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Whole blood mRNA 
expression‑based targets 
to discriminate active tuberculosis 
from latent infection and other 
pulmonary diseases
Jéssica D. Petrilli1,7, Luana E. Araújo1,7, Luciane Sussuchi da Silva2, Ana Carolina Laus2, 
Igor Müller1, Rui Manuel Reis2,3,4, Eduardo Martins Netto5, Lee W. Riley6, Sérgio Arruda1 & 
Adriano Queiroz1*

Current diagnostic tests for tuberculosis (TB) are not able to predict reactivation disease progression 
from latent TB infection (LTBI). The main barrier to predicting reactivation disease is the lack of our 
understanding of host biomarkers associated with progression from latent infection to active disease. 
Here, we applied an immune‑based gene expression profile by NanoString platform to identify 
whole blood markers that can distinguish active TB from other lung diseases (OPD), and that could 
be further evaluated as a reactivation TB predictor. Among 23 candidate genes that differentiated 
patients with active TB from those with OPD, nine genes (CD274, CEACAM1, CR1, FCGR1A/B, IFITM1, 
IRAK3, LILRA6, MAPK14, PDCD1LG2) demonstrated sensitivity and specificity of 100%. Seven genes 
(C1QB, C2, CCR2, CCRL2, LILRB4, MAPK14, MSR1) distinguished TB from LTBI with sensitivity and 
specificity between 82 and 100%. This study identified single gene candidates that distinguished TB 
from OPD and LTBI with high sensitivity and specificity (both > 82%), which may be further evaluated 
as diagnostic for disease and as predictive markers for reactivation TB.

Tuberculosis (TB), an aerosol-borne disease caused by Mycobacterium tuberculosis (Mtb), is one of the top 10 
causes of death worldwide and the leading cause of death from a single infectious  agent1. About a quarter of 
the world’s population is estimated to have latent TB infection (LTBI), and about 10% of these individuals will 
progress to have active TB disease during their lifetime (reactivation TB)1,2. Despite longstanding intense efforts 
to control this disease, TB remains a global health problem that mandates better diagnostic tests and preventive 
strategies.

Worldwide, the diagnosis of active TB is mostly dependent on sputum smear microscopy by Mtb acid-fast 
staining or  culture3. Microscopy suffers from low sensitivity, and culture can take several weeks to yield results, 
and neither can be applied to extrapulmonary  TB4. Although the GeneXpert MTB/RIF test offers a fast result for 
active TB, the test can be a challenge for TB diagnosis of children and the elderly due to difficulties in obtaining 
sputum samples from these  groups5,6. Also, the GeneXpert MTB/RIF requires sophisticated technology and 
a well-trained staff, and thus not affordable or sustainable in most healthcare  systems7. Finally, none of these 
sputum-based tests can predict reactivation TB.

Multiple populations of immune cells have distinct functions that cooperate for Mtb infection control when 
the bacillus enters the  lungs8. During infection, alterations of immune processes in the host lead to changes in the 
transcriptional profiles of circulating immune  cells9. The immune response-based biomarker identification for 
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TB diagnosis has extensively been  researched10 and many of them have focused on distinguishing latent infection 
from active  TB11–13. Unfortunately, none of these gene signatures has so far been translated into a point of care 
(POC) diagnostic test. The translation into the clinical practice of gene signature-based assays is challenged by 
the difficulty in determining which of the multiple gene signatures can be implemented as a diagnostic platform 
that is simple and cost-effective.

Here, we report the results of an immune-based gene expression profile study based on the NanoString 
technology in patients with active TB and other pulmonary diseases (OPD), healthy donors with latent TB 
infection (LTBI), and uninfected health controls (HC). The aim of this study was to identify whole blood mark-
ers that can distinguish active TB from OPD, HC, and LTBI. We identified 23 and seven genes associated with 
inflammatory mechanisms that distinguished with high sensitivity and specificity, patients with TB from OPD 
and LTBI, respectively.

