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ABSTRACT The phosphodiesterase inhibitor tetrahydrophthalazinone NPD-008 was
explored by phenotypic in vitro screening, target validation, and ultrastructural
approaches against Trypanosoma cruzi. NPD-008 displayed activity against different
forms and strains of T. cruzi (50% effective concentration [EC50], 6.6 to 39.5mM).
NPD-008 increased cAMP levels of T. cruzi and its combination with benznidazole
gave synergistic interaction. It was also moderately active against intracellular
amastigotes of Leishmania amazonensis and Leishmania infantum, confirming a
potential activity profile as an antitrypanosomatid drug candidate.
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Intracellular trypanosomatids are the causative agents of two major neglected tropical
diseases (NTDs), i.e., leishmaniasis (Leishmania spp.) and Chagas disease (Trypanosoma

cruzi). Both diseases place high social and economic burdens on developing countries.
The currently available drugs are old and have several drawbacks, and no vaccine is avail-
able, highlighting the need for novel therapeutic strategies (1, 2). Previous studies dem-
onstrated that phthalazinones are promising antitrypanosomatid drug chemotypes
through the inhibition of cAMP phosphodiesterases (PDEs) (3–5). The activity of tetra-
hydrophthalazinone NPD-008 was first reported on Trypanosoma brucei, characteriz-
ing this compound as a selective TbrPDEB1 inhibitor (6). Considering the high struc-
tural conservation of PDEs among kinetoplastids (7), the present in vitro study
evaluated the phenotypic effects of NPD-008 on T. cruzi, Leishmania amazonensis, and
Leishmania infantum, as well as its effects on mammalian cells, parasite ultrastructure,
and T. cruzi cAMP metabolism. Synergism with the reference drug benznidazole was
investigated.

NPD-008 was synthesized as described by Blaazer and colleagues (6). Assays involv-
ing animal procedures performed at Fundação Oswaldo Cruz (FIOCRUZ) were carried
out in accordance with the guidelines established by the Committee of Ethics for the
Use of Animals (CEUA L038/2017).

NPD-008 was active against the three parasitic forms of T. cruzi belonging to distinct
strains (6) and discrete typing units (DTUs) relevant for human infection (8) (Table 1).
Incubation for 96 h of T. cruzi-infected L929 cell cultures (Tulahuen strain transfected
with b-galactosidase gene, DTU VI) with NPD-008 produced a 50% effective concentra-
tion (EC50) of 9.76 1.3mM. Epimastigotes (Y strain, DTU II), the multiplying form present
in the insect vector gut, were less susceptible (EC50, 39.5mM; 48 h exposure). However,
bloodstream trypomastigotes (BT) (Y strain) were highly susceptible to NPD-008,
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showing an EC50 of 6.66 1.1mM after 24 h incubation, approximately twice as active as
benznidazole (EC50, 12.96 1.9mM). Next, the combination of benznidazole with NPD-
008 was tested using a fixed-ratio method (9, 10), and its fractional inhibitory concen-
tration index (FICI) and sum (RFICI) were calculated and classified as reported (11). Our
results showed RFICI values of 0.51 and 1.19 for amastigotes and BT, respectively, with
the first value indicating borderline synergism (Fig. 1), a profile already reported for T.
cruzi isolates incubated with the phthalazinone PDE inhibitor NPD-040 (5). These data
represent a desirable characteristic, since combined therapy is a valuable tool in
improving treatment efficacy while reducing dose levels and toxicity and preventing
the development of drug resistance (12).

NPD-008 did not exert toxicity on mammalian host cells obtained from different
sources, including cell lineages and primary cultures of cardiac cells (50% lethal concen-
tration [LC50], .200mM; Table 2), leading to selectivity indexes of .20, as recom-
mended for anti-T. cruzi drug candidates (13). On-target inhibition of phosphodiester-
ases was confirmed by cAMP measurements, determined by immunoassay as described
(4, 6), showing a significant (unpaired Student's t test, P # 0.05) and dose-dependent
intracellular increase in cAMP in NPD-008-treated amastigotes and BT (Y strain) exposed
for 2.5 h at 37°C using 2� and 5� their respective EC50 concentrations (Fig. 2). For try-
pomastigotes, the extracellular cAMP concentration was also increased (P , 0.001),
with the increased cAMP efflux partially compensating for PDE inhibition. These find-
ings validate PDEs as T. cruzi targets of NPD-008, as reported for other PDE inhibitors (5,
14). Our present results align with findings in T. brucei isolates of dose-dependent
increases in intracellular cAMP levels after incubation with NPD-008 (6) and other
TbrPDEB1 inhibitors (3, 4, 15).

FIG 1 In vitro combined therapy of NPD-008 plus benznidazole on T. cruzi intracellular forms of Tulahuen strain (A) and bloodstream trypomastigotes of Y
strain (B).

