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A B S T R A C T   

Respiratory symptoms are one of COVID-19 manifestations, and the metalloproteinases (MMPs) have essential 
roles in the lung physiology. We sought to characterize the plasmatic levels of matrix metalloproteinase-2 and 9 
(MMP-2 and MMP-9) in patients with severe COVID-19 and to investigate an association between plasma MMP-2 
and MMP-9 levels and clinical outcomes and mortality. MMP-2 and MMP-9 levels in plasma from patients with 
COVID-19 treated in the ICU (COVID-19 group) and Control patients were measured with the zymography. The 
study groups were matched for age, sex, hypertension, diabetes, BMI, and obesity profile. MMP-2 levels were 
lower and MMP-9 levels were higher in a COVID-19 group (p < 0.0001) compared to Controls. MMP-9 levels in 
COVID-19 patients were not affected by comorbidity such as hypertension or obesity. MMP-2 levels were affected 
by hypertension (p < 0.05), but unaffected by obesity status. Notably, hypertensive COVID-19 patients had 
higher MMP-2 levels compared to the non-hypertensive COVID-19 group, albeit still lower than Controls (p <
0.05). No association between MMP-2 and MMP-9 plasmatic levels and corticosteroid treatment or acute kidney 
injury was found in COVID-19 patients. The survival analysis showed that COVID-19 mortality was associated 
with increased MMP-2 and MMP-9 levels. Age, hypertension, BMI, and MMP-2 and MMP-9 were better predictors 
of mortality during hospitalization than SAPS3 and SOFA scores at hospital admission. In conclusion, a signif
icant association between MMP-2 and MMP-9 levels and COVID-19 was found. Notably, MMP-2 and MMP-9 
levels predicted the risk of in-hospital death suggesting possible pathophysiologic and prognostic roles.   
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Injury; Ang, angiotensin; ARB, angiotensin receptor blockers; COVID-19, Coronavirus Disease 2019; iRAAs, inhibitors of the renin-angiotensin system; MMPs, 
metalloproteinases; MMP-9, Matrix Metalloproteinase 9; MMP-2, Matrix Metalloproteinase 2; RAS, renin-angiotensin system; SARS-CoV-2, Severe Acute Respiratory 
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1. Introduction 

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV- 
2) is responsible for Coronavirus Disease 2019 (COVID-19). COVID-19 
has already caused over 4340,000 deaths (August 2021) and infected 
over 200 million cases in 220 countries, according to the John Hopkins 
Coronavirus Resource Center [1]. SARS-CoV-2 infects cells using the 
angiotensin-converting enzyme 2 (ACE2), similarly to SARS-CoV [2], 
and activates the immune system leading to cytokine storm [3] char
acterized by markedly increased levels of cytokines (interleukins (IL)−
1α, IL-1β, IL-6 and TNF-α) [4], increased count of neutrophils and 
decreased count of lymphocytes [5]. COVID infection also stimulates 
ROS generation [6] and coagulation cascade increasing the risk for 
thrombosis in micro and macro vasculature [7]. COVID-19 might also 
trigger lung injury that progresses to acute respiratory distress syn
drome, leading to respiratory failure, sepsis, septic shock [8], and death 
[9,10]. In adult patients, the risk of developing severe COVID-19, which 
requires intensive care unit admission (ICU), is higher with age and 
comorbidities such as obesity, hypertension, and other cardiovascular 
diseases [11,12]. 

Respiratory symptoms are one of COVID-19 manifestations [9] and 
the metalloproteinases (MMPs) have essential roles in lung disease [13, 
14]. It has been shown recently that the expression of 
metalloproteinases-9 (MMP-9) gene is upregulated in COVID-19 pa
tients [15] and that MMP-9 levels, as measured by immunoassay, are 
directly proportional to a risk of respiratory failure [16]. Duda et al.[17] 
found that MMP-9 plasmatic levels are greater at day 7 of hospitalization 
in non-survivors in non-COVID-19 ICU patients [17], suggesting prog
nostic relevance of this enzyme. Also, MMP-9 levels have been shown to 
be increased in severe COVID-19 and to be associated with mortality in 
those patients [18]. 