Results
Demographic and clinical characteristics of the study population. The demographic, clinical, and 
laboratory features of the 35 study participants are shown in Table 1. Of the 17 TB patients, 13 (76.5%) had 
sputum smear test positive, three were positive by Mtb culture and one patient had the TB confirmed by Mtb 
molecular test (XPERT TB/RIF). Of all TB patients, eight (47.1%) were screened by Mtb culture. The median age 
was 41.9 (± 14.04) years in the TB group, 42.7 (± 17.06) in the LTBI group, 43.8 (± 9.70) in the OPD group, and 
32.5 (± 3.53) in the HC group.

Sample clustering. We evaluated 594 inflammatory genes in whole blood from 17 TB patients and 18 con-
trols (seven with LTBI, six HC and five with OPD). We further organized these groups in order to identify whole 
blood biomarkers to diagnose active TB (TB vs. OPD) and candidate to predict TB reactivation (LTBI vs. TB). 
First, we evaluated all four study groups together to verify whether the gene panel would be able to distinguish 
them. Figure 1 shows a heatmap of the normalized data generated via unsupervised hierarchical clustering. The 
mRNA expression levels of 46 of 594 genes segregated the study groups into two large groups. Transcripts that 
showed increased expression (red) clustered among TB patients while those that showed decreased expression 
clustered among non-active TB groups. Two individuals belonged to the groups LTBI (LTBI1) and HC (HC3) 
clustered with patients with active TB.

Gene expression data of TB and OPD donors. Asthma represents a chronic non-infectious inflam-
matory airways disease and needs to be promptly distinguished from TB by healthcare providers. We identified 
23 candidates genes that differentiated most of the TB patients from asthma (OPD group) (p < 0.001 and fold 
change [FC] > 2) (Fig. 2A). Principal component analyses (PCA) of the gene expression data showed significant 
separation between TB and OPD patients (Fig. 2B). The findings are also presented by the volcano plots of all 
data displayed in orange at a significance level of p < 0.05 and at a log2-fold change higher than 2 for both groups 
(Fig. 2C). These analyses identify genes that can be used to distinguish TB and OPD patients, which included 
CD274, PDCD1LG2 and FCGR1A/B (p-value < 0.0001 and log2-fold change ratio > 2.6) (Fig. 2C).

Table 1.  Demographic and clinical data of study population. TB tuberculosis, LTBI latent tuberculosis 
infection, OPD other pulmonary disease, HC health communicants, SD standard deviation, N/S not screened. 
a Missing data: gender (TB = 1 and HC = 1) and age (TB = 1, TBL = 1 and HC = 1).

Active TB
17

LTBI
7

OPD
5

HC
6

Gender, n (%)a

Men 11 (68.75) 4 (57.14) 2 (40) 1 (20)

Women 5 (31.25) 3 (42.86) 3 (60) 4 (80)

Age ± SDc 41.93 ± 14.04 42.67 ± 17.06 43.8 ± 9.70 32.5 ± 3.53

TB diagnosis, n (%)

Sputum Smear

Pos 13 (76.5) – 0

Neg 3 (23.5) – 5 (100) –

Culture

Pos 8 (47.1) – 0 –

Neg 0 – 5 (100) –

N/S 9 (52.9) – – –

Xpert MTB/RIF 1 (5.9) – – –

IGRA: n (%)

Pos – 7 (100) – 0

Neg – 0 – 6 (100)
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Gene expression data of TB and LTBI donors. We also compared the gene expression levels between 
TB and LTBI groups aiming to identify candidate markers able to differentiate these groups. Both heat-
map (Fig.  3A) and PCA analysis (Fig.  3B) show 7 of 594 inflammatory genes that significantly differentiate 
those groups (p < 0.001 and FC > 2). Volcano plots analyses revealed two promising genes (CCR2 and CIQB, 
p-value < 0.0001 and log2-fold change ratio > 1.1 and 2.4, respectively) that can be further tested as a possible 
marker of TB reactivation (Fig. 3C).

