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Abstract: Treatment of visceral leishmaniasis in Brazil still relies on meglumine antimoniate, with
less than ideal efficacy and safety, making new therapeutic tools an urgent need. The oral drug
miltefosine was assayed in a phase II clinical trial in Brazil with cure rates lower than previously
demonstrated in India. The present study investigated the susceptibility to miltefosine in 73 Brazilian
strains of Leishmania infantum from different geographic regions, using intracellular amastigote
and promastigote assays. The EC50 for miltefosine of 13 of these strains evaluated in intracellular
amastigotes varied between 1.41 and 4.57 µM. The EC50 of the 73 strains determined in promastigotes
varied between 5.89 and 23.7 µM. No correlation between in vitro miltefosine susceptibility and the
presence of the miltefosine sensitive locus was detected among the tested strains. The relatively low
heterogeneity in miltefosine susceptibility observed for the 73 strains tested in this study suggests
the absence of decreased susceptibility to miltefosine in Brazilian L. infantum and does not exclude
future clinical evaluation of miltefosine for VL treatment in Brazil.

Keywords: clinical strains; miltefosine; susceptibility; visceral leishmaniasis

1. Introduction

Visceral leishmaniasis (VL) remains a worldwide public health concern, mainly af-
fecting poor populations across Asia, East Africa, South America, and the Mediterranean
region. Over 600 million people live in areas at risk of developing the disease [1]. Overall
annual incidence is estimated to be from 50,000 to 90,000 cases, with ten countries concen-
trating more than 95% of the reported cases: Bangladesh, Brazil, China, Ethiopia, India,
Kenya, Nepal, Somalia, South Sudan, and Sudan [1]. In Latin America, VL is a zoonosis
caused by Leishmania infantum (syn. L. chagasi) with dog as the main reservoir of infection
and Lutzomyia longipalpis the principal vector. It is endemic in 13 countries with an average
of 3470 new reported cases every year. In 2019, Brazil reported 2529 new cases, accounting
for 97% of cases in Latin America, with around 35% of those in children under 10 years
of age [2], and a lethality of 9% [2,3], one of the highest in the world. Another concern is
the increasing incidence of HIV/VL coinfection, rising from 0.7% of reported VL cases in
Brazil in 2001 to 11.1% in 2019 [2,4].

First line treatment for VL in Brazil is meglumine antimoniate (MA) at a dose of
20 mg intravenous Sb5+/kg/day for 20 days. In 2013, the Brazilian Ministry of Health
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recommended liposomal amphotericin B (LAMB) as the second line treatment, widening
its indications. It is currently recommended for patients aged <1 year and >50 years, during
pregnancy, with severe illness based on severity score, renal, hepatic, or cardiac damage,
HIV-coinfection or other conditions leading to immunodeficiency, therapeutic failure to
MA, or other contraindications to MA use [5].

Between 2011 and 2014, a large multicenter clinical trial sponsored by the Brazilian
Ministry of Health was conducted to assess the safety and efficacy of treatments recom-
mended for VL in Brazil (MA, amphotericin B deoxycholate, LAMB) and to test a combi-
nation of LAMB (10 mg/kg single dose) plus MA for 10 days. Although no statistically
significant differences in cure rates were observed, a better safety profile for 3 mg/kg/day
LAMB for 7 days, compared to standard MA treatment, was demonstrated [6]. These
results are guiding treatment policy change, recommending LAMB monotherapy as the
first line treatment option for VL in Brazil. Nonetheless, while LAMB cure rates around
95% have been reported in clinical trials conducted in other countries [7–14], 87.2% cure
rates were observed for LAMB in Brazil, suggesting that there is room to improve drug
efficacy. This could be achieved through exploring alternative drug combinations with
miltefosine, the only current effective oral agent for VL.

However, a clinical trial to assess the efficacy and safety of miltefosine in patients with
VL in Brazil conducted in 2005 in Teresina (Piauí) and Montes Claros (Minas Gerais) [15]
showed an unsatisfactory overall efficacy at six months of around 60%. A cure rate of 43%
was observed in 14 patients from Montes Claros treated with 2.5 mg/kg/day for 28 days.
Even with an extension of treatment to 42 days in Teresina, only a 68% final cure rate was
reached in these patients. Although differences were not statistically significant, treatment
failure was observed in 52.2% of pediatric patients versus 26.3% in adults [16].

The lower cure rate observed in Brazil compared to India could be due to the relatively
low dose given to adults (maximum daily dose of 100 mg, while allometric dosing [17–20]
would have required higher daily doses) and the comparatively lower blood levels of
miltefosine in children, in line with previous published pharmacokinetic data from India,
Nepal, and Africa. On the other hand, previous investigations on the variability of Brazilian
Leishmania braziliensis strains to miltefosine identified up to 15-fold differences between
the susceptibility of strains that had not been exposed to the drug and were obtained from
patients prior to treatment [21]. Therefore, reduced susceptibility of Brazilian L. infantum
strains to the drug could also explain the lower cure rate reported.

A deletion at chromosome 31 detected in several L. infantum strains was recently
described and associated with an increased risk of miltefosine treatment failure in VL [16].
This locus was named the miltefosine sensitive locus (MSL) and was studied in a sample
set of 26 pre-treatment isolates from Montes Claros/Teresina patients who participated
in the clinical trial mentioned above. Infection by deleted isolates (absence of MSL) was
associated with relapse after miltefosine treatment [15].

