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Abstract: Sapovirus is an important etiological agent of acute gastroenteritis (AGE), mainly in
children under 5 years old living in lower-income communities. Eighteen identified sapovirus
genotypes have been observed to infect humans. The aim of this study was to identify sapovirus
genotypes circulating in the Amazon region. Twenty-eight samples were successfully genotyped
using partial sequencing of the capsid gene. The genotypes identified were GI.1 (n = 3), GI.2 (n = 7),
GII.1 (n = 1), GII.2 (n = 1), GII.3 (n = 5), GII.5 (n = 1), and GIV.1 (n = 10). The GIV genotype was the
most detected genotype (35.7%, 10/28). The phylogenetic analysis identified sapovirus genotypes
that had no similarity with other strains reported from Brazil, indicating that these genotypes may
have entered the Amazon region via intense tourism in the Amazon rainforest. No association
between histo-blood group antigen expression and sapovirus infection was observed.

Keywords: Sapovirus; histo-blood group antigen; Amazon region

1. Introduction

Sapoviruses belong to the genus Sapovirus within the family Caliciviridae, being re-
sponsible for both sporadic cases and occasional outbreaks of acute gastroenteritis (AGE).
In lower-income communities, sapovirus frequencies in children under five years of age
can be up to 17%, resulting in hospitalizations and severe dehydration [1].

The sapovirus genome comprises a positive-sense, single-stranded RNA genome,
which is approximately 7.1 to 7.7 kb in size and contains two open reading frames (ORFs).
ORF1 encodes a large polyprotein containing the nonstructural proteins (including the
RNA-dependent RNA polymerase, RdRp) followed by the major capsid viral protein,
VP1. ORF2 is predicted to encode the minor structural protein VP2 [2]. For the genetic
classification of sapovirus, VP1 sequences are widely used because this region is more
diverse than the RdRp region [3]. Based on complete VP1 nucleotide sequences, sapoviruses
are classified into 19 genogroups, of which viruses from GI, GII, GIV, and GV infect
humans and can be further subdivided into at least 18 genotypes [4]. Human sapovirus
GI and GII genogroups are the most frequently detected worldwide in recent years [5–7].
The GIV genogroup is relatively rare, but it can at times be the third most common
genogroup detected locally, as reported in Spain, Guatemala, South Africa, Canada [6,8–10],
and recently infecting Indigenous infants in North America [11]. In South America, the
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detection of GIV.1 was reported only in Peru [12] and Venezuela [13]. GV is also rarely
detected and was first detected in Argentina in 1995 [14].

The genotype diversity detected in low-income communities may play a significant
role in the burden of AGE [15,16], and subclinical infections and diarrhea in children seem
to give a minimal degree of protection to sapovirus [17]. Children less than 5 years old
living in the low-income communities of the Amazon region are highly affected by AGE,
and human sapoviruses have been observed with considerable diversity [18–20].

The histo-blood group antigens (HBGAs) affect the individual’s susceptibility to
infection by norovirus, in a genotype specific manner [21]. Although sapoviruses belong
to the same Caliciviridae family as noroviruses, and share the common characteristics of
the viral family, the few studies that have investigated this have reported no association
between HBGA and human sapovirus susceptibility [22–24].

The aim of this study was to identify the sapovirus genotypes circulating in younger
children ≤ 5 years old living in the Amazon region, including those in isolated areas
from the Amazon rainforest (Brazil and Venezuela), detected during an epidemiological
investigation study of viruses causing AGE in 2016–2017 [25] The detected sapovirus
genotypes were associated with clinical and epidemiological parameters as well as HBGA.

2. Results
2.1. Genetically Diverse Sapoviruses Cause Acute Gastroenteritis in Children
in the Amazon Region

Mixed infections with rotavirus A (RVA), norovirus, human adenovirus (HAdV), and
human bocavirus (HBoV) were detected in some of the 52 sapovirus-positive samples as
previously reported (25). Children infected exclusively with sapovirus (n = 12) presenting
AGE were 1.8% (9/485) of the total and those of the control group were 1.2% (3/249).
Figure 1 represents the occurrence of sapovirus infection in children living in the Amazon
region according to age.
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Figure 1. Age profiles of 52 sapovirus-positive children with and without co-infection. “Three or
more viruses” corresponding to sapovirus co-infection with two from one of the following viruses:
rotavirus A, norovirus, human bocavirus, and human adenovirus. Numbers within each bar of the
graph correspond to the “n” of children.