Receiver operating characteristic (ROC) curve analysis. ROC analysis was used to evaluate the indi-
vidual discriminatory performance of the genes that showed a p-value < 0.001 on the heatmap for the study 
group’s comparison. The values of area under the curve (AUC), sensitivity, specificity, and the optimal cut-off 
points for TB diagnostic tests (Table 2) and to differentiate TB and LTBI subjects (Table 3) are shown. CD274, 
CEACAM1, CR1, FCGR1A/B, IFITM1, IRAK3, LILRA6, MAPK14, PDCD1LG2 genes (all of them presented 
AUC = 1.0, 100% of sensitivity and specificity) seems promising targets to distinguish TB and OPD patients 
(Table 2) (see Supplementary Fig. S1). Table 3 presents seven possible candidates to be further evaluated as a 

Figure 1.  Heatmap showing different expression pattern of 46 proinflammatory genes out of 549 genes. 
Heatmap of gene expression levels in patients diagnosed with active TB (red), LTBI subjects (green), OPD 
patients (yellow) and uninfected donors HC (blue). Expression levels are scaled from dark blue (low expression) 
to dark red (high expression). Heatmap was generated in R (version 3.6.3) with the ComplexHeatmap package 
(version 2.0.0, https ://bioco nduct or.org/packa ges/relea se/bioc/html/Compl exHea tmap.html).

https://bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html
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predictor of TB progression, including the CCR2, which showed an AUC = 1.0 and both sensitivity and specific-
ity of 100% (see Supplementary Fig. S2).

Discussion
The World Health Organization (WHO) identified the need for a non-sputum-based test as a high-priority for 
TB diagnosis and suggested that a rapid biomarker-based test should be easy to perform and implement at health 
posts; should increase the number of patients diagnosed with TB; should have sensitivity > 98% among patients 
with smear-positive, culture-positive, and ≥ 68% for smear-negative and culture-positive pulmonary TB in adults; 
and the test would ideally be able to diagnose adults and children, and pulmonary TB and extrapulmonary TB 
 alike14. Here, we performed a multiplex gene expression analysis in a single assay for more than 500 inflamma-
tory genes in whole blood samples. By this approach, of all 30 genes herein identified, 23 were candidate targets 
to diagnose active TB and seven can be validated as biomarkers to distinguish LTBI and TB. All those 30 genes 
showed sensitivity and specificity > 82%, and ROC AUC > 0.8.

A major challenge to interrupt the TB transmission cycle is to predict when an individual with LTBI will 
develop active TB. Here, we identified seven genes that were able to discriminate TB patients from LTBI indi-
viduals, all presenting high sensitivity and specificity in ROC curve analysis (Table 3). The expression of five 
(CCRL2, C1QB, C2, LILRB4, and CCR2) of seven genes placed the donor TB8 (TB patient) in the cluster enriched 
by the LTBI group (Fig. 3). It is possible that the other two genes (MSR1 and MAPK14), which shared a pattern 
of expression similar to the TB patients, maybe the first set of genes to undergo a change in the level of expres-
sion during progression to active TB. To confirm these findings, it is necessary to carry out an evaluation of the 
expression of these genes in a cohort with LTBI subjects.

We identified 30 candidate genes to be further tested for TB diagnosis and as biomarkers for TB progression. 
From 23 genes suggested to be suitable for TB diagnosis, ten were related to adaptive immune response, ten were 
involved in innate immune response, and the other three genes (JAK2, JAK3, and LY96) were not specifically 
related to either. Conversely, for TB progression, five of seven genes were components of the innate immune 
system and were increased in TB patients relative to LTBI volunteers (Table 4). These data suggest the involve-
ment of activation of the innate immune response during progression to active TB in latently infected subjects.