In this context, this collaborative project involving the Natan Portella Institute for
Tropical Diseases, Federal University of Piauí, Teresina, PI; the Leishmaniasis Laboratory
at the Biomedical Sciences Institute of São Paulo University (ICB-USP), São Paulo, SP; the
Laboratory of Research on Leishmaniasis-Oswaldo Cruz Institute (IOC-Fiocruz), Rio de
Janeiro, RJ; and Drugs for Neglected Diseases initiative (DNDi) aimed to evaluate a large
set of Brazilian L. infantum strains obtained from humans and dogs presenting VL from
different endemic areas in Brazil. The strains were characterized for in vitro susceptibility
to miltefosine and genotyped for the presence/absence of MSL.

2. Materials and Methods
2.1. Ethics Statement

The project was approved by the institutional ethics committees of all the participating
institutions: Oswaldo Cruz Institute, Fiocruz (CAAE 76599317.5.0000.5248); Biomedical
Science Institute of São Paulo University (CAAE 76599317.5.3002.5467); and Federal Uni-
versity of Piauí (CAAE 76599317.5.3001.5214). Animals used in this study to obtain bone
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marrow-derived macrophages were treated in accordance with the regulations of the Brazil-
ian Society of Science in Laboratory Animals (SBCAL) and the National Council for Animal
Experiment Control (CONSEA), ICB–USP, having obtained the necessary approvals from
the institutional ethical committee for animal use.

2.2. Chemical Compound

Miltefosine (hexadecylphosphocholine) and amphotericin B were purchased from
Sigma-Aldrich (M5571, Lots SLBP4444V and SLBW8818).

2.3. Leishmania infantum (syn L. chagasi) Strains

Seventy-three strains isolated between 2002 and 2015 from humans (n = 60) and dogs
(n = 13) were included in this study. In addition, one L. infantum (NLC/IOCL3241) and
one L. donovani strain were used as internal controls. All L. infantum strains employed
in this study are deposited in the Leishmania Collection at the Oswaldo Cruz Foundation
(CLIOC), and were shipped to the ICB-USP Leishmaniasis Laboratory. Isolates were chosen
to represent different endemic areas of Brazil (Figure 1), and included six isolates from
patients who were enrolled in the clinical trial to assess the efficacy and safety of miltefosine
in Teresina [15]. Information provided by the institutions that conducted parasite sampling
included the absence of previous treatment before sampling. The activities performed
with the Leishmania strains were duly registered in SisGen (Sistema Nacional de Gestão do
Patrimonio Genético) under the identifier AE5FEC8, as determined by article 20 of Decree
No. 8.772, in accordance with the Brazilian Biodiversity Law (Law No. 13.123/2015).
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Figure 1. Geographical distribution of L. infantum clinical strains tested in this study. The map was colored according to the
number of cases registered in 2019 as reported in Brasil [22]. Numbers inside each Brazilian state represent the number
of strains that originated there. The reference strain NLC is represented in red and underlined. (*) Strains were allocated
according to the geographic region in which the parasite was isolated, when the state in which the infection occurred was
not confirmed. Strains used in the initial amastigote assays are highlighted in red.
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2.4. Parasite Culture

L. infantum promastigotes were grown in sterile M199 medium (Sigma-Aldrich,
St. Louis, MO, USA), prepared by diluting the powder in distilled water. Medium was
supplemented with 10% heat-inactivated fetal calf serum, 0.25% hemin, 100 µg/mL peni-
cillin/streptomycin, and 2% sterile human urine. Cultures were maintained in an incubator
at 25 ◦C and weekly passages were performed.

2.5. Intracellular Amastigote Assay

To determine drug activity in intracellular L. infantum amastigotes, bone marrow-
derived macrophages (BMDM) from BALB/c mice were obtained using the method previ-
ously described [23]. Briefly, 3 × 105 BMDM were left to adhere to round glass coverslips
in 24-well culture plates. After incubation in a 5% CO2 atmosphere for 24 h at 37 ◦C, wells
were washed with PBS to remove non-adhered cells. Macrophages were then exposed
to stationary-phase promastigotes of L. infantum at a multiplicity of infection (MOI) of
15 parasites per macrophage for 4 h at 37 ◦C in a 5% CO2 atmosphere.

Non-internalized parasites were removed by successive washings with PBS, and in-
fected macrophages were incubated for 72 h at 37 ◦C at 5% CO2 in RPMI medium with
increasing miltefosine concentrations (0.5 to 40 µM). Coverslips were washed with PBS,
stained with the Instant Prov kit (Newprov, Pinhais, PR, Brazil) and examined by optical
microscopy (Nikon Eclipse E200; Nikon Corporation, Tokyo, Japan). The percentage of
infected macrophages, number of amastigotes per infected macrophage, and infectivity
index (percentage of infected macrophages multiplied by the average number of amastig-
otes per macrophage) were determined by counting 100 cells in each triplicate slide. The
EC50 was determined using the values of the infectivity index through the nonlinear, dose
response, sigmoidal model using the GraphPad Prism 6 program. At least two independent
experiments were performed in triplicate for each miltefosine concentration and L. infantum
NCL/IOCL3241 and L. donovani Ld15 strains were used as controls in some experiments.