The severe form of COVID-19 has many similar features to sepsis 
[19], and both metalloproteinases-2 (MMP-2) and MMP-9 have been 
considered as potential biomarkers for septic patients [17,20]. Aguirre 
et al.[20] have shown reduced MMP-2 levels in patients meeting criteria 
for sepsis [20]. Despite the recognized role of MMP-2 as an 
anti-inflammatory factor [21,22], little is known about the role of 
MMP-2 in COVID-19. 

Despite the aforementioned current understanding of COVID-19 
disease as a new infection, there is still much to be understood, more 
insight into the pathophysiology of the disease is critically needed. This 
study sought to investigate the association between the plasmatic levels 
of MMP-2 and MMP-9 and COVID-19 outcomes. 

2. Material and methods 

2.1. Patients, Plasma samples and demographic 

The COVID-19 group included 53 patients who were admitted to the 
Intensive Care Unit (ICU). COVID-19 infection was confirmed by a 
positive RT-PCR test. The Control group consisted of 28 apparently 
healthy subjects whose blood was collected before the COVID-19 
pandemic. Blood samples were drawn from all patients in citrate 
blood collectors, and the COVID-19 group had blood collected within 48 
H of the ICU admission. 

2.2. Ethics 

This study was approved by the Ethic Committee of the Hospital das 
Clínicas de Ribeirão Preto- University of São Paulo, Brazil (CAAE: 
30816620.0.0000.5440). All participants or family members have pro
vided informed consent. 

2.3. Demographic and clinical data 

Demographic, clinical, and laboratory data were obtained from the 

hospital’s digital database. The parameters considered in the analysis 
were: age, sex, body mass index (BMI), use of inhibitors of the renin- 
angiotensin system (iRAAs) such as angiotensin-converting enzyme in
hibitors (ACEi) and angiotensin receptor blockers (ARB), use of corti
costeroids during hospitalization, days of symptoms, days after 
worsening of symptoms out of ICU, length of hospitalization, develop
ment of acute kidney injury (AKI), dialysis during hospitalization, and 
previous comorbidities such as diabetes, systemic hypertension and 
chronic cardiovascular diseases (CVD). The following laboratory pa
rameters were collected and analyzed: neutrophil, lymphocyte and 
platelet count, bilirubin, creatinine, lactate, C-reactive protein, and 
PaO2 / FiO2 ratio. 

The scores used to predict the diagnosis of sepsis and the probability 
of death were the sequential assessment score for organ failure (SOFA 
score) [23] and the SAPS-3 [24], respectively. The SOFA score is used to 
diagnose sepsis and a score ranges from 0 to 28 [23], where 0 is 
considered a patient without organ failure and a score greater than or 
equal to 2 is considered a diagnosis of sepsis. The SOFA score considers 
both clinical and laboratory data from cardiovascular, respiratory and 
neurological systems such as Mean Blood Pressure (MAP) less than 70 
mmHg and/or use of vasoactive drugs, PaO2/FiO2 with or without the 
need for ventilatory support and the Glasgow Coma Scale (ECG). The 
assessment of hepatic, renal and coagulation systems are based on bili
rubin, creatinine and platelet count. The highest SOFA score obtained 
within the first 24 h of hospitalization were used in the analysis. The 
calculator used to quantify the SOFA (severity score) is available at the 
website of the Brazilian Institute of Intensive Medicine (http://www. 
medicinaintensiva.com.br/sofa.html). 

The SAPS-3 is used to predict the probability of death in patients 
admitted to the ICU. It uses logarithmic equations for calculations and 
therefore score can range from 0 to 217 [24] with higher numbers 
reflecting higher probability of death. The SAPS − 3 score includes, in 
addition to the parameters used to calculate the SOFA score, leukocyte 
count, blood pH, heart rate, temperature, systolic blood pressure, 
comorbidities (such as cancer treatment, liver, kidney or cardiovascular 
disease, immunosuppression), age, length of hospitalization and loca
tion (other ICU, emergency room, ward) before admission to the ICU and 
a reason for admission. The highest SAPS-3 score (the highest proba
bility of death) obtained in the first 24 h of hospitalization was used in 
the analysis. SAPS-3 calculations were adjusted to the geographic 
location of the individuals involved in the study (South America). The 
SAPS-3 calculator used in this study is available at https://www.rccc. 
eu/ppc/indicators/saps3.html. 