Previously identified genes that can discriminate TB patient from non-TB patients and TB  risk11,13,15–25 either 
do not fill the minimum sensitivity requirements in adults regardless of HIV status for a POC test (95% in smear-
positive culture-confirmed cases and 60–80% in smear-negative culture-confirmed cases), or they proposed gene 

Figure 2.  Identification of markers for TB diagnosis. (A) Heatmap of 23 gene expression levels of TB (red) and 
OPD (yellow) patients. (B) PCA score plot of TB and OPD patients. (C) Volcano plots showing the distribution 
of the gene expression fold changes in TB patients relative to OPD patients. Genes with absolute fold change ≥ 4 
and p-value ≤ 0.05 are indicated in orange. Expression levels are scaled from dark blue (low expression) to dark 
red (high expression). Figures were generated with R (version 3.6.3) using ComplexHeatmap package (version 
2.0.0, https ://bioco nduct or.org/packa ges/relea se/bioc/html/Compl exHea tmap.html), prcomp function from 
stats package (version 3.6.3, https ://www.r-proje ct.org/), and NanoStringNorm package (version 1.2.1.1, https ://
cran.r-proje ct.org/web/packa ges/NanoS tring Norm/index .html) for heatmap, pca and Volcano plot, respectively.

https://bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html
https://www.r-project.org/
https://cran.r-project.org/web/packages/NanoStringNorm/index.html
https://cran.r-project.org/web/packages/NanoStringNorm/index.html
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signatures-based tests which are very difficult to implement. Here, although the number of participants was a 
limiting issue, we identified single candidate genes for TB diagnosis and progression, all of them presenting high 
levels of AUC, sensitivity, and specificity.

This study provided valuable information on the development of new diagnostic tests for TB. When validated 
in a larger population-based study, the expression of the genes herein identified can compose new tools that will 
overcome the limitations of the currently available diagnostic tests, including low sensibility, long time consum-
ing to perform, and requirement of sputum samples collection. Besides, some of the genes can distinguish seek 
people with TB from those latently infected. These targets need to be further validated as a possible biomarker 
to predict TB reactivation in a prospective cohort study.

Methods
Study participants. Subjects were recruited between November 2015 to December 2016. Written informed 
consent was obtained from all participants. Our study included 35 participants, 17 active TB, and 18 controls 
from which seven were healthy donors with latent M. tuberculosis infection (LTBI), six were uninfected health 
controls (HC), and five were patients with asthma (OPD). All participants were recruited at the Instituto Bra-
sileiro para Investigação de Tuberculose (IBIT), Bahia, Brazil and 2° Centro de Saúde Rodrigo Argolo, Bahia, 
Brazil. TB patients were confirmed to have active pulmonary TB by chest X-ray and at least sputum smear 
microscopy and/or culture positive. Symptomatic patients with sputum smear microscopy negative had TB con-
firmed by TB culture. TB patients with no sputum smear microscopy and/or culture screened had TB diagnosis 
by the Xpert MTB-Rif system. The blood sample was collected prior to TB treatment. Household contacts of TB 
patients were defined as belonging to either LTBI or HC groups, according to QuantiFERON-TB (QFT) Gold 
In-Tube test. Those with QTF Gold In-tube test negative (cut-off ≤ 0.35 IU/mL) were considered healthy con-
trols while the household contacts with positive results (cut-off > 0.35 IU/mL) were considered LTBI patients. 
OPD group was composed of patients who sought care with suspected pulmonary TB but were negative to both 
sputum smear microscopy and culture. Individuals who tested positive for human immunodeficiency virus and 
patients taking immunosuppressive drugs were excluded. All subjects were between 18 and 65 years old.