2.6. Promastigote Susceptibility Assay

Drug activity was determined by incubating promastigotes of the L. infantum strains in
the presence of increasing miltefosine (2.5 to 200 µM) and amphotericin B (6.25 to 400 nM)
concentrations. After 24 h incubation, viability was assessed by MTT (3-[4,5-dimethyl-2-
thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide) assay as previously described [23]. EC50
values were obtained by plotting optical density values measured by absorbance at 595
and 690 nm in nonlinear, dose response, sigmoidal models using the GraphPad Prism
6 program. At least three independent experiments were performed in triplicate and L.
infantum NCL/IOCL3241 and L. donovani Ld15 strains were used as controls.

2.7. PCR Detection of the Presence/Absence of Miltefosine Sensitive Locus (MSL)

Leishmania strains were characterized as MSL- or MSL+ either by whole genome
deep sequence analyses or by qPCR. Both methodologies and results are available at
Schwabl et al. [24]. Briefly, to obtain DNA, Leishmania strains were grown in biphasic NNN
+ Schneider’s medium until the end of the log phase, and genomic DNA was extracted
using a commercial kit following the manufacturer’s instructions (Qiagen, Valencia, CA,
USA). qPCR amplification of the MSL on chromosome 31 or whole genome sequencing
was accomplished according to the strategies published [24].

2.8. Statistical Analysis

All statistical analyses were performed using Graph Pad Prism 6.0. Correlation
between infectivity and EC50 of intracellular amastigotes was tested using Spearman’s
correlation test. For the analysis of correlation between the presence/absence of MSL locus
and EC50 to miltefosine, Mann Whitney test was used. Analysis of possible correlations
between susceptibility and year of isolation were done using two-tailed unpaired t-test
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with Welch’s. Statistical significance was considered in all these cases for p-value under
0.05 (p < 0.05).

3. Results

The susceptibility to miltefosine was determined in 13 strains isolated before treatment
from 10 humans and 3 dogs, from 5 different Brazilian states and in a control strain (NLC),
that was included in these experiments as a reference. The EC50 determined in intracellular
amastigotes varied from 1.41 to 4.57 µM between the strains (Figure 2A and Table 1). The
EC50 obtained for the L. infantum reference strain NLC to miltefosine was 1.79 ± 0.42 µM
(Table 1). Infectivity was also analyzed (Table 1), and correlation tests between EC50 of
intracellular amastigotes and the percentage of infection revealed that these two variables
were not correlated (Spearman’s correlation test: R = −0.2992 and p = 0.2965).

In previous studies that evaluated the susceptibility of Leishmania strains to miltefosine,
we and others observed that, for this drug, there was a direct correlation between suscepti-
bility in amastigotes and promastigotes [21,25]. As promastigote assays are more amenable
for larger samples, sensitivity to miltefosine was determined for promastigotes in a total of
73 strains of L. infantum, including the 13 strains tested in intracellular amastigotes.
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Figure 2. Susceptibility of L. infantum strains to miltefosine. Black dots represent the EC50 determined for each clinical
strain. The red and green dots represent the EC50 for L. infantum NLC/IOCL3241 (reference strain) and L. donovani LD-15,
respectively, used as internal controls. Graphics show median EC50 (dotted line) and 25% and 75% percentiles (solid
lines). (A) Susceptibility of L. infantum intracellular amastigotes to miltefosine, calculated from at least two independent
experiments, each performed in triplicate. (B) Susceptibility of L. infantum promastigotes to miltefosine. The results shown
are the mean of at least three independent experiments, each performed in triplicate. (C) Susceptibility of L. infantum
promastigotes to amphotericin B; mean of two experiments performed in triplicate.
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Table 1. Descriptive analysis of Brazilian isolates and reference strains included in this study.

Identification

Promastigotes Amastigotes

MSLMiltefosine
(mM)

Amphotericin B
(nM)

Miltefosine
(mM) Infectivity g

Species a International Code b IOCL# c State d EC50 ± SEM e AI f EC50 ± SEM e AI f EC50 ± SEM e AI f % Presence/Absense h