Children between 6 and 12 months of age were largely infected by sapovirus. No
sapovirus infection alone was detected in children ≤3 months old and between 2 and
5 years of age. Children infected exclusively with sapovirus were mostly Rotarix (RV1)
vaccinated with two doses (data not shown). Seventy percent of the sapovirus-positive
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samples (28/40) were successfully genotyped using one of the PCR amplification strategies
described in Table 1.

Table 1. Primers and PCR conditions used in this study to obtain sapovirus PCR amplicons.

PCR
Amplification

Strategy

Primer
(Forward-F, Reverse-R, Round-1 1,

Round-2 1, Multiplex)

Primer Sequence 5′–3′ ;
(VP1 NucleotidePosition)

Annealing
Temperature/Number of Cycles

Round
Number Reference

Initial
SLV5317-F CTCGCCACCTACRAWGCBTGGTT

50 ◦C/40

1 [26]SLV5749-R CGGRCYTCAAAVSTACCBCCCCA
Second 1 1 SV-F13-F GAYYWGGCYCTCGCYACCTAC

2 [27]1 1 SV-R13-R GGTGANAYNCCATTKTCCAT
2 1 SV-F22-F SMWAWTAGTGTTTGARATG
2 1 SV-R2-R GWGGGRTCAACMCCWGGTGG

Third 1 1 SV-F14-F GAACAAGCTGTGGCATGCTAC 2

[27]1 1 SV-R14-R GGTGAGMMYCCATTCTCCAT
2 1 SV-F22-F SMWAWTAGTGTTTGARATG
2 1 SV-R2-R GWGGGRTCAACMCCWGGTGG

Fourth Multiplex-SV-F13-F —

1 [27]

SV-F14-F —
SV-G1-R-R CCCBGGTGGKAYGACAGAAG
SV-G2-R-R CCANCCAGCAAACATNGCRCT
SV-G4-R-R GCGTAGCAGATCCCAGATAA
SV-G5-R-R TTGGAGGWTGTTGCTCCTGTG

Fifth SaVPanF-F CAGTTCWACTGGSTNAAGGC
(5047-5066) 1 This study

SaVPanR-R GCATCAACRAANGCGTGNGG
(5816-5835)

Sixth HuSaV-5159F-F TAGTGTTTGARATGGARGG

53 ◦C/50 1 [28]

HuSaV-5498R-R CCCCANCCNGCVHACAT
Seventh Multiplex-SaV 1245Rfwd-F TAGTGTTTGARATGGAGGG

SV-G1-R-R —
SV-G2-R-R —
SV-G4-R-R —
SV-G5-R-R —

Eighth HuSaV-F1-F GGCHCTYGCCACCTAYAA YG
HuSaV-5498R-R —

1 The strategy number corresponds to the order in which it was used.

The initial strategy using the primer pair SLV5317-F and SLV5749-F and one round
of amplification generated amplicons suitable for Sanger sequencing of more than half of
samples (57%, 16/28). Three samples were amplified only by the primer pair HuSaV-5159-F
and HuSaV5498-R (strategy sixty, one round). The GI, GII, and GIV sapovirus genogroups
that were detected comprised GI.1, GI.2, GII.1, GII.2, GII.3, GII.5, and GIV.1 genotypes
(Figure 2). Table 2 shows some clinic-epidemiological features concerning each genotype.

Table 2. Sapovirus genotypes detected in children living in the Amazon region and some clinical and
epidemiological features.