2.4. Quantification of MMPs levels by zymography 

The MMP-2 and MMP-9 levels were measured in plasma samples by 
gelatin zymography [25] Gels were stained with Coomassie Blue G-250 
for 30 mins and unstained with 10% acetic acid and 30% methanol. The 
molecular weight for: MMP-2 (64KDa), and for MMP-9 + pro-MMP-9 
(86–92 kDa). The results were then scanned at 400dpi and analyzed with 
ImageJ. We used this approach in accordance with an established pro
tocol from our lab based on references found in the literature [26–29]. 

2.5. Statistical analysis 

Clinical data are presented as mean ± SEM. The Shapiro Wilk test 
was used to define distribution of continuous variables. Continuous 
variables were compared by the Mann-Whitney test for non- 
parametrically distributed variables and by unpaired t-test for para
metrically distributed variables. Dichotomous variables were analyzed 
using the chi-square test. The Kruskal Wallis test with Dunn’s multiple 
comparisons post-test was used to compare three or more groups. MMPs 
levels were all normalized to the control group in each graph. Multiple 
regression was used to analyze models with more than one variable to 
predict the outcome. ROC curves were designed and the area under the 
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curve (AUC) was calculated. All statistical analyses were performed in 
Graph Pad Prism 8. 

3. Results 

3.1. Demographic and clinical data 

COVID-19 and Control groups were matched for age and BMI, and 
distribution of male sex, hypertension, diabetes, usage of iRAAs prior to 
COVID-19 related hospitalization (Table 1). As expected, the leukocyte 
(10.8 ± 0.6 ×10 3/uL), neutrophil (8.7 ± 0.6 ×10 3/uL) and platelet 
(243.6 ± 13.2 ×10 3/L) counts were higher in the COVID-19 group than 
in the Control group (p < 0.01), but the average of lymphocytes was 
lower (1.1 ± 0.1 ×10 3/mm3) (p < 0.0001). COVID-19 group showed an 
average SAPS-3 score of 59.8 (± 1.5) and average SOFA score of 8.8 (±
0.5). On average, patients who tested positive for SARS-CoV-2 were 
admitted to the ICU 10 days after the onset of symptoms, and 2.9 days 
after worsening of symptoms. The average ICU length of stay for COVID- 
19 patients was 15 days and mortality rate was 43% mortality. 

3.2. Association between severe COVID-19 status and MMPs levels 

Firstly, we sought to determine whether the plasmatic MMP-2 and 
MMP-9 levels differed between COVID-19 and Control group (Fig. 1). 
The plasma MMP-2 levels were 54.8% lower in the COVID-19 (p <
0.0001) as compared to the Control group (Fig. 1A). In contrast, plasma 
MMP-9 levels were 195.4% augmented in the COVID-19 group (p <
0.0001) compared to Control groups (Fig. 1B). 

3.3. Effect of hypertension and obesity on MMP-2 levels 

COVID-19 patients were categorized according to hypertension and 
obesity status. Interestingly, MMP-2 levels were upregulated in COVID- 
19 patients who were hypertensive (p < 0.05) but still downregulated in 
comparison to Controls (Fig. 2A). No significant association between 
MMP-2 levels and obesity was found in COVID-19 patients (Fig. 2B). 

3.4. Effect of hypertension and obesity on MMP-9 levels 

The MMP-9 levels were also evaluated according to the hypertension 
profile, and data demonstrated that MMP-9 upregulation in the COVID- 
19 occurs independently of hypertension (p < 0.05) (Fig. 3A) and 
obesity (Fig. 3B) (p < 0.05). 

3.5. Effect of medications and AKI on MMP-2 and MMP-9 levels 

We investigated the association between MMP-2 and MMP-9 levels 
and usage of corticosteroids and iRAAs. Additionally, we analyzed 
whether AKI affects MMPs alterations. COVID-19 patients who received 
iRAAs treatment had significantly higher MMP-2 levels compared to 

Table 1 
Demographic and Clinical Data of Control and COVID-19 patients. COVID-19 
and Control group were matched for age and BMI, and distribution of male 
sex, hypertension, diabetes, usage of pre-hospitalization iRAAS prior to COVID- 
19 related hospitalization. Clinical data are expressed as mean ± standard error 
of mean. BMI - Body Max Index, iRAAS- inhibitor of the renin angiotensin system 
(either angiotensin converting enzyme inhibitors or angiotensin receptor 
blockers), AKI - acute kidney injury, CVD - known history of Cardiovascular 
disease, SAPS3 - Simplified Acute Physiology Score III, SOFA - Sequential Organ 
Failure Assessment score, n/a- not applicable.   