RNA isolation. For each donor, we collected 2.5 mL peripheral blood in a PAXgene blood RNA tube (Pre-
AnalytiX). RNA was isolated and purified with the PAXgene Blood RNA kit (Qiagen), according to the manu-

Figure 3.  Identification of markers for TB progression. (A) Heatmap of seven gene expression levels of 
TB (red) and LTBI (green) subjects. (B) PCA score plot of TB and LTBI subjects. (C) Volcano plot showing 
the distribution of the gene expression fold changes in TB patients relative to LTBI. Genes with absolute 
fold change ≥ 4 and p-value ≤ 0.05 are indicated in orange. Expression levels are scaled from dark blue (low 
expression) to dark red (high expression). Figures were generated with R (version 3.6.3) using ComplexHeatmap 
package (version 2.0.0, https ://bioco nduct or.org/packa ges/relea se/bioc/html/Compl exHea tmap.html), prcomp 
function from stats package (version 3.6.3, https ://www.r-proje ct.org/), and NanoStringNorm package (version 
1.2.1.1, https ://cran.r-proje ct.org/web/packa ges/NanoS tring Norm/index .html) for heatmap, pca and Volcano 
plot, respectively.

https://bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html
https://www.r-project.org/
https://cran.r-project.org/web/packages/NanoStringNorm/index.html
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facturer’s protocol for gene expression analysis by NanoString technology. RNA quantification and quality were 
assessed by Nanodrop.

NanoString. We performed gene expression assays at the Molecular Oncology Research Center, Barretos 
Cancer Hospital, Barretos, Brazil using the NanoString technology with nCounter Immunology Panel that con-
tains 594 targets and 15 internal reference genes. Up to 100 ng of total RNA per sample was used and protocol 
was performed according to manufacturer’s recommendations. Briefly, RNA was hybridized with reporter and 
capture probes (NanoString Technologies) and incubated at 67  °C for 21  h. Samples were then loaded onto 
automated nCounter Prep Station (NanoString, Technologies) for sample purification and immobilization in 
cartridges. Finally, cartridges were transferred to nCounter Digital Analyzer (NanoString Technologies) to cap-
ture image in 280 fields of view (FOVs) providing all gene counts.

Data analysis. The files corresponding to each cartridge were initially analyzed in nSolver Software 
(NanoString Technologies) for quality control assessment. Then, we analyzed the data in R statistical environ-
ment (version 3.6.3)26. Distributions of raw counts were evaluated in quantro  package27. Normalization and 
differential expression were carried out with NanoStringNorm  package28. Raw data were normalized with the 
geometric mean of positive control and housekeeping genes. Hierarchical clustering with Pearson correlation 
coefficient distance of differentially expressed genes was performed on ComplexHeatmap  package29. The ability 

Table 2.  ROC analysis, sensibility and specificity of candidate genes to TB diagnosis.

Gene ROC AUC (95% CI) ROC p-value Sensitivity % (95% CI) Specificity % (95% CI) Cut-off

