to more strict constraints
imposed by the gene expression data. Our intention is not to point
out that the genes found from non-adjusted metabolic models are
not reliable targets, but the integration is a method to improve
selectivity and narrow the screening process.

According to the target scores (Table 1), we highlight the five
top-ranked genes selected from the integrated models, glcB, phoA,
metG, fabB, and dapB. Poulsen et al. (2019) pointed out 321 genes
of P. aeruginosa as high-priority drug targets based on the
definition of an essential core genome. The essentiality
analysis was performed with different strains carrying
transposon insertions grown in different media. We observed

FIGURE 4 | Schematic representation of acetate and glycerol central metabolism in P. aeruginosa PAO1. The blue boxes depict reactions related to acetate
metabolism. The yellow boxes depict reactions related to glycerol metabolism, and the green boxes are the reactions shared by the metabolism of both carbon sources.
The red arrows indicate irreversible reactions. This figure was generated using the PathVisio software (Kutmon et al., 2015).

FIGURE 5 | Venn diagram illustrating the number of targets shared by
the metabolic models with adjusted carbon source uptake rates (AM) and
integrated models (INT).
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that the five top-ranked genes are included in the essential core
genome described by Poulsen et al. (2019) except for glcB and
phoA. It is noteworthy that the minimal medium used was M9
and the reference strain was PA14 (Poulsen et al., 2019). The fact
that the genes listed in Table 1 have already been identified in the
literature as potential targets reinforces the adequacy of the
method described in our work for selecting biologically
relevant targets.

The first placed gene among the five top-ranked is glcB, which
encodes a malate synthase (MALS). MALS catalyzes the
condensation of acetyl-CoA to glyoxylate to form malate and
coenzyme A. This reaction is an essential step of the glyoxylate
cycle (Figure 4, reaction 23), an anaplerotic pathway providing

intermediates for the tricarboxylic acid cycle or precursors for
amino acid synthesis. It acts as a modified version of the
tricarboxylic acid cycle, bypassing the carbon dioxide-
producing steps to conserve carbon atoms for gluconeogenesis
(Beeckmans 2009; Kornberg 1966). This glyoxylate shunt is
involved in metabolic adaptation to environmental changes,
and it is essential for bacterial growth in acetate, ethanol, fatty
acids, or any substrate whose acetyl-CoA is a direct product of the
pathway. Besides enabling the use of different carbon sources, the
glyoxylate shunt plays an important role in virulence, oxidative
stress defense, and antibiotic resistance in several clinically relevant
pathogens (Maloy, Bohlander, and Nunn 1980; Renilla et al., 2012;
Dunn, Ramírez-Trujillo, and Hernández-Lucas 2009; Lorenz and

TABLE 1 | List of potential therapeutic targets identified by the FindTargetWEB application from the metabolic models with adjusted carbon source uptake rates and
integrated models.

The genes are sorted based on the number of alignments with organisms of the human microbiome in ascending order. The cells filled with diagonal black lines indicate the
target was identified from the metabolic models with adjusted carbon sources uptake rate (AM). The cells filled with full black color indicate the target was identified from the
integrated models (INT).
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Fink 2002; Meylan et al., 2017). The chronic P. aeruginosa
infections in cystic fibrosis patients showed MALS upregulation.
A double mutant of MALS and isocitrate lyase (another enzyme of
the glyoxylate cycle) was avirulent in a mouse pulmonary infection
model, which emphasizes MALS as an attractive target for drug
development. In addition, MALS has great potential as a broad-
spectrum target because it is conserved in pathogenic species,
selective, and has a narrow distribution in the gastrointestinal
microbiota (Table 1) (Hagins et al., 2010; Fahnoe et al., 2012;Myler
and Stacy 2012; Murima, McKinney, and Pethe 2014; McVey et al.,
2017). A class of Mg2+ chelators compounds called phenyl-
diketoacid were described as MALS inhibitors in Mycobacterium
tuberculosis (Krieger et al., 2012; Shukla, Shukla, and Tripathi
2021). In P. aeruginosa, Fahnoe et al. (2012) identified eight
different new compounds with inhibitory activities against
MALS. Furthermore, these compounds impaired both MALS
and isocitrate lyase enzymes within the glyoxylate shunt
pathway, an advantageous property to prevent the rapid
development of resistance against new antimicrobial agents.