L. donovani LD-15/MHOM/SD/00 NA NA 9.00 ± 0.82 0.82 35.0 ± 0.5 NA NA

L. infantum MHOM/BR/2005/NLC IOCL3241 MG 10.98 ± 1.95 1.00 51.0 ± 5.0 NA 1.79 ± 0.42 NP 50% NA

L. infantum MHOM/BR/2009/BLVD IOCL 3118 AM 7.07 ± 1.63 0.64 58.0 ± 1.0 1.14 MSL-

L. infantum MHOM/BR/2006/NMT-
HUB402982MO IOCL 2898 DF 15.61 ± 0.74 1.42 53.0 ± 6.0 1.04 MSL-

L. infantum MHOM/BR/2005/DRD IOCL 2788 ES 10.95 ± 1.12 1.0 66.0 ± 4.0 1.29 MSL-

L. infantum MHOM/BR/2005/HRNS-1 IOCL 2789 ES 8.17 ± 1.04 0.74 62.0 ± 3.0 1.22 4.23 ± 0.53 2.36 66% MSL-

L. infantum MCAN/BR/2008/CP-18 IOCL 3068 ES 17.41 ± 1.77 1.59 70.0 ± 0.0 1.37 3.68 ± 0.05 2.06 39% MSL-

L. infantum MHOM/BR/2005/804-NMV IOCL 2943 MA 9.30 ± 0.40 0.85 48.0 ± 7.0 0.94 NA

L. infantum MHOM/BR/2006/890 IOCL 3694 MA 5.89 ± 0.11 0.54 50.0 ± 2.0 0.98 MSL+

L. infantum MHOM/BR/2006/6889 IOCL 3696 MA 11.24 ± 1.08 1.02 35.0 ± 4.0 0.69 MSL+

L. infantum MHOM/BR/2006/6905 IOCL 3699 MA 23.65 ± 1.21 2.15 27.0 ± 6.0 0.53 3.05 ± 0.39 1.70 51% MSL+

L. infantum MHOM/BR/2006/MA07A 4P TMS IOCL 3706 MA 9.85 ± 1.19 0.9 25.0 ± 3.0 0.49 NA

L. infantum MHOM/BR/2005/841RVSS IOCL 2977 MA 13.71 ± 1.43 1.25 31.0 ± 0.1 0.61 NA

L. infantum MHOM/BR/2007/1724FRS IOCL 2978 MA 16.95 ± 1.14 1.54 34.0 ± 9.0 0.67 3.54 ± 1.03 1.98 64% NA

L. infantum MHOM/BR/2007/1728JLM IOCL 2979 MA 13.29 ± 0.88 1.21 30.0 ± 8.0 0.59 NA

L. infantum MHOM/BR/2007/1735TAS IOCL 2981 MA 12.89 ± 1.46 1.17 27.0 ± 5.0 0.53 NA

L. infantum MHOM/BR/2006/P112A 4P NMV IOCL 3682 MA 19.68 ± 1.39 1.79 20.0 ± 2.0 0.39 MSL+

L. infantum MHOM/BR/2006/MA03-A 4P (GMS) IOCL 3685 MA 23.70 ± 0.78 2.16 30.0 ± 1.0 0.59 3.77 ± 0.01 2.10 50% MSL+

L. infantum MHOM/BR/2002/LPC-RPV IOCL 2906 MG 8.15 ± 1.29 0.74 43.0 ± 16.0 0.84 MSL-

L. infantum MHOM/BR/2011/AD1 IOCL 3368 MG 11.07 ± 1.50 1.01 28.0 ± 2.0 0.55 MSL-

L. infantum MHOM/BR/2011/CR1 IOCL 3370 MG 7.30 ± 1.40 0.66 63.0 ± 1.0 1.24 MSL-

L. infantum MHOM/BR/2012/AD5 IOCL 3383 MG 14.29 ± 0.91 1.3 53.0 ± 5.0 1.04 NA

L. infantum MHOM/BR/2012/AD7 IOCL 3385 MG 7.51 ± 0.91 0.68 39.0 ± 14.0 0.76 NA
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Table 1. Cont.

Identification

Promastigotes Amastigotes

MSLMiltefosine
(mM)

Amphotericin B
(nM)

Miltefosine
(mM) Infectivity g

Species a International Code b IOCL# c State d EC50 ± SEM e AI f EC50 ± SEM e AI f EC50 ± SEM e AI f % Presence/Absense h