C1QA 0.98 (0.95–1.02) < 0.0001 88.24 (63.56–98.54) 100 (66.37–100) > 3.74

CD274 1.00 < 0.0001 100 (80.49–100) 100 (66.37–100) > 5.71

CD59 0.98 (0.95–1.02) < 0.0001 94.12 (71.31–99.85) 100 (66.37–100) > 8.63

CEACAM1 1.00 < 0.0001 100 (80.49–100) 100 (66.37–100) > 6.02

CR1 1.00 < 0.0001 100 (80.49–100) 100 (66.37–100) > 10.02

FCGR1A/B 1.00 < 0.0001 100 (80.49–100) 100 (66.37–100) > 7.83

ICAM1 0.98 (0.95–1.02) < 0.0001 88.24 (63.56–98.54) 100 (66.37–100) > 7.54

IFITM1 1.00 < 0.0001 100 (80.49–100) 100 (66.37–100) > 12.86

IL18RAP 0.98 (0.95–1.02) < 0.0001 88.24 (63.56–98.54) 100 (66.37–100) > 8.97

IL4R 0.98 (0.95–1.02) < 0.0001 94.12 (71.31–99.85) 100 (66.37–100) > 9.08

IRAK3 1.00 < 0.0001 100 (80.49–100) 100 (66.37–100) > 6.86

JAK2 0.99 (0.97–1.01) < 0.0001 94.12 (71.31–99.85) 100 (66.37–100) > 9.86

JAK3 0.99 (0.97–1.01) < 0.0001 94.12 (71.31–99.85) 100 (66.37–100) > 8.59

LILRA5 0.97 (0.92–1.02) < 0.0001 88.24 (63.56–98.54) 100 (66.37–100) > 9.87

LILRA6 1.00 < 0.0001 100 (80.49–100) 100 (66.37–100) > 7.79

LY96 0.99 (0.97–1.01) < 0.0001 94.12 (71.31–99.85) 100 (66.37–100) > 7.69

MAPK14 1.00 0.0008757 100 (80.49–100) 100 (47.82–100) > 10.03

NOD2 0.92 (0.81–1.04) 0.004259 82.35 (56.57–96.20) 100 (47.82–100) > 8.79

PDCD1LG2 1.00 0.0008757 100 (80.49–100) 100 (47.82–100) > 4.13

PML 0.98 (0.95–1.02) 0.001156 94.12 (71.31–99.85) 100 (47.82–100) > 7.72

SOCS3 0.96 (0.88–1.04) 0.001981 94.12 (71.31–99.85) 100 (47.82–100) > 7.40

TAP1 0.97 (0.92–1.03) 0.001518 88.24 (63.56–98.54) 100 (47.82–100) > 8.63

TNFAIP6 0.98 (0.95–1.02) 0.001156 94.12 (71.31–99.85) 100 (47.82–100) > 6.02

Table 3.  ROC analysis, sensibility and specificity of candidate genes to predict TB reactivation.

Gene ROC AUC (95% CI) ROC p-value Sensitivity % (95% CI) Specificity % (95% CI) Cut-off

C1QB 0.97 (0.92–1.02) 0.0003360 88.24 (63.56–98.54) 100 (59.04–100) > 4.15

C2 0.92 (0.82–1.02) 0.001348 82.35(56.57–100) 100 (59.04–100) > 4.16

CCR2 1.00 0.0001594 100 (80.49–100) 100 (59.04–100) > 8.61

CCRL2 0.86 (0.71–1.01) 0.005753 82.35 (56.57–96.20) 85.71 (42.13–99.64) > 5.31

LILRB4 0.94 (0.82–1.05) 0.0008613 94.12 (71.31–99.85) 100 (59.04–100) > 6.56

MAPK14 0.95 (0.88–1.03) 0.0005420 88.24 (63.56–98.54) 100 (59.04–100) > 10.54

MSR1 0.99 (0.96–1.01) 0.0002051 94.12 (71.31–99.85) 100 (59.04–100) > 4.72
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of genes to discriminate the study groups was evaluated with receiver operating characteristic (ROC) curves and 
the graphic representation was created by the statistical analysis system GraphPad Prism.

Ethical statement. The study was approved by the Research Ethics Council (CEP) of Maternidade Climé-
rio de Oliveira from Universidade Federal da Bahia, CAAE: 48844315.8.0000.5543. Following the basic norms 
of CEP, Resolution 466/12, all study participants were verbally and in writing informed about the objectives of 
the study, their participation and IRB contacts and the study coordinator. All participants signed the Consent 

Table 4.  Annotation of selected genes based on ROC curve analysis. TB Tuberculosis, LTBI latent tuberculosis 
infection.

Symbol Name Annotation Target for

C1QA Complement C1q A chain Complement system, host pathogen interaction, innate immune 
system TB diagnosis

C1QB Complement C1q B chain Complement system, host pathogen interaction, innate immune 
system TB progression

C2 Complement component 2 Complement system, host pathogen interaction, innate immune 
system TB progression

CCR2 C–C chemokine receptor type 2 Chemokine signaling, cytokine signaling, innate immune system, 
lymphocyte activation TB progression

CCRL2 C–C chemokine ligand type 2 Chemokine signaling TB progression

CD59 CD59 molecule Complement system, innate immune system, lymphocyte activation TB diagnosis