Inorganic phosphate is an essential component of
nucleotides, membrane phospholipids, and phosphorylated
proteins. In bacteria, phosphonates and organophosphates
are viable sources of inorganic phosphate upon the
enzymatic activity of alkaline phosphatases (AP). The gene
phoA encodes a periplasmic AP, and it is highly expressed
under phosphate-limiting conditions, e.g., human airway
epithelial infections such as cystic fibrosis (Chekabab, Harel,
and Dozois 2014; Jones et al., 2021). In addition, AP seems to
contribute to the cell division cycle in a low-phosphate
environment, possibly a consequence of its role in the
inorganic phosphate scavenge (Bhatti, DeVoe, and Ingram
1976). To the best of our knowledge, there is no recent
scientific literature reporting effective inhibitors to AP of
organisms phylogenetically close to P. aeruginosa. In
contrast, several inhibitors are described to mammalian AP
since they have an important role in bone formation and
prevention of intestinal inflammation. Bacterial and
mammalian AP have significant differences regarding their
catalytic sites (number and type of metal ions, amino acid
residues), molecular weight, and kinetics (Rashida and Iqbal
2015). Indeed, Chakraborty et al. (2012) described the inhibition
of Vibrio AP by imipenem, a β-lactam antibiotic, but the same
effect was not observed in the Escherichia coli AP. Even inside
the same domain, the AP of these phylogenetically distant
organisms is not affected by the same compounds. Thus, it is
theoretically possible to discover a drug capable of inhibiting the
P. aeruginosa AP without an undesired effect on the host.

The gene metG encodes the enzyme methionyl-tRNA
synthetase (MetRS), which belongs to the same class of two
other targets identified in our work: hisS (histidyl-tRNA
synthetase, HisRS) and thrS (threonyl-tRNA synthetase,
ThrRS) (Table 1). Overall, aminoacyl-tRNA synthetases
(AaRSs) constitute a class of 20 enzymes essential for protein
biosynthesis, corresponding to each canonical amino acid.
AaRSs catalyze a specific amino acid attachment to their
cognate tRNAs, playing a crucial role during the initiation
and elongation phase of protein biosynthesis. Due to their

primordial function, AaRSs are present in all three kingdoms
of life. Despite their similarity among organisms, structural
differences between prokaryotic and eukaryotic AaRSs are
sufficient to select pathogen-specific inhibitors (Kwon, Fox,
and Kim 2019; Pang, Weeks, and Van Aerschot 2021). There
are two known AaRSs inhibitors approved for clinical use, but
none are designed for Gram-negative pathogens. Most bacteria
contain one of the two forms of a MetRS, whereMetRS1 is found
in Gram-positive bacteria, protozoa, and mitochondria, and
MetRS2 is found in archaea, the cytosol of eukaryotic cells, and
Gram-negative bacteria, including P. aeruginosa (Nakama,
Nureki, and Yokoyama 2001; Gentry et al., 2003; Rock et al.,
2007). According to Mercaldi et al. (2021), the auxiliary pockets
of MetRS1 and MetRS2 differ in their amino acid composition,
leading to less or no effect of known MetRS1 inhibitors upon
MetRS2. In P. aeruginosa, Robles et al. (2017) found one
candidate among 1,690 compounds with satisfactory
inhibition results, the isopomiferin. However, isopomiferin
did not show broad-spectrum activity, in addition to high-
level toxicity in human cells when compared to other
antibiotics of common use. Instead, promising compounds
have been found for the other two targets, HisRS and ThrRS.
A screening assay analyzing nearly 1700 compounds selected 15
with activity against HisRs of P. aeruginosa. Among them, four
(BT02C02, BT02D04, BT08E04, and BT09C11) were
highlighted for presenting effective inhibition results
associated with a broad-spectrum activity. Furthermore, the
compounds bound to other places besides the active site of
aminoacylation, which is advantageous to avoid resistance
mechanisms, having low-level toxicity in eukaryotic cells. An
interesting feature of BT09C11 is the presence of a sulfonamide
group, which has antimicrobial activity against other enzymes,
e.g., acting as a competitive inhibitor of dihydropteroate
synthase (an enzyme encoded by another potential target, the
gene folP). This fact could imply more than one form of
inhibition (Henry 1943; Hu et al., 2018). Regarding ThrRS,
Scott et al. (2019) described obafluorin, a natural compound
produced by Pseudomonas fluorescens. Obafluorin is active
against Gram-positive and Gram-negative bacteria, including
P. aeruginosa. Interestingly, P. fluorescens has a homolog to its
ThrRS called ObaO, which confers immunity to obafluorin, and
it is not present in the P. aeruginosa chromosome.