L. infantum MHOM/BR/2012/CR2 IOCL 3386 MG 9.45 ± 0.97 0.86 64.0 ± 8.0 1.25 NA

L. infantum MCAN/BR/2010/CA1 IOCL 3378 MG 20.72 ± 1.90 1.89 41.0 ± 11.0 0.8 MSL-

L. infantum MCAN/BR/2010/CA2 IOCL 3379 MG 12.64 ± 1.30 1.15 30.0 ± 2.0 0.59 4.57 ± 1.09 2.55 52% MSL-

L. infantum MCAN/BR/2002/LVV-137 IOCL 2666 MS 9.82 ± 0.34 0.89 51.0 ± 3.0 1.00 MSL+

L. infantum MCAN/BR/2010/MEG IOCL 3214 MS 7.10 ± 0.54 0.65 62.0 ± 7.0 1.22 MSL-

L. infantum MCAN/BR/2002/LVV-136 IOCL 2665 MS 16.26 ± 1.36 1.48 26.0 ± 3.0 0.51 MSL+

L. infantum MHOM/BR/2009/202 IOCL 3140 MT 7.73 ± 1.32 0.7 51.0 ± 13.0 1.00 NA

L. infantum MCAN/BR/2009/GRANDÃO I IOCL 3134 MT 9.31 ± 0.09 0.85 56.0 ± 8.0 1.10 NA

L. infantum MCAN/BR/2009/GRANDÃO II IOCL 3135 MT 11.46 ± 0.98 1.04 46.0 ± 4.0 0.90 NA

L. infantum MCAN/BR/2009/SOL IOCL 3137 MT 9.79 ± 0.43 0.89 47.0 ± 3.0 0.92 NA

L. infantum MHOM/BR/2006/791 IOCL 3698 PA 12.37 ± 1.70 1.13 35.0 ± 6.0 0.69 MSL-

L. infantum MHOM/BR/2008/RJS IOCL 3053 PE 14.35 ± 0.39 1.31 60.0 ± 6.0 1.18 MSL-

L. infantum MHOM/BR/2005/742EMS IOCL 2972 PI 23.45 ± 1.06 2.14 41.0 ± 5.0 0.80 MSL+

L. infantum MHOM/BR/2006/1406MBS IOCL 2976 PI 7.73 ± 1.16 0.7 49.0 ± 1.0 0.96 3.27 ± 0.01 1.83 46% MSL-

L. infantum MHOM/BR/2005/867-JNS IOCL 2944 PI 7.59 ± 0.84 0.69 53.0 ± 6.0 1.04 NA

L. infantum MHOM/BR/2005/792FFS IOCL 2973 PI 14.47 ± 1.36 1.32 68.0 ± 11.0 1.33 NA

L. infantum MHOM/BR/2006/891 IOCL 3692 PI 6.73 ± 1.42 0.61 36.0 ± 5.0 0.71 MSL+

L. infantum MHOM/BR/2006/930 IOCL 3693 PI 12.03 ± 1.08 1.1 62.0 ± 21.0 1.22 MSL+

L. infantum MHOM/BR/2006/P109A 4P JAS IOCL 3688 PI 8.03 ± 0.42 0.73 35.0 ± 6.0 0.69 MSL+

L. infantum MHOM/BR/2006/867 IOCL 3695 PI 8.45 ± 0.84 0.77 34.0 ± 8.0 0.67 MSL-

L. infantum MHOM/BR/2006/6893 IOCL 3697 PI 8.41 ± 1.21 0.77 37.0 ± 7.0 0.73 3.41 ± 0.75 1.91 69% MSL+

L. infantum MHOM/BR/2006/6914 IOCL 3700 PI 9.76 ± 1.58 0.89 38.0 ± 3.0 0.75 MSL+

L. infantum MHOM/BR/2006/AAS 3P IOCL 3703 PI 22.06 ± 1.58 2.01 32.0 ± 8.0 0.63 4.04 ± 0.76 2.26 79% MSL-
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Table 1. Cont.

Identification

Promastigotes Amastigotes

MSLMiltefosine
(mM)

Amphotericin B
(nM)

Miltefosine
(mM) Infectivity g

Species a International Code b IOCL# c State d EC50 ± SEM e AI f EC50 ± SEM e AI f EC50 ± SEM e AI f % Presence/Absense h

