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13, André Luiz de AbreuID

4, Luiz Carlos Junior AlcantaraID
2,7*,

Marta GiovanettiID
2,7*
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Abstract

Since introduction into Brazil in 2014, chikungunya virus (CHIKV) has presented sustained

transmission, although much is unknown about its circulation in the midwestern states.

Here, we analyze 24 novel partial and near complete CHIKV genomes from Cuiaba, an

urban metropolis located in the Brazilian midwestern state of Mato Grosso (MT).

Nanopore technology was used for sequencing CHIKV complete genomes. Phylogenetic

and epidemiological approaches were used to explore the recent spatio-temporal evolution

and spread of the CHIKV-ECSA genotype in Midwest Brazil as well as in the Americas.

Epidemiological data revealed a reduction in the number of reported cases over 2018–

2020, likely as a consequence of a gradual accumulation of herd-immunity. Phylogeo-

graphic reconstructions revealed that at least two independent introductions of the ECSA

lineage occurred in MT from a dispersion event originating in the northeastern region and

suggest that the midwestern Brazilian region appears to have acted as a source of virus

transmission towards Paraguay, a bordering South American country.
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Our results show a complex dynamic of transmission between epidemic seasons and

suggest a possible role of Brazil as a source for international dispersion of the CHIKV-ECSA

genotype to other countries in the Americas.

Author summary

Since its introduction into Brazil in 2014, chikungunya virus (CHIKV) has presented sus-

tained transmission, although much is unknown about its circulation in the midwestern

states. Here, using a combined strategy of a mobile sequencing mission through this

region, with genomic and epidemiological analysis we generated 24 novel partial and near

complete CHIKV genome sequences by means of portable nanopore sequencing of chi-

kungunya virus isolates obtained directly from clinical samples. Our findings reinforce

that continued genomic surveillance strategies are needed to assist in the monitoring and

understanding of arbovirus epidemics, which might help to attenuate public health impact

of infectious diseases.

Introduction

After the introduction of the Asian lineage of chikungunya virus (CHIKV) into the Americas

in 2013, and subsequent detection of the East/Central/South African (ECSA) lineage in 2014

in Bahia state Northeast Brazil, more than 2.9 million infections have been reported in Brazil

up to 2019 [1]. Common clinical manifestations of the disease include fever, muscle pain, rash

and severe joint pain, which may last for months to years [2]. It is argued that 82% of infections

caused by the ECSA lineage are symptomatic, and there are suggestions of lineage-specific

infection outcomes [3]. The ECSA lineage seems to be the main genotype currently circulating

in Brazil since its introduction in the northeastern region in 2014, despite detection of the

Asian lineage in that same year in northern Brazil [4]. From previous studies addressing inter-

regional dispersion of the virus [4], CHIKV outbreaks have been registered in northern, north-

eastern, southeastern and midwestern states of Brazil between 2016 and 2019 [5–8]. The

number of probable cases reached 87,687 in 2018 and 132,205 in 2019, with the midwestern

region accounting for the second largest number of cases (15.8%) registered in 2018 in Brazil

[9]. Despite the large number of cases, much is unknown about the genomic diversity and evo-

lution of CHIKV lineages currently circulating in the midwestern region of Brazil, as well as

their dispersion dynamics in South American countries that border this Brazilian region.

Thus, to investigate the genomic diversity and evolution of CHIKV, we analyzed 24 new

CHIKV genomes generated by next generation sequencing, providing additional information

on the introduction and spread of the ECSA lineage in Midwest Brazil as well as in the

Americas.

Materials and methods

Ethics statement

This research was reviewed and approved by the Ethical Committee of the Pan American

World Health Organization (No. PAHO-2016-08-0029) and the Brazilian Ministry of Health

(MoH) as part of the arbovirus genomic surveillance efforts within the terms of Resolution

510/2016 of CONEP (Comissão Nacional de Ética em Pesquisa, Ministério da Saúde; National
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Ethical Committee for Research, Ministry of Health). Residual anonymized clinical diagnostic

samples, with no or minimal risk to patients, were provided for research and surveillance pur-

poses within the terms of Resolution 510/2016 of CONEP. Processing of human samples was

approved and the need for participants consent was waived by the Institutional Review Board

from the Fundação Oswaldo Cruz/Instituto Oswaldo Cruz (CEP/CAAE:

90249218.6.1001.5248; approval number 2.998.362).

Sample collection

A total number of 24 serum samples from individuals presenting with symptoms compatible

with arbovirus infection, with availability of epidemiological metadata, such as date of symp-

tom onset, date of sample collection, sex, age and municipality of residence, were collected for

molecular diagnostics by the Central Public Health Laboratory of Mato Grosso state, Midwest

Brazil, during genomic surveillance activities of the project ZIBRA2 (https://www.

zibra2project.org/).