CD274 CD274 molecule Adaptive immune system, cell adhesion, lymphocyte activation TB diagnosis

CEACAM1 CEA cell adhesion molecule 1 Hemostasis, innate immune system and lymphocyte activation TB diagnosis

CR1 Complement receptor type 1 Complement system, host pathogen interaction, innate immune 
system TB diagnosis

FCGR1A/B Fc fragment of IgG receptor Ia
Adaptive immune system, cytokine signaling, host pathogen inter-
action, innate immune system, MHC class I antigen presentation, 
phagocytosis and degradation and Type II interferon signaling

TB diagnosis

ICAM1 Intercellular adhesion molecule 1 Adaptive immune system, cell adhesion, innate immune system, 
lymphocyte activation TB diagnosis

IFITM1 Interferon induced transmembrane protein 1 Adaptive immune system, B cell receptor signaling, cytokine signal-
ing and Type I interferon signaling TB diagnosis

IL18RAP Interleukin 18 receptor accessory protein Cytokine signaling, oxidative stress TB diagnosis

IL4R Interleukin 4 receptor Cytokine signaling, lymphocyte activation and Th2 differentiation TB diagnosis

IRAK3 Interleukin 1 receptor associated kinase 3 Cytokine signaling, innate immune system and TLR signaling TB diagnosis

JAK2 Janus kinase 2
Chemokine signaling, cytokine signaling, host pathogen interac-
tion, hemostasis, oxidative stress, Th1 and Th17 differentiation, 
Type II interferon signaling

TB diagnosis

JAK3 Janus kinase 3
Chemokine signaling, cytokine signaling, host pathogen interac-
tion, hemostasis, lymphocyte activation, Th2 and Th17 differentia-
tion

TB diagnosis

LILRA5 Leukocyte immunoglobulin like receptor A5 Adaptive immune system TB diagnosis

LILRA6 Leukocyte immunoglobulin like receptor A6 Adaptive immune system and MHC class I antigen presentation TB diagnosis

LILRB4 Leukocyte immunoglobulin like receptor B4 Adaptive immune system TB progression

LY96 Lymphocyte antigen 96
Adaptive immune system, apoptosis, host pathogen interaction, 
innate immune system, MHC class I antigen presentation, NF-κB 
signaling, TLR signaling

TB diagnosis

MAPK14 Mitogen-activated protein kinase 14
Cytokine signaling, hemostasis, host pathogen interaction, innate 
immune system, lymphocyte trafficking, NLR signaling, T cell 
receptor signaling, Th17 differentiation, TNF family signaling and 
TLR signaling

TB diagnosis and TB progression

NOD 2 Nucleotide binding oligomerization domain containing 2
Cytokine signaling, host pathogen interaction, innate immune 
system, lymphocyte activation, NLR signaling, TNF family signal-
ing, TLR signaling

TB diagnosis

MSR1 Macrophage scavenger receptor 1 Phagocytosis and degradation TB progression

PDCD1LG2 Programmed cell death 1 ligand 2 Adaptive immune system, cell adhesion and lymphocyte activation TB diagnosis

PML Promyelocytic leukemia Cytokine signaling, host pathogen interaction, oxidative stress, 
Type II interferon signaling TB diagnosis

SOCS3 Suppressor of cytokine signaling 3
Adaptive immune system, cytokine signaling, host pathogen inter-
action, MHC class I antigen presentation, TNF family signaling, 
Type I interferon signaling and Type II interferon signaling

TB diagnosis

TAP1 Transporter 1, ATP binding cassette subfamily B member Adaptive immune system, host pathogen interaction, MHC class I 
antigen presentation, phagocytosis and degradation TB diagnosis

TNFAIP6 Tumor necrosis factor alpha induced protein 6 Innate immune system TB diagnosis
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Form, assuring confidentiality and liberty to leave the study and all methods were performed in accordance with 
the relevant guidelines and regulations.

Received: 20 May 2020; Accepted: 30 November 2020
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