L. infantum MHOM/BR/2006/AAS 4P IOCL 3704 PI 9.49 ± 1.88 0.86 33.0 ± 9.0 0.65 MSL+

L. infantum MHOM/BR/2006/Pi 11A 4P MBS IOCL 3705 PI 10.51 ± 0.52 0.96 34.0 ± 12.0 0.67 MSL-

L. infantum MHOM/BR/2007/1732EPG IOCL 2980 PI 15.22 ± 0.68 1.39 32.0 ± 3.0 0.63 NA

L. infantum MHOM/BR/2007/1739MSS IOCL 2982 PI 13.37 ± 1.70 1.22 27.0 ± 0.0 0.53 NA

L. infantum MHOM/BR/2006/6909 IOCL 3680 PI 15.41 ± 0.80 1.4 29.0 ± 0.5 0.57 1.69 ± 0.56 0.94 36% MSL+

L. infantum MHOM/BR/2006/6912 IOCL 3681 PI 13.34 ± 1.13 1.21 26.0 ± 4.0 0.51 MSL+

L. infantum MHOM/BR/2006/JSMG 3P IOCL 3683 PI 11.26 ± 2.07 1.03 30.0 ± 1.0 0.59 MSL+

L. infantum MHOM/BR/2006/ARS 3P IOCL 3684 PI 12.20 ± 1.37 1.11 27.0 ± 5.0 0.53 MSL-

L. infantum MHOM/BR/2006/FFS 3P PI-05 IOCL 3687 PI 20.45 ± 1.09 1.86 23.0 ± 1.0 0.45 3.09 ± 0.97 1.73 61% MSL+

L. infantum MHOM/BR/2006/RUSS-3P IOCL 3701 PI* 16.04 ± 2.02 1.46 31.0 ± 4.0 0.61 NA

L. infantum MHOM/BR/2006/Pi 04A 4P DHRi IOCL 3702 PI* 8.25 ± 1.38 0.75 27.0 ± 5.0 0.53 MSL+

L. infantum MHOM/BR/2006/MA01-A 4P IOCL 3707 PI* 9.46 ± 1.40 0.86 32.0 ± 6.0 0.63 MSL+

L. infantum MHOM/BR/2006/MA04A 4P JNN IOCL 3686 PI* 16.20 ± 0.78 1.48 31.0 ± 2.0 0.61 MSL-

L. infantum MCAN/BR/2015/TUBO9 IOCL 3598 RJ 11.63 ± 0.48 1.06 34.0 ± 3.0 0.67 MSL-

L. infantum MHOM/BR/2011/Diag 1367 IOCL 3330 RN 8.24 ± 1.13 0.75 36.0 ± 2.0 0.71 MSL-

L. infantum MHOM/BR/2011/TC 03 IOCL 3336 RN 6.56 ± 0.66 0.6 29.0 ± 0.0 0.57 MSL-

L. infantum MHOM/BR/2011/TC 18 IOCL 3339 RN 6.37 ±0.29 0.58 38.0 ± 2.0 0.75 1.41 ± 0.50 0.79 70% MSL-

L. infantum MHOM/BR/2011/TC 28 IOCL 3340 RN 8.07 ± 1.24 0.73 56.0 ± 16.0 1.10 MSL-

L. infantum MHOM/BR/2011/TC 50 IOCL 3341 RN 9.06 ±0.60 0.83 55.0 ± 4.0 1.08 MSL-

L. infantum MHOM/BR/2011/TC 65 IOCL 3342 RN 9.75 ± 0.60 0.89 41.0 ± 1.0 0.8 MSL-

L. infantum MHOM/BR/2011/TC 95 IOCL 3343 RN 9.86 ± 0.50 0.9 45.0 ± 6.0 0.88 MSL-

L. infantum MHOM/BR/2011/TC 96 IOCL 3344 RN 7.45 ± 0.62 0.68 56.0 ± 9.0 1.10 NA

L. infantum MHOM/BR/2011/TC 98 IOCL 3345 RN 8.53 ± 0.81 0.78 66.0 ± 6.0 1.29 NA
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Table 1. Cont.

Identification

Promastigotes Amastigotes

MSLMiltefosine
(mM)

Amphotericin B
(nM)

Miltefosine
(mM) Infectivity g

Species a International Code b IOCL# c State d EC50 ± SEM e AI f EC50 ± SEM e AI f EC50 ± SEM e AI f % Presence/Absense h

L. infantum MHOM/BR/2011/TC 105 IOCL 3346 RN 9.91 ± 0.76 0.9 43.0 ± 15.0 0.84 NA

L. infantum MHOM/BR/2011/TC 115 IOCL 3347 RN 7.35 ± 0.69 0.67 40.0 ± 3.0 0.78 NA

L. infantum MHOM/BR/2011/TC 86 IOCL 3388 RN 8.69 ± 0.21 0.79 69.0 ± 9.0 1.35 NA

L. infantum MCAN/BR/2010/LUNA II IOCL 3196 RS 10.88 ± 0.88 0.99 48.0 ± 2.0 0.94 MSL-

L. infantum MCAN/BR/2011/IMTS-14 IOCL 3257 SP 20.11 ± 1.52 1.83 40.0 ± 5.0 0.78 MSL-

L. infantum MCAN/BR/2008/Lchagasi-UFRJ IOCL 3324 SP 20.79 ± 0.82 1.89 46.0 ± 4.0 0.90 2.04 ± 0.46 1.14 89% NA
a Two Leishmania species, L. donovani and L. infantum were used in this study. b International Code for each isolate/strain used in this work. MHOM are isolates obtained from humans, MCAN are isolates from
dogs. The strains from patients who participated in the Miltefosine clinical trial (IOCL 2943, IOCL 2944, IOCL 2973, IOCL 3692, IOCL 3693, IOCL 3694) are identified in bold. c Codes for Leishmania strains
deposited in the Leishmania Collection at Fundação Oswaldo Cruz (CLIOC). d Brazilian State of origin of the isolates. AM = Amazonas; DF = Distrito Federal; ES = Espírito Santo; MA = Maranhão; MG = Minas
Gerais; MS = Mato Grosso do Sul; MT = Mato Grosso; PA = Pará; PE = Pernambuco; PI = Piauí; RJ = Rio de Janeiro; RN = Rio Grande do Norte; RS = Rio Grande do Sul; SP = São Paulo. PI* Brazilian State of the
institution that sent the isolates (State of origin of sample not confirmed). e EC50 ± SEM of miltefosine determined for promastigotes (in three independent experiments) and amastigotes (in two independent
experiments) and of amphotericin B for promastigotes (also in two independent experiments). f Activity index was calculated by dividing the EC50 of each clinical isolate by the EC50 of the L. infantum reference
strain NLC. NP = not applicable. g Mean percentage of infection obtained for each isolate/strain after 72 h of infection and in the absence of drug. h MSL = miltefosine sensitivity locus. MSL+ indicates the
presence of the locus in homozygosis; MSL- absence of the referred locus in homozygosis; NA = not available. Data reported in Schwabl, et al. [24].
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Sensitivity to miltefosine was determined for promastigotes in a total of 73 strains of
L. infantum, sampled before treatment from 60 humans and 13 dogs. A reference strain
was again used as an internal control for all experiments (strain NLC). The L. donovani
strain LD-15 was also employed as an internal control (Figure 2B, Table 1). The EC50 for
miltefosine in promastigotes varied from 5.89 to 23.7 µM (Figure 2B, Table 1). The EC50
for miltefosine in the L. infantum reference strain NLC and the L. donovani strain LD-15
were 10.98 ± 1.95 and 9.00 ± 0.80 µM respectively. Calculation of the activity indexes (ratio
between the EC50 of the clinical strains and EC50 of the reference strain) revealed that the
highest EC50 observed among the clinical strains was 2.16-fold higher than the EC50 of the
NLC reference strain.