Genotype (n) Child Age 1 (n) Clinical Aspects 2 HBGA Status 3

GIV.1 (10)

>3 months ≤6 months (3) Mucus in feces, fever,
abdominal pain, dehydration

Lea+Leb−, Se−;
Lea+Leb+, Se+

>6 months ≤1 year (2)
Mucus in feces, fever,

abdominal pain; mucus in
feces, fever, vomit

Lea−Leb−, Se−;
Lea−Leb+, Se+

>1 year ≤2 years (3) Mucus in feces, fever, vomit,
abdominal pain

Lea−Leb+, Se+;
Lea−Leb−, Se+;
Lea−Leb−, Se−

>2 years ≤5 years (2)
Mucus and blood in feces,

vomit, abdominal pain; fever,
abdominal pain

Lea+Leb+, Se+;
Lea−Leb+, Se+
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Table 2. Cont.

Genotype (n) Child Age 1 (n) Clinical Aspects 2 HBGA Status 3

GI.2 (7)

>6 months ≤1 year (3)

Coryza, couch; mucus in
feces, vomit, abdominal pain;
mucus in feces, fever, vomit,

abdominal pain

Lea+Leb+, Se+;
Lea−Leb+, Se+

>1 year ≤2 years (4)

Mucus in feces, fever, vomit,
abdominal pain; mucus in

feces, fever, abdominal pain;
fever, couch

Lea−Leb+, Se+;
Lea−Leb−, Se+

GII.3 (5)

≤3 months (1) Fever, abdominal pain Lea+Leb+, Se+

>6 months ≤1 year (3)

Fever, vomit, cough; fever,
abdominal pain, cough;

mucus in feces, fever,
abdominal pain

Lea+Leb+, Se+

>2 years ≤5 years (1) Mucus in feces, fever, vomit,
abdominal pain Lea−Leb+, Se+

GI.1 (3)
>6 months ≤1 year (2)

Fever, abdominal pain,
cough; mucus in feces, fever,

abdominal pain

Lea+Leb−, Se−;
Lea+Leb−, Se+

>2 years ≤5 years (1) Mucus and blood in feces,
fever, vomit, abdominal pain Lea+Leb−, Se−

GII.1 (1) >6 months ≤1 year Mucus in feces, fever,
abdominal pain Lea+Leb+, Se+

GII.2 (1) >1 year ≤2 years Mucus in feces, fever, vomit,
abdominal pain Lea+Leb+, Se+

GII.5 (1) ≤3 months Not available Lea−Leb+, Se+
1 The groups of children enrolled in this study are a control group and a group with acute gastroenteritis;
2 Fever =≥ 38.5 ◦C; 3 HBGA = Histo-blood group antigens = Lewis and secretor status.

The most prevalent genotypes, GIV.1 and GI.2, were distributed across the northern
part of the map; however, GIV.1 was detected only in the Brazilian Amazon region. The
GII.3 genotype was mostly detected in Boa Vista (urban area) in RR state.

2.2. Phylogenetic Analysis Shows the Heterogeneity of Sapoviruses in the Amazon Region

Nucleotide sequences retrieved from GenBank were selected based on the highest
similarity to the Amazon nucleotide sequences of the strains sequenced in the present
study. The phylogenetic tree in Figure 3 shows the heterogeneity of sapovirus genotypes
circulating in the Amazon region.

The GIV.1 Amazon region sequences clustered together with the reference samples
from Venezuela. The GI.2 genotype detected in the Amazon region was clustered sepa-
rately from the reference nucleotide sequences from Canada (KU973908.1 and KU973906.1)
and USA (MN486490.1). Similarly, the GII.3 genotype was clustered separately from the
reference sequence from Peru (MG012417.1). The GI.1 and GII.1 genotypes detected in the
Amazon region were very similar to the reference sequences from Thailand (AY646853.2)
and Russia (MF589697.1). The quality of the GII.5 nucleotide sequence from the Amazon
region was not suitable for phylogenetic analysis.
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2.3. No Association between Sapovirus Genotypes and Histo-Blood Group Susceptibility

The HBGA profile regarding the secretor/Lewis status for all 28 genotyped samples is
shown in Table 2. The HBGA data were previously obtained [25]. The HBGA results were
heterogeneous, and no clear association between sapovirus genotypes and specific HBGAs
was observed.
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3. Discussion

Sapoviruses are now recognized as an important cause of AGE in children [3,29–32].
In this study, we investigated the genetic variability of sapoviruses in children in the
Amazon region.