Viral RNA isolation and quantitative real-time RT-PCR

Serum samples were submitted to nucleic acid purification using the QIAmp Viral RNA Mini

kit (Qiagen), following manufacturer’s recommendations. The CHIKV RNA detection by RT-

qPCR was performed using a Real Time RT-qPCR protocol adapted from [10], using Promega

GoTaq Probe 1-Step RT-PCR System Kit in Bioer LineGene 9660 equipment. Samples were

selected for sequencing based on Ct-value <32 to maximize genome coverage of clinical sam-

ples by nanopore sequencing [11] (Table 1).

cDNA synthesis and multiplex tiling PCR

Samples were submitted to a cDNA synthesis protocol [11] using ProtoScript II First Strand

cDNA Synthesis Kit. Then, a multiplex tiling PCR was conducted using Q5 High Fidelity Hot-

Start DNA Polymerase (New England Biolabs) and a CHIKV sequencing primers scheme

(divided into two separated pools) designed using Primal Scheme (http://primal.zibraproject.

org) [12]. The thermocycling conditions involved 40 cycles, and reaction conditions was previ-

ously reported in [12].

Library preparation and nanopore sequencing

Amplicons were purified using 1x AMPure XP Beads and cleaned-up PCR products concen-

trations were measured using Qubit dsDNA HS Assay Kit on a Qubit 3.0 fluorimeter (Ther-

moFisher). DNA library preparation was carried out using the Ligation Sequencing Kit and

the Native Barcoding Kit (NBD104, Oxford Nanopore Technologies, Oxford, UK) [12]. Puri-

fied PCR products of each sample were quantified and DNA concentration were normalised

before barcoding reactions. One barcode was used per sample in order to maximize the num-

ber of samples per flow cell. Sequencing library was loaded onto a R9.4 flow cell, and data was

collected for up to 48 hours, but generally less.

Generation of consensus sequences

Raw files were basecalled using Guppy and barcode demultiplexing was performed using qcat.

Consensus sequences were generated by de novo assembling using Genome Detective (https://

www.genomedetective.com/) [13].
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Phylogenetic and Bayesian analysis

The 24 new sequences reported in this study were initially submitted to a genotyping analysis

using the phylogenetic arbovirus subtyping tool, available at http://genomedetective.com/app/

typingtool/chikungunya [14]. After excluding low-quality genomes,> 10% of ambiguous posi-

tions, the newly genomic data generated in this study were aligned with 89 CHIKV-ECSA

genome sequences from Brazil plus all available CHIKV-ECSA genome sequences from

Americas (currently available only from Paraguay n = 5 and Haiti n = 2). Full details of the

sequences used are provided in (S1 Table). Sequences were aligned using MAFFT [15] and

edited using AliView [16]. The dataset was assessed for presence of phylogenetic signal by

applying the likelihood mapping analysis implemented in the IQ-TREE 1.6.8 software [17]. A

Maximum likelihood phylogeny was reconstructed using IQ-TREE 1.6.8 software under the

HKY+G4 substitution model [17]. In order to investigate the temporal signal in our CHIK-

V-ECSA dataset we regressed root-to-tip genetic distances from this ML tree against sample

collection dates using TempEst v 1.5.1 [18]. The ML phylogeny was used as a starting tree for

Bayesian time-scaled phylogenetic analysis using BEAST 1.10.4 [19]. We employed a stringent

model selection analysis using both path-sampling and steppingstone models to estimate the

most appropriate model combination for Bayesian phylogenetic analysis [20]. The best fitting

model was the HKY+G4 substitution model with a Bayesian skyline coalescent model [21, 22].

A discrete phylogeographical model [23] was also used to reconstruct the spatial diffusion of

Table 1. Epidemiological data for the sequenced samples.

ID Sample type Date onset symptoms Collection date Age Sex State Municipality Ct value Reads Coverage (%) Acession Number