Control (n = 29) COVID-19 (53) p 

Age 57.8 ± 2.4 59.54 ± 1.7  0.561 
Male sex 17(59) 36(68)  0.4 
Diabetes 3(10) 10(19)  0.312 
Hypertension 14(48) 29(58)  0.32 
BMI (kg/m2) 30.0 ± 1.1 31.0 ± 1.18  0.823 
Obese individuals (BMI>30) 13(44.8) 27(50.9)  0.596 
iRAAS prehospitalization 7(24.1) 24(45.3)  0.059 
Leukocytes (x10/ mm3) 6.6 ± 0.4 10.8 ± 0.6 *  < 0.0001 
Neutrophiles (x10/ mm3) 4.7 ± 0.3 8.7 ± 0.6 *  < 0.0001 
Lymphocytes (x10/ mm3) 1.6 ± 0.16 1.1 ± 0.1 *  < 0.0001 
Platelets (x103/l) 186.8 ± 8.8 243.6 ± 13.23*  0.004 
Days of symptoms  10 ± 1   
Days from symptoms worsening  2.9 ± 0.5   
SAPS3  59.8 ± 1.5   
SOFA  8.8 ± 0.5   
Hospitalization days  15.8 ± 1.6   
In hospital mortality  23(43)    

Fig. 1. Plasmatic levels of metalloproteinase-2 (MMP-2, (A)) and 
metalloproteinase-9 (MMP-9, (B) in control (n = 29) and COVID-19 (n = 53) 
subjects’ group. Data are presented as mean ± SEM, normalized to control 
group, * ** *p < 0.0001 determined by Mann-Whitney test. AU 
= arbitrary unit. 

Fig. 2. MMP-2 plasma levels in normotensive Control group (Control non-HPT, 
n = 15) and Hypertensive Control group (HPT, n = 14), normotensive COVID- 
19 patients (COVID-19 non HPT, n = 24) and hypertensive COVID-19 patients 
(COVID-19 HPT, n = 29) (A); MMP-2 plasma levels in Control group with 
normal BMI (Control non-obese, n = 16) and Control group with obesity 
(Control obese, n = 13) and COVID-19 group with normal BMI (COVID-19 non 
obese, n = 26) and COVID-19 group with obesity (COVID-19 obese, n = 27) 
(B). Data are presented as mean ± SEM, normalized to control group *p< 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001,determined by Kruskal-Wallis test 
and Dunn’s post hoc test. AU = arbitrary unit. No differences were observed in 
the MMP-2 levels for intra group comparisons between non-HPT vs HPT or non- 
obese vs obese. 
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patients without such treatment (p < 0,05, Fig. 4A). In contrast, no 
difference in MMP-2 levels in COVID-19 patients who were treated with 
corticosteroids in the hospital (Fig. 4B) were found. Neither corticoste
roids nor iRAAs treatment were associated with the MMP-9 changes in 
the COVID-19 group (Fig. 4D and E). No significant association between 
MMP-2 or MMP-9 levels and AKI was found in COVID-19 patients 
(Fig. 4C and F). 

3.6. MMP-2, MMP-9 and prognosis of COVID-19 

To investigate whether MMP-2 and MMP-9 levels were associated 
with mortality in COVID-19, patients were classified into subgroups 
referred as discharged from the ICU (survivor group, n = 30) and those 
that did not survive albeit the ICU care received (non-survivor group, 
n = 23). The non-survivor group showed increased MMP-2 (p < 0.05,  
Fig. 5A) and MMP-9 (p < 0.05, Fig. 5B) levels on the first day of ICU 
care. 

ROC curve data were used to define cutoff points for each MMP 
evaluated. The ROC curves were analyzed using the performance vari
ables expressed as a percentage (sensitivity and specificity) as well as the 
area under the curve (AUC) as an indicator of global accuracy. Fig. 6 
shows the analysis of the performance of models for prognostic markers 
in critically ill patients with COVID-19 according to an outcome. 