Genetic characterization of sapoviruses using molecular methods can be difficult
due to the genetic variability of the region encoding the major structural VP1 protein,
requiring the design of new primers. The application of primer-independent metagenomic
sequencing approaches for identification of human sapovirus has also been reported
recently and is able to characterize the presence of sapoviruses of different genogroups in
feces from children with AGE [31]. We observed a heterogeneity and spread of sapovirus
genotypes throughout the Amazon region where the children live. The prevalence was
higher in the AGE group compared to the control group in children infected exclusively
with sapovirus, but this was not significant (OR = 2.6 with a 95% CI of 0.6 to 11.9, p = 0.22).

To characterize the genotypes that circulated in the Amazon region, we used several
pairs of primers in a single or two rounds of amplification of part of the region encoding the
major structural VP1 protein. This VP1 region is the most variable and is used for genetic
typing [33]. Additionally, one new primer pair was designed specifically considering
the diversity of sapovirus samples as described previously [28]. Using these multiple
sets of primers, three genogroups distributed in seven genotypes (GI.1, GI.2, GII.1, GII.2,
GII.3, GII.5, and GIV.1) could be detected in this study. Seventy percent of the sapoviruses
detected (28/40) were successfully genotyped. No correlation between sapovirus viral load
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(Ct) and ability to generate a PCR amplicon for sequencing was observed (data not shown),
suggesting a high genetic heterogenicity that was not detected, even using multiple sets
of primers. Interestingly, the GIV.1 genotype was the most detected followed by GI.2
and GII.3. The GIV.1 genotype was detected in children in different municipalities of the
states of RR and Amazonas. No GIV.1 sample was detected from the children living in
Venezuela despite the GIV.1 genotype already having been detected in Venezuela [13].
Complete genome sequencing of samples genotyped as GIV.1 might elucidate the origin
of GIV.1. The GIV.1 further predominately infected RV1 unvaccinated children with AGE
and was the only sapovirus genotype detected in children with dehydration (2 children),
indicating that may have an important role in AGE caused by sapovirus. Unfortunately, the
number of sapovirus samples genotyped in Brazil are few. The genotypes here identified,
except for GIV.1, have been detected in children under 5 years old with AGE living in
different regions in Brazil, including the Amazon region [19,20,34]. The phylogenetic
analysis showed greater similarity with sapoviruses from countries other than Brazil,
which could be explained by the Amazon region having an intense influx of tourism from
other countries.

The histo-blood group antigens, particularly secretor status, is important for suscepti-
bility to norovirus, another member of the Caliciviridae family [21]. Previous observational
studies in Burkina Faso and Nicaragua [22] [23], however, have not observed any such
association with regards to sapovirus. In this study, accordingly, no association between
secretor or Lewis status to sapovirus infection was observed.

4. Materials and Methods
4.1. Information Regarding the Samples of This Study

In an epidemiological investigation study to identify viral etiologic agents causing
AGE and virus–host susceptibility in children living in the Amazon rainforest, 1468 samples
were collected (feces and saliva collected in parallel) from 734 children ≤5 years old across
the span of 1 year (October 2016 to October 2017) [25]. Fifty-two samples were sapovirus-
positive, and forty archived samples were submitted to genotyping (a cycle threshold [Ct]
under 37) for this study. These samples were collected from children presenting AGE
(77.5%, 31/40) living in the Amazon region as well as a control group of children with
respiratory symptoms (22.5%, 9/40). The ethnic indigenous groups of these children were
described previously [25,29]. The collection site of the samples was the emergency care
unit at the “Hospital da Criança de Santo Antonio” (HCSA) located in Boa Vista, state of
Roraima (RR, Brazil). The HCSA is the only hospital placed in RR that attends children
living in the extreme north of Brazil and borders Venezuela and Guyana, including those
living in the Amazon rainforest in demarcated indigenous areas.