TABLE 1 In vitro phenotypic screening of NPD-008 and reference drugs for Chagas disease (benznidazole) and leishmaniasis (pentamidine)

Activity

NPD-008 Benznidazole NPD-008 Pentamidine

EC50 (mean±
SD) mM SIa

EC50 (mean±
SD) mM SI

EC50 (mean±
SD) mM SI

EC50 (mean±
SD) mM SI

Anti-T. cruzi
Intracellular amastigotes 9.76 1.3 20.6 2.76 0.4 .370
Bloodstream trypomastigotes 6.66 1.1 .30.3 12.96 1.9 .77
Epimastigotes 39.56 13.2

Anti-Leishmania
Ex vivo amastigotes (L. amazonensis) 14.96 2 .4.3 1.256 0.09 NDb

Intracellular amastigotes (L. infantum) 12.56 10.6 .5.1 ND ND
aSI, selectivity index.
bND, not done.

de Araújo et al. Antimicrobial Agents and Chemotherapy

March 2021 Volume 65 Issue 3 e00960-20 aac.asm.org 2

https://aac.asm.org


To detect primary cellular damages triggered by exposure to NPD-008 (1� EC50;
15min), BT and epimastigotes (Y strain) were examined by scanning electron micros-
copy. Epimastigotes showed body shortening and BT displayed an altered, rounded
morphology (Fig. 3), suggestive of osmotic distress, an outcome already described dur-
ing PDE inhibition in T. cruzi isolates (16). Ultrastructural alterations due to osmotic
imbalance have been suggested in T. cruzi isolates exposed to imidazole derivatives
(14) and phthalazinones (5), both inhibitors of one or more T. cruzi PDEs that caused
autophagy-like cell death outcomes. The remarkable speed of the morphological
changes is especially promising for this compound series.

To more broadly investigate the potential activity of NPD-008 on obligate intracellu-
lar kinetoplastid parasites, assays were performed on amastigotes of L. amazonensis
(LTB0016) and L. infantum (MHOM/MA/67/ITMAP263). The L. amazonensis amastigotes
were isolated from mouse skin lesions as reported previously (17) and incubated with
NPD-008 for 48 h, revealing leishmanicidal activity with an EC50 of 14.96 2mM. Spleen-

TABLE 2Mammalian cell toxicity

Source

LC50 (mM)

NPD-008 Benznidazole
L929 fibroblasts 199.8 .1,000
Primary cardiac cultures .200 .1,000
MRC-5 .64 ND

FIG 2 Intracellular contents of cAMP in T. cruzi free amastigotes (AMA) and trypomastigotes (BT) and
in their respective culture media: untreated (control) and after exposure for 2.5 h with 2� and 5�
EC50 of NPD-008. Control: untreated parasites, 2� and 5� = treated parasites using 2� and 5� the
EC50 values. *, P , 0.05; **, P , 0.01; ***, P , 0.001, versus control or lower concentration, as
indicated.
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derived amastigotes of L. infantum in primary peritoneal mouse macrophages were
exposed to drug for 72 h for microscopic examination of the cellular amastigote bur-
dens (18), revealing a mean EC50 of 12.56 10.6mM (Table 1). Although less active than
the reference drug pentamidine (1.256 0.09mM), the low cytotoxicity profile of NPD-
008 against L929 (LC50, 199.8mM) and MRC-5 (LC50, $64mM) fibroblast cell lines and
cardiac cells may argue in favor of further study and optimization of phthalazinone PDE
inhibitors toward alternative therapeutic approaches for patients affected by Chagas
disease and leishmaniasis (Table 2).

We report promising activity of the tetrahydrophthalazinone NPD-008 against
amastigotes of L. amazonensis, L. infantum, and different strains and DTUs of T. cruzi.
NPD-008 displays superior potency against T. cruzi trypomastigotes over benznida-
zole and is on target, not cardiotoxic, and synergistic with benznidazole, all favorable
indicators and consistent with the existing target product profile (19, 20). However,
its activity against the other relevant form of T. cruzi for mammalian cell infection, the
intracellular amastigotes, although ,10mM, was less than that of benznidazole;
therefore, NPD-008 does not match all characteristics necessary to move to animal ex-
perimental models (13). Although it is not an endpoint in drug development for
Chagas disease and leishmaniasis, NPD-008 represents an important staging post for
further lead optimization via Medicinal Chemistry aiming to provide preclinical and
clinical candidates for both NTDs. While the manuscript was in preparation, we pub-
lished a study with TbrPDEB1, which showed that specific further modification of the
scaffold allows for superior targeting of the parasite-specific PDE P-pocket, improving
antiparasite efficacy and selectivity (4, 21). Thus, the next proposed steps are to evalu-
ate this latest compound series on T. cruzi amastigotes and trypomastigotes in vitro
to select a final PDE inhibitor candidate for future in vivo testing in a murine Chagas
disease model as monotherapy and in combination with benznidazole.

FIG 3 Scanning electron microscopy of bloodstream trypomastigotes and epimastigotes untreated (A, C) and treated with NPD-
008 for 15min (B, D). (B) Arrows, rounded parasites. Bar, 5mM.
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