The ROC curve analysis is shown in Fig. 6(A and B) and indicated 
that both MMP-2 (AUC=0.7986, p = 0.0002, cutoff point >0.46 AU, 
74% sensitivity and 80% specificity, Fig. 6A) and MMP-9 (AUC=0.6634, 
p = 0.0426, cutoff point >7.12 AU, 65% sensitivity and 63% specificity, 
Fig. 6B) had good global accuracy on differentiating survivors and non- 
survivors. Fig. 6C and D show the analysis of the performance of two 
prognostic models in critically ill patients with COVID-19 according to 
an outcome. The model including SAPS3 and SOFA had low accuracy 
(AUC=0.6507, p = 0.062) to discriminate between survivors vs. non- 
survivors (Fig. 6C), while the model with age, hypertension, BMI and 

MMP2, MMP9 had high accuracy (AUC=0.8638, p < 0.0001) to 
discriminate between survivors and non-survivors. 

Baseline clinical data of COVID-19 severe patients according to 
outcome after ICU care is presented in Table 2. The survivor group was 
younger than the non-survivor group (56.1 ± 2.2 vs 64.0 ± 2.4 years 
old, p < 0,05). The sex distribution was similar between both groups, 
male sex predominanting in both groups. The non-survivor group had 
significantly higher prevalence of hypertension (69.6% vs. 36.6% sur
vivor group, p < 0,05), diabetes (34.8% vs. 6.7%, p < 0.05), cardio
vascular diseases (52.2% vs. 22.3%, p < 0.05) and dialysis (56.5% vs. 
13.3%, p < 0.05), had higher BMI (33.7 ± 2 vs.29.7 ± 1.2 kg/m2, 
p < 0.05), AKI (65.2% vs; 36.7%, p < 0.05). The other parameters such 
as days of symptoms, length of ICU stay, pre-hospitalization iRAAs use, 
in hospital corticosteroid use, SAPS3 and SOFA scores at hospital 
admission, PO2/FiO2 ratio, white cell blood counts, creatinine, bili
rubin, and lactate were not statistically different between survivor 
groups and non-survivor groups. 

4. Discussion 

The main finding of this study is that plasma MMP-2 levels were 
downregulated while MMP-9 levels were highly augmented in patients 
with severe COVID-19. To our knowledge, this is the first study that 
shows that MMP-2 level independently correlates with mortality in 
COVID-19 infection on the first day of ICU admission. 

Hypertension, obesity, and CVD are associated with an increased risk 
of severity and mortality in patients with COVID-19 [30]. The MMPs are 
involved in many physiological processes and pathophysiological con
ditions such as lung disease, vascular alterations, cardiovascular disease, 
and obesity [31–33]. Systemic arterial hypertension drives significant 
vascular changes such as vascular remodeling in which MMPs [34], 
especially MMP-2, play the pathophysiological role [35]. Therefore, to 
understand whether comorbidities such as hypertension affect MMP-9 
and MMP-2 levels in COVID-19 subjects is of great importance. 
Several studies explored an association between MMP-2 and MMP-9 
levels and hypertension [32,36]. MMP-9 levels are not only highly 
increased in hypertension [32,37,38], but are also poor prognostic fac
tors in stroke independently of hypertension history [39]. On the other 
hand, a meta-analysis showed no significant difference in MMP-2 levels 
between hypertensive and non-hypertensive patients [32]. Our study 
shows no significant difference in both MMP-2 and MMP-9 levels be
tween the hypertensive control group and the normotensive control 
group. 

In contrast, MMP-2 plasmatic levels were upregulated in hyperten
sive COVID-19 patients compared to normotensive COVID-19 patients, 
albeit still downregulated compared to normotensive and hypertensive 
controls. Generally downregulated MMP-2 levels in COVID-19 patients 
signify a state of severe inflammation similar to what is seen in septic 
patients [20]. On the other hand, increased MMP-2 levels specifically 
seen in our cohort of hypertensive COVID-19, although surprising, are 
consistent with the finding of elevated MMP-2 levels in bronchial cells 
infected with SARS-CoV-2 [40]. We hypothesize that upregulated 
MMP-2 levels in hypertensive COVID-19 patients might be reflective of 
the overactivated renin-angiotensin system (RAS) [41,42]. Indeed, it has 
been demonstrated that elevated levels of angiotensin (Ang) II observed 
in COVID-19 disease are associated with endothelial injury [43] and that 
this peptide increases MMP-2 protein expression [44]. Therefore, we 
speculate that downregulated levels of MMP-2, which is generally 
associated with severe inflammation, are overridden by overactivated 
RAS leading to small, yet significant increases of MMP-2 levels in hy
pertensive COVID-19 patients. 