Most of the children enrolled in this study lived in the Brazilian and International
Amazon rainforest, together with their parents, in indigenous areas including those in the
demarcated area. AGE (cases) was clinically characterized according to the WHO criterion
as: _AGE:≥three liquid/semi-liquid evacuations in a 24 h period and dehydration; Control
with other clinical symptoms not clinically characterized as AGE.

Each child was examined by a pediatrician, and the child’s parents or guardians were
interviewed to collect data and fill out a form containing clinical and epidemiological
information for each child including the RV1 vaccination information. All saliva samples
were collected at least 1 h before or after breastfeeding. The fecal samples were previously
tested by quantitative molecular detection for rotavirus A (RVA), norovirus genogroups GI
and GII, human bocavirus (HBoV), human adenovirus (HAdV), and sapovirus [25].

4.2. Sapovirus Genotyping

RNA of forty archived sapovirus-positive samples [25] were subjected to cDNA
synthesis using illustra™ Ready-to-go RT-PCR beads (GE HealthCare, Uppland, Uppsala,
Sweden), according to the manufacturer’s instructions, with a random primer (2.5 µg) and
28 µL of total RNA extracted as previously described [25] using the QIAamp Viral RNA
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Mini Kit and QIAcube automated system (QIAGEN, Germantown, MD, USA). For single or
multiplex PCR reactions, 10 µM of each set of previously described primers [26–28], or one
new set primer designed for this study (Table 1), for the VP1 (ORF1) sapovirus region, was
added to 2.5 µL of the cDNA in a tube containing a bead with DNA polymerase, M-MuLV
reverse transcriptse, RNAse inhibitor, reaction buffer, stabilizers, and 200 µM of each dNTP
and 1.5 mM MgCl2 (Illustra ™ PCR beads, GE HealthCare, Uppland, Uppsala, Sweden),
for a final volume of 25 µL, according to the manufacturer’s instructions. A single or two
amplification rounds were used with the following cycling program: initial denaturation at
94 ◦C for 5 min, followed by 40 or 50 cycles of 94 ◦C for 30 s, 50 ◦C or 53 ◦C for 30 s, 72 ◦C
for 1 min, and a final extension at 72 ◦C for 7 min (Table 1). For the Sanger sequencing,
the amplicons were sent to Macrogen Europe B.V. Company (North Holland, Amsterdam,
The Netherlands) together with the same PCR primers used above as described for PCR
amplicons (Table 1).

4.3. Histo-Blood Group Antigen Phenotyping

The saliva secretor and Lewis phenotypes had been characterized in a previous
study [25], using enzyme immunoassay (EIA) for the detection of Lea, Leb, and Fucα1-
2Gal-R as described [25,29]. In the present study, such results were considered to verify the
association with sapoviruses genotyped here.

4.4. Phylogenetic Tree and Statistical Analysis

The chromatograms of the VP1 sapovirus coding nucleotide sequences were analyzed
using the free tracer viewer Chromas 2.4 (Technelysium Pty Ltd., South Brisbane, Qheens-
land, Australia). VP1 nucleotide region and amino acid multiple alignment sequencing
was done using the Mega Molecular Evolutionary Genetic Analysis Version X software and
compared with reference nucleotide sequences of VP1 sapovirus available in the GenBank
database of the National Center for Biotechnology Information (NCBI). Sequences were
analyzed using the maximum likelihood method (Tamura–Nei model). The representative
gene sequences of VP1 sapovirus obtained in the current study were submitted to GenBank
under the access numbers MW349916 to MW349937 as shown in the phylogenetic tree
(Figure 1). Statistica 12.6 software (December 2014; TIBCO Software Inc., Palo Alto, CA,
USA) was used for all statistical analyses. The statistical tests, when appropriate, were
Pearson chi-square or Fisher exact test and OR [30].

5. Conclusions

In conclusion, this study shows a high genetic diversity of sapoviruses that could
be partly attributed to the intense tourism involving the Amazon rainforest. Sapovirus
genotyping was improved using different sets of primers, which can be used for samples
with low Ct, increasing the genotyping success of these genetically diverse viruses. GIV.1,
which has previously not been observed in Brazil, was here the most prevalent genotype
and could be an emerging, important agent in causing AGE.
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