The gene fabB encodes the cytoplasmic enzyme 3-oxoacyl-
[acyl-carrier-protein] synthase 1 or β-ketoacyl-ACP synthase
(KAS) I (Feng and Cronan 2009). In P. aeruginosa, fabB is co-
transcribed with fabA establishing the fabAB operon that plays a
crucial role in unsaturated fatty acid (UFA) biosynthesis via the
anaerobic type II biosynthetic pathway (Hoang and Schweizer
1997; Subramanian, Rock, and Zhang 2010). The joint function
of both enzymes FabA and FabB impact the membrane fluidity
under different growth conditions contributing to the dominant
UFA synthetic pathway in P. aeruginosa. Indeed, the
composition of P. aeruginosa membrane contains more UFAs
than saturated fatty acids, whose balance depends on a
coordinated regulation at the transcriptional level in response
to changes in the environment (Zhang et al., 2007). Two major
inhibitors of KAS were described to date, cerulenin and
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thiolactomycin. Although fabB was not considered homologous
to human proteins in our analysis, cerulenin was not selective
also inhibiting eukaryotic KAS. In contrast, thiolactomycin
interacts with FabB preventing the elongation of UFAs. It
has a broad spectrum against several pathogens and is
selective (Jackowski et al., 2002; Khandekar, Daines, and
Lonsdale 2003). In P. aeruginosa, Schweizer (1998)
demonstrates intrinsic resistance to thiolactomycin conferred
by efflux pump systems. However, the critical role of FabB in the
composition of cellular fatty acids and membrane fluidity of P.
aeruginosa emphasizes its importance as a drug target, and the
combination of existing drugs with antimicrobial adjuvants like
efflux pump inhibitors could lead to effective therapeutic
options (Peraman et al., 2021).

The gene dapB encodes the enzyme dihydrodipiconilate
reductase (DHDPR). DHDPR catalyzes an intermediate reaction
in the diaminopimelate (DAP) pathway responsible for the
biosynthesis of two essential compounds, meso-diaminopimelate
(meso-DAP) and lysine. Lysine is important for protein synthesis
andmeso-DAP is a cell wall component in Gram-negative bacteria,
such as P. aeruginosa. In mammalians, lysine is an essential amino
acid, i.e., it is not synthesized and must be acquired from the diet.
DAP pathway is only present in bacteria and plants. These points
reinforce the potential of DapB inhibitors as antimicrobial agents
and minimize the possibility of toxicity in human cells (Hutton,
Perugini, and Gerrard 2007; Impey et al., 2020). The efforts
towards the identification of DHDPR inhibitors are focused on
Mycobacterium tuberculosis. Some effective candidates were found,
including sulfonamides. Among them, one has a sulfonamide
group replaced by a sulfone, showing an increased potency
against DHDPR of M. tuberculosis in addition to DHDPR of
E. coli (Paiva et al., 2001). There are no reports in the scientific
literature on investigating dapB for drug discovery in P. aeruginosa.