Obesity is one of the most critical comorbidities for a worst prog
nostic in COVID-19 infection [45–47]. Interestingly, adipose tissue is 
characterized by high expression of the ACE2 [48], which SARS-CoV-2 
exploits to enter in the host cell [2]. As a result, adipose tissue be
comes a reservoir for viruses, increasing the integral viral charge [49]. 

Fig. 3. MMP-9 plasma levels in normotensive Control group (Control non-HPT, 
n = 15) and Hypertensive Control group (Control HPT, n = 14), normotensive 
COVID-19 patients (COVID-19 non-HPT, n = 24) and hypertensive COVID-19 
patients (COVID-19 HPT, n = 29) (A); MMP-2 plasma levels in Control group 
with normal BMI (control non-obese, n = 16) and Control group with obesity 
(Control obese, n = 13) and COVID-19 group with normal BMI (COVID-19 non 
obese,n = 26) and COVID-19 group with obesity (COVID-19 obese, n = 27) (B). 
Data are presented as mean ± SEM, normalized to control group ***p < 0.001, 
****p < 0.0001 determined by Kruskal-Wallis test and Dunn’s post hoc test. AU 
= arbitrary unit. No differences were observed for the MMP-9 levels for intra 
group comparisons between non-HPT vs HPT or non-obese vs obese. 
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Bouloumié et al. [50] showed that human adipose tissue produces and 
secretes MMP-2 and MMP-9 which are key-regulators in the adipocyte 
differentiation process [50]. Our data show that COVID-19 patients had 
increased MMP-9 and decreased MMP-2 levels independently of obesity, 
which might suggest that this comorbidity is not associated with MMPs 
level in our study. 

Corticosteroids are used in a treatment of COVID-19 patients [51]. It 
has been shown that the use of corticosteroids can alter MMP-2 and 
MMP-9 expression [52,53]. Dexamethasone treatment, a corticosteroid 
drug, inhibits neointimal hyperplasia by suppressing MMP-2 levels and 
secretion in a dose-dependent manner in vitro [54]. Lohi et al. [55] 
suggested that TIMP-MMPs are regulated by corticosteroids, cytokines, 

and growth factors [55], which explains the reduction in active MMP-2 
levels in response to cortisol in sheep lung fetal [56]. The present study 
shows insignificant change in MMP-2 or MMP-9 levels in response to 
corticosteroids, which might suggest that SARS-CoV-2 alone promotes a 
significant reduction in MMP-2 and increasing in MMP-9. The effect of 
corticosteroids on MMP-2 and MMP-9 levels seems to be insignificant in 
COVID-19. 

ACEi and ARBs may decrease the risk of developing acute respiratory 
distress syndrome in patients with COVID-19, which is suggested to be 
related to diminished less Ang II formation [57]. ACEi prevent Ang I into 
Ang II cleavage, reducing blood pressure and heart remodelling [58]. In 
experimental studies, ACE2 protected against lung injuries [59] and 
chronic treatment with ARBs (losartan and olmesartan) promoted ACE2 
overload [60]. Since SARS-CoV-2 binds to the ACE2 for intracellular 
invasion with a mechanism of acute lung injury mediated by RAS [2], 
and ACE2 is an important molecule in maintaining the balance of RAS, 
its binding to the virus causes an immediate imbalance and increased 
Ang II and, consequently, increased vasoconstriction and inflammation 
[61]. 