Sensitivity to amphotericin B was also determined in these strains, and a 2.8-fold
variation between the lowest (25 nM) and the highest (70 nM) EC50 values was observed
(Figure 2C, Table 1). The EC50 of the L. infantum reference strain NLC and of the L. donovani
LD-15 strain to amphotericin were 51.00 ± 5.00 and 35.00 ± 0.50 nM, respectively.

Forty-nine strains (out of 73; 67%) were genotyped for the presence or absence of MSL,
recently described and associated with the treatment outcome in Brazilian patients and
L. infantum in vitro susceptibility to miltefosine [15,16]. Twenty strains (2 from dogs and 18
from humans) were positive (presented) for MSL and 29 (7 from dogs and 22 from humans)
were deleted for the locus. No correlations were observed between the EC50 for miltefosine
and the absence (MSL-) or presence (MSL+) of the locus in amastigotes (p = 0.2468; Median
for MSL- parasites = 3.86 µM, and for MSL+ = 3.09 µM) (Figure 3A) or promastigotes
(p = 0.2885; median for MSL- parasites = 10.51 µM, and for MSL+ = 11.25 µM) (Figure 3B).
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determined in amastigotes (A) or promastigotes (B) and tested for correlation with the genotypic analysis of MSL locus. The
central line in the box-plot represents the median values of each analyzed group.

Statistical analysis was also conducted using only the human L. infantum strains from
Piauí, Maranhão and Minas Gerais (amastigotes: 2MSL-; 5MSL+; promastigotes: 9MSL-,
18MSL+), aiming to mimic the parasite diversity analyzed previously [16], but even in
this restricted population, no statistical differences were observed in the median EC50 of
MSL- and MSL+ parasites (p = 0.3810 and p = 0.4948, for amastigotes and promastigotes,
respectively) (Figure S1).

Analysis of possible correlations between susceptibility and year of isolation detected
no significant trends. The same was true for samples isolated from humans and dogs
(Figure 4). The analysis of correlation between EC50 and geographical origin was not
reliable due to low representation for some states (Table 1).
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Figure 4. Dispersion analysis of the EC50 for miltefosine determined in 73 Brazilian L. infantum strains according to (A) year
of isolation and (B) provenance of host. Each black dot represents one clinical strain. In (B), the central lines represent mean
EC50 and SEM of strains. No significant differences between samples originating from humans or dogs were observed
(p = 0.0950 two-tailed unpaired t-test with Welch’s correction).

4. Discussion

Inadequate efficacy and serious side effects are major and widespread problems of VL
treatment. The range of drugs for VL is narrow and fraught with limitations [26]. Miltefos-
ine, though displaying some less than ideal characteristics such as potential teratogenicity,
gastrointestinal side effects, and a long plasma half-life of 150–200 h [27], is and will remain
for the next few years the only oral drug available for leishmaniasis treatment. Miltefosine
also presents a series of advantages compared to the other available treatment options,
and care must be taken to avoid the loss of this oral drug. Employed as monotherapy in
the Indian subcontinent for several years and in combination therapy with paromomycin
as the second line treatment in the framework of the Kala-azar Elimination program [28],
miltefosine is not currently in use in Brazil for human visceral leishmaniasis [29,30].

Only one clinical trial to test miltefosine monotherapy for treatment of VL has been
conducted in Brazil, with patients enrolled at Montes Claros and Teresina. An overall cure
rate of 59% was documented in a sample of 42 treated patients. This study was carried
out in two different locations and using two different treatment schedules. In all cases,
adults were treated with a 100 mg miltefosine/day total dose, which did not necessarily
correspond to the desired dose of 2.5 mg/kg/day [15]. The efficacy in this trial was lower
than the 94% cure rate observed in India when miltefosine was implemented [31] and the
90% cure rate observed after a decade of use [29].

Differences in efficacy of the same drug or treatment schedule found in different
geographical areas have been demonstrated, but there is no clear understanding of the
reasons for this, even given the differences between L. donovani and L. infantum parasite
species [28]. This information, and the results obtained in the Brazilian miltefosine trial,
raised concerns about the possibility of Brazilian L. infantum being intrinsically tolerant
to miltefosine. In this context, we gathered efforts to investigate the susceptibility to
miltefosine of a panel of clinical strains of L. infantum from different geographic regions
of Brazil.

The susceptibility to miltefosine of 13 clinical strains was determined for intracellular
amastigotes. The EC50 varied from 1.41 to 4.57 µM, or 3.2-fold, between the least and the
most susceptible isolates. The EC50 values in these isolates were strikingly homogenous
compared to, for example, Brazilian L. (V.) braziliensis clinical isolates, which presented 6-
and 15-fold differences in the EC50 between the most and the least susceptible parasites, in
promastigotes and amastigotes, respectively [21]. This low variability was also reported
by Faral-Tello, et al. [32] that evaluated the infectivity and susceptibility of 5 L. infantum
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clinical strains to leishmanicidal drugs including miltefosine and found EC50 values that
varied from 3.4 to 5.3 µM.