Although low-ranking targets, the genes kdsA and rmlA also
stand out in Table 1 because they were identified as potential drug
targets in all models. It is noteworthy that both genes are involved in
the biosynthesis of lipopolysaccharide (LPS) constituents. LPS is a
major component of P. aeruginosa outer membrane. It is an
important virulence factor and an efficient permeability barrier.
The kdsA gene encodes a key enzyme 2-dehydro-3-
deoxyphosphooctonate aldolase that catalyzes the production of
2-keto-3-deoxy-D-manno-octulosonate-8-phosphate, an essential
compound for the assembly of LPS (Nelson et al., 2013; Valvano
2015). The kdsA gene is part of the essential core genes described by
Poulsen et al. (2019), and previous works corroborate its essentiality
through experimental techniques and different media (Skurnik et al.,
2013; Lee et al., 2015; Turner et al., 2015). The inhibition of KdsA
leads to cell growth arrest by limiting replication (Xu et al., 2003;
Ahmad et al., 2019). There are several inhibitors of KdsA described
with potent in vitro activity, including the {[(2,2-Dihydroxy-Ethyl)-
(2,3,4,5-Tetrahydroxy-6-Phosphonooxy-Hexyl)-Amino]-Methyl}-
Phosphonic acid (DB02433) present in DrugBank as an
experimental drug (Grison et al., 2005; Harrison, Reichau, and
Parker 2012; Ahmad et al., 2019). The gene rmlA encodes the
enzyme glucose-1-phosphate thymidylyltransferase (G1PTMT),
which catalyzes the first step in the biosynthesis of rhamnose, a
homopolymer component of P. aeruginosa LPS (King et al., 2009;

Alphey et al., 2013). Poulsen et al. (2019) did not mention rmlA in
their work, but a knockout mutant of the rmlA gene in PAO1 could
not grow in M9 minimal medium. In addition, the mutant released
very low extracellular DNA, which is related to biofilm formation
and induction of antibiotic resistance in biofilm (Elamin et al., 2017).
The substrates of G1PTMT are glucose-1-phosphate and deoxy-
thymidine triphosphate. Smithen et al. (2015) demonstrate that
bisubstrate analogs, i.e., a molecule that resembles both substrates
in a transient state, are potent inhibitors of G1PTMTof Streptococcus
pneumoniae. In P. aeruginosa, Alphey et al. (2013) show small
thymidine-containing molecules that inhibit G1PTMT through
binding the allosteric site. Allosteric inhibitors are considered
more promising drugs because they are more specific thus less
toxic. The reason is that allosteric sites often aremore selective due to
lower amino acid residue conservation among protein families when
compared to active sites. Despite recent advances, the discovery of
G1PTMT inhibitors to be used as antimicrobial agents remains a
challenge. The genes kdsA and rmlA have numerous essential criteria
for prioritization, such as essentiality, absence of homologs in
humans, broad-spectrum target, and druggability. However, they
did not obtain a good classification because we used the microbiome
conservation criterion to rank the identified targets, minimizing
adverse effects caused by the elimination of intestinal flora. However,
this is not an exclusion criterion, only the parameter of prioritization
adopted in our work.

The main goal in building computational models based on
different layers of biological data is to improve the accuracy of
in silico simulations. We demonstrate that the integration of
transcriptome data to metabolic networks described in our
work successfully achieved this objective, resulting in growth
curves and flux distributions in line with biological
observations. In addition, the identification of potential
drug targets from integrated computational models is more
selective and points out genes with reported biological
relevance. Indeed, some targets identified in our work have
already been proposed as drug targets through distinct
methodologies. Others are already known drug targets.
These observations corroborate that further investigating
unexploited targets is a promising approach. A noteworthy
remark is that the reference organism used in this work is not a
multidrug-resistant strain. However, the methodology applied
here can be extended to other strains, other genera, and other
conditions since “omics” data are available for several
organisms. Finally, we advocate integrating multiple layers
of omics data for accurate phenotype prediction and
therapeutic target identification, enabling new drug
discovery through advanced systems biology approaches
instead of time-consuming and expensive conventional
screening.
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