It is well known that both MMP-2 and MMP-9 are related to in
flammatory processes [22] and induced by Ang II [44,62], and therefore 
we investigated the relation between the RAS inhibitor treatment and 
plasmatic metalloproteinases levels. The treatment with iRAAs was not 
associated with MMP-9 levels in COVID-19 subjects, suggesting that 
increased MMP-9 levels might be related to COVID-19 infection. How
ever, patients receiving iRAAs had higher MMP-2 levels compared to 
patients without iRAAs treatment. This is contradictory with the result 
of a study that showed a reduction in MMP-2 due to the use of iRAAS 
[34]. Our hypothesis is that a reduction in MMP-2 levels might be a 
consequence of systemic changes promoted by SARS-CoV-2 and related 

Fig. 4. MMP-2 plasma levels in and COVID-19 patients that received inhibitor of renin-angiotensin system (iRAAS) treatment before hospitalization (COVID-19 on- 
iRAAS, n = 24) and COVID-19 patients without iRAAS treatment before hospitalization (COVID-19 off-iRAAS, n = 29)(A); MMP-2 plasma levels in COVID-19 pa
tients that received corticosteroid treatment (COVID-19 on-corticosteroid, n = 47) and COVID-19 patients that without corticosteroid treatment (COVID-19 off- 
corticosteroid, n = 6) in the first day of hospitalization (B); MMP-2 plasma levels in and COVID-19 patients that had Acute Kidney Injury (AKI) during hospital
isation (without AKI, n = 27) and COVID-19 patients with AKI during hospitalization (with AKI, n = 26) (C); MMP-9 plasma levels in COVID-19 patients that 
received iRAAS treatment before hospitalization (COVID-19 on-iRAAS, n = 24) and COVID-19 patients without iRAAS treatment before hospitalization (COVID-19 
off-iRAAS, n = 29) (D); MMP-9 plasma levels in COVID-19 patients that received corticosteroid treatment (COVID-19 on-corticosteroid, n = 47) and COVID-19 
patients that without corticosteroid treatment (COVID-19 off-corticosteroid, n = 6) in the first day of hospitalization (E); MMP-2 plasma levels in and COVID-19 
patients that had Acute Kidney Injury (AKI) during hospitalisation (without AKI, n = 27) and COVID-19 patients with AKI during hospitalization (with AKI, 
n = 26) (F). Data are presented as mean ± SEM, normalized to group not on medication or who had no AKI, *p < 0.05 determined by Mann-Whitney test. AU 
= arbitrary unit, ns = non significant. 

Fig. 5. Relationship between MMP-2 plasmatic levels (A), MMP-9 plasmatic 
levels (B), and death in survivor (n = 30) and non-survivor (n = 23) groups on 
the first day after admission in ICU care. Data are presented as mean ± SEM, 
normalized to survivor group, *p < 0.05, ***p < 0.001, determined by Mann- 
Whitney test. 
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to cytokine storm and the ACE2 imbalance. It is known that MMP-2 
deficiency predisposes to inflammation, with low levels being as 
harmful as high levels for the cardiovascular system [63]. Thus, the 
raised hypothesis is that the iRAAs act to restore the balance of pro
teinases such as iRAAS treatment reduces MMP-2 levels in inflammation 
while the treatment increases its expression as seen in COVID-19 
patients. 

Clinical and laboratory data are an important tool for clarifying 
pathophysiology and prognosis for patients with COVID-19 admitted to 
the ICU. In our study, the comparison between COVID-19 and Control 
subjects showed relevant differences in leukocytes, neutrophils, lym
phocytes, and platelets counts as expected due to the highly inflamma
tory state in COVID-19 [4]. No differences were seen regarding age, sex, 
and comorbidities (diabetes, hypertension, and BMI - including obese 
individuals with BMI> 30 kg/m2) and use of pre-iRAAS hospitalization. 
Our data are consistent with the meta-analysis concerning the increased 
neutrophil/lymphocyte ratio in severe COVID-19 patients [5]. 

The COVID-19 patients who did not survive were more likely to 
develop AKI during hospitalization and to undergo dialysis. In contrast, 
patients who survived showed less severe renal dysfunction in the ICU, 
and were 23% less likely to require dialysis. No significant association 
was found between MMP-2 or MMP-9 levels and AKI in COVID-19 pa
tients. When comparing patients who did not survive with survivors, we 
showed that 63.2% had a history of cardiovascular diseases in the first 
group, while in the second, only 36.8%. 