The characterization of susceptibility to miltefosine in a total of 73 strains was done
in cultured promastigotes. The promastigote model is less laborious and eliminates the
need of animals for macrophage isolation. The susceptibility to amphotericin B was also
determined to widen the scope of the study and also to serve as an independent variable
in case a heterogeneous behavior toward miltefosine was discovered. The analysis in
promastigotes confirmed a low degree of variation (5.89 to 23.7 µM), when compared to
the differences found among L. braziliensis clinical strains (22.9 to 144.2 µM) [21].

The evaluation of a small percentage of strains in the amastigote stage is a limita-
tion of this study. A correlation between miltefosine susceptibility in promastigotes and
amastigotes of L. braziliensis [21] and L. donovani [25] had already been demonstrated. This
correlation was not present among the 13 strains in this study and we hypothesize this
could be due to the low variability in the EC50 values determined. However, it would
be interesting to widen the spectrum of strains tested as amastigotes in the future. An-
other aspect that remains to be addressed in future studies is to improve the distribution
of strains between the different geographical areas and continuing the evaluation with
samples collected more recently. In our sample, some states and samples isolated after 2013
were underrepresented.

The analysis in promastigotes, confirmed a low degree of variation (5.89 to 23.7 µM),
when compared to the differences found among L. braziliensis clinical strains (22.9 to
144.2 µM) [21].

Recently Carnielli, et al. [16] reported that a deletion of four genes on chromosome
31 found by whole genome sequencing of 26 L. infantum strains isolated from cured and
relapsed patients from two Brazilian endemic regions was correlated to the treatment
outcome. An association between the presence of this locus and a positive response to
miltefosine treatment was found, and the genomic region was named miltefosine sensitive
locus (MSL) [16]. The susceptibility profile of intracellular amastigotes from strains isolated
from patients that relapsed or were cured in the Montes Claros/Teresina clinical trial [15]
identified a mean EC50 in strains from cured patients of approximately 5 µM whereas
for relapsed patients this value was approximately 13 µM. The threshold for predicting
treatment outcome was calculated as 8 µM.

In our sample, all the strains presented miltefosine EC50 against amastigotes below
5 µM. Due to the high prevalence of MSL deletion in L. infantum strains in the Americas [24]
more than 60% of the strains studied were genotyped for the presence or absence of the
MSL following the previously published protocol [24]. The prevalence of MSL deletion
detected in the present study (59%) was in agreement with that found previously (54%) [16].
However, no associations were found between L. infantum in vitro susceptibility to mil-
tefosine and the presence/absence of the MSL after testing 49 strains from 11 localities.
This lack of association was still observed when the L. infantum population analyzed was
reduced to geographically mimic the sample previously studied (only from Minas Gerais,
Piauí and Maranhão).

Even with the relative homogeneity in the determined miltefosine EC50 found in our
sample, an important limitation of our study is that the evaluation of in vitro susceptibil-
ity does not immediately correlate with the clinical efficacy. Nevertheless, infections of
BALB/c mice with the reference strain NLC were successfully treated with 20 mg/kg/day
miltefosine for 5 days. When followed up for 4 weeks, these mice showed complete res-
olution of clinical disease and absence of parasites (M. Galuppo and S. Uliana, personal
communication) which supports interpreting the results of the present study as indicating
the overall susceptibility to miltefosine of the 73 isolates.

The lack of concordance between data from this and the previous study might reflect
differences in methodology, the number of in vitro passages of parasites used, or differences
in the populations studied, meaning that there is a need to extend the analysis to a wider
sample of strains. However, it is worth considering whether the high failure rates observed
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in the previous Brazilian clinical trial might have been due to factors other than parasite
susceptibility. In the case of L. donovani VL, it has been shown that the exposure to miltefo-
sine is lower in children than in adults; indeed, by using an allometric dose in children,
efficacy increases from 59% to 90% [19]. Further studies performed to understand the phar-
macokinetics and pharmacodynamics of miltefosine in different populations found that the
probability of VL relapse was strongly correlated with the time during which the plasmatic
concentrations of miltefosine were higher than the EC90 values or above 10×EC50 [20].
In African patients, the 2.5 mg/kg/day for 28 days schedule resulted in concentrations
above the desired threshold for 51.4 days (CI 30.5–77.1). To analyze the likelihood of failure,
the authors employed miltefosine EC50 and EC90 for L. donovani intracellular amastigotes
of 4.95 and 25.9 µM, respectively [17]. These values are comparable to the median EC50
values for L. infantum clinical isolates found in the present study. If pharmacokinetic and
pharmacodynamics characteristics in Brazilian patients are comparable to those previously
characterized in Nepal and Africa, it is likely that the necessary plasmatic concentrations
will be achieved upon use of allometric dosing.

In conclusion, this study indicates that isolates of L. infantum obtained over a wide
geographical area in Brazil do not appear to be significantly heterogeneous in their suscep-
tibility to miltefosine. Further clinical evaluation of miltefosine for treatment of VL in Brazil
is advisable, using an allometric dose in children and associated with pharmacokinetic
studies, possibly in combination with other leishmanicidal drugs, in order to evaluate the
possibility of incorporating this drug into the therapeutic arsenal for VL treatment in Brazil.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/microorganisms9061228/s1. Figure S1: Susceptibility to miltefosine in L. infantum strains
presenting (MSL+) or not (MSL-) the MSL locus.
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