In our study, we show that MMP-2 levels were generally down
regulated in COVID-19 patients compared to Controls. However, in a 

subanalysis, we found that COVID-19 non-survivors had higher levels of 
MMP-2 compared with COVID-19 survivors. We speculate that elevated 
levels of MMP-2 signals a higher activation of the RAS, which is critical 
both in the pathophysiology of hypertension [64] and COVID-19 [41]. 
Another hypothesis is that vascular lesions were more severe in the 
patients who already had the predisposing factor of hypertension and 
thus higher levels of AngII, which induces MMP-2 via AT-1receptor 
[44]. However, more studies are necessary to clarify the mechanism 
involved in MMP-2 levels and COVID-19. 

Consistently with our data, Petito et al. [65] showed recently 
(December 2020) that COVID-19 patients (n = 32) had greater MMP-9 
levels in comparison to healthy controls by ELISA test [65]. Another 
study using genomic analyses showed that MMP-9 and MMP-2 genes 
were altered in COVID-19 [40]. The biomarker screening study with 175 
Italian patients showed an association between increased MMP-9 in the 
first sample and mortality [18]. Interestingly Abers et al. [18] did not 
find augmented MMP-9 to be consistently associated with mortality 
through hospitalization, which is consistent with our result that MMP-9 
level was not an independent predictor of mortality in a model adjusted 
for BMI, age, and hypertension. Another study found that respiratory 
failure as defined by a pO2/FiO2 was associated with increased plasma 
MMP-9 and that this clinical indicator (P/F) correlated directly with 
MMP-9 values [16]. We could not replicate this finding either because of 
the different MMP-9 measurement method used in our study or because 
almost all our patients had P/F much below acute respiratory distress 
syndrome criteria or because the cited study had a smaller number of 
patients included (39 patients). 

Fig. 6. Mortality prediction showed on the ROC curve including SAPS3 and SOFA scores ability to predict death on COVID-19 severe patients analyzed by multiple 
logistic regression AUC= 0.651, p = 0.062 (A); Mortality prediction showed on the ROC curve including MMP-2, MMP-9 associated with BMI, age, AKI and hy
pertension ability to predict death on COVID-19 severe patients analyzed by multiple logistic regression AUC= 0.864, p < 0.0001 (B). 

C. D`Avila-Mesquita et al.                                                                                                                                                                                                                    



Biomedicine & Pharmacotherapy 142 (2021) 112067

7

It has been widely discussed whether severe COVID-19 should be 
considered viral sepsis [19]. The controversy is held in that sepsis has 
unifying characteristics that apply very well to severe COVID-19 pa
tients, a clinical situation in which the infection causes a disruptive in
flammatory response in the host and, if not treated, will likely lead to 
multiorgan failure and death [9,10]. One could argue that our study was 
a study of sepsis since all of the patients had the diagnostic criteria for 
sepsis as defined in the third consensus [23], SOFA score greater or equal 
to 2. In septic patients, it has already been suggested that MMP-2 is 
diminished [20]. Nevertheless, sepsis prognosis and pathophysiology 
depend on pathogenic factors [23], and it is not guaranteed that the 
known hallmarks and treatments applied in septic patients will provide 
the best care for severe COVID-19 patients. Hence, it seems clear that 
studies similar to ours that investigate severe COVID-19 alterations 
already seen in sepsis, namely MMP-2, are warranted. 

5. Conclusion 

In conclusion, our data show that MMP-2 was downregulated and 
MMP-9 was upregulated in severe COVID-19 patients. The MMP-2 was 
independently correlated with mortality in COVID-19 diseases and 
might be a potential prognostic predictor in COVID-19. 

Funding 
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[35] V.A. Belo, D.A. Guimarães, M.M. Castro, Matrix metalloproteinase 2 as a potential 
mediator of vascular smooth muscle cell migration and chronic vascular 
remodeling in hypertension, J. Vasc. Res. 52 (2015) 221–231, https://doi.org/ 
10.1159/000441621. 

[36] V. Fontana, P.S. Silva, R.F. Gerlach, J.E. Tanus-Santos, Circulating matrix 
metalloproteinases and their inhibitors in hypertension, Clin. Chim. Acta Int. J. 
Clin. Chem. 413 (2012) 656–662, https://doi.org/10.1016/j.cca.2011.12.021. 

[37] F.M. Valente, D.O. de Andrade, L.N. Cosenso-Martin, C.B. Cesarino, S. 
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