CB08 Serum 2018-02-23 2018-02-23 33 F MT Cuiaba 18,59 900 43,70 MN428504

CB04 Serum 2018-05-18 2018-05-21 22 F MT Cuiaba 30,98 4318 52,60 MN428505

CB09 Serum 2018-01-29 2018-02-01 23 F MT Cuiaba 19,66 291904 93,60 MN428506

CB10 Serum 2018-07-03 2018-07-05 29 F MT Cuiaba 26,88 620828 82,70 MN428507

CB12 Serum 2018-04-25 2018-04-27 22 F MT Cuiaba 30,65 175360 78,60 MN428508

CB17 Serum 2018-03-11 2018-03-13 27 M MT Cuiaba 22,16 99926 83,90 MN428509

CB18 Serum 2018-04-24 2018-04-25 43 M MT Cuiaba 27,38 554552 79,90 MN428510

CB16 Serum 2018-04-12 2018-04-18 31 F MT Cuiaba 19,87 577642 85,10 MN428511

CB22 Serum 2018-03-10 2018-03-13 26 M MT Cuiaba 28,33 147381 88,50 MN428512

CB19 Serum 2018-04-05 2018-04-26 37 F MT Cuiaba 24,93 514308 82,70 MN428513

CB23 Serum 2018-03-13 2018-03-13 30 F MT Cuiaba 23,62 278973 53,00 MN428514

CB24 Serum 2018-03-18 2018-03-20 62 F MT Cuiaba 20,31 235010 93,50 MN428515

CB26 Serum 2018-03-21 2018-03-23 22 F MT Cuiaba 24,08 4167 86,50 MN428516

CB27 Serum 2018-03-15 2018-03-17 40 F MT Cuiaba 29,33 6855 84,10 MN428517

CB28 Serum 2018-03-07 2018-03-08 19 F MT Cuiaba 20,07 4391 89,40 MN428518

CB29 Serum 2018-03-15 2018-03-16 20 F MT Cuiaba 20,96 6384 88,20 MN428519

CB31 Serum 2018-03-08 2018-03-09 31 F MT Cuiaba 29,22 7537 85,20 MN428520

CB32 Serum 2018-03-16 2018-03-16 29 F MT Cuiaba 21,22 6010 87,10 MN428521

CB30 Serum 2018-03-07 2018-03-08 24 F MT Cuiaba 31,21 9104 83,50 MN428522

CB33 Serum 2018-03-08 2018-03-08 31 F MT Cuiaba 22,16 4753 89,40 MN428523

CB34 Serum 2018-03-05 2018-03-06 34 F MT Cuiaba 22,25 6554 86,50 MN428524

CB35 Serum 2018-03-05 2018-03-06 24 F MT Cuiaba 25,24 4454 89,40 MN428525

CB36 Serum 2018-03-06 2018-03-06 16 F MT Cuiaba 21,42 8795 86,40 MN428526

CB37 Serum 2018-03-05 2018-03-06 23 F MT Cuiaba 26,95 3957 89,40 MN428527

Ct = RT-qPCR quantification cycle threshold value.

https://doi.org/10.1371/journal.pntd.0009290.t001
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the virus across the compiled dataset sampling locations. Phylogeographic analyses were per-

formed by applying an asymmetric model of location transitioning, coupled with the Bayesian

stochastic search variable selection (BSSVS) procedure. Monte Carlo Markov chains (MCMC)

were run for sufficiently long to ensure stationarity and an adequate effective sample size (ESS)

of>200.

Epidemiological data assembly

Data of weekly notified CHIKV cases in Brazil, availables at the Sistema de Informação de

agravos de notificação (SINAN) (https://portalsinan.saude.gov.br/dados-epidemiologicos-

sinan), were supplied by Brazilian Ministry of Health and were plotted using the R software

version 3.5.1.

Results

We obtained CHIKV RT-qPCR positive clinical samples as part of the genomic surveillance

project called ZIBRA 2 (https://www.zibra2project.org/), which aimed to perform, from a lab

on wheels, genome sequencing of arboviruses circulating in Midwest Brazil, in the Mato

Grosso state. Supported by the Brazilian Ministry of Health and PAHO/WHO, ZIBRA 2 has

carried out genomic surveillance of arboviruses in the northern, northeastern and southeast-

ern regions of Brazil [5, 6, 24]. We used the portable MinION sequencer and an amplicon

approach [12] to generate 24 partial and near complete CHIKV genomes from serum samples

provided by the Central Public Health Laboratory and collected during the 2018 outbreak in

the midwestern state of Mato Grosso (MT). These samples, most of which were collected in

March 2018, had an average Ct value of 24.48 (ranging from 18.59 to 31.21) and were from

patients with average 29 years of age, and in their majority were female (87.5%) living in the

city of Cuiaba, MT (Table 1 and Fig 1A).

The 24 new CHIKV genome sequences from MT had a mean genome coverage of 81.79%

(coverage range 43.7%-93.6%). This genome coverage obtained is considered sufficient to per-

form phylogenetic inferences, according to a study that showed the occurrence of a decrease in

phylogenetic accuracy when genome coverage is reduced from 40% to 20% [25].

Genomic data obtained in this study belonged to the ECSA lineage, as confirmed by the chi-

kungunya virus typing tool (https://www.genomedetective.com/) [14], and clustered with

other Brazilian sequences from previous outbreaks reported in other geographic regions (Fig

1C). These new genome sequences were submitted to GenBank under the accession numbers

MN428504-MN428527.

Fig 1B shows the CHIKV weekly cases normalized per 100K individuals notified between

2015 and 2020 (until epidemiological week–EW 06) in five Brazilian regions: Southeast (SE),

Northeast (NE), Midwest (MW), North (N), and South (S). Five CHIKV epidemic waves were

found (2016–2020), characterized by a reduction in total cases per year from 2018 to 2020.

Although without further information it is difficult to assert the drivers of this reduction in

incidence, it is likely that significant herd-immunity has accumulated since CHIKV’s intro-

duction, as suggested in other studies [26, 27]. Weekly reported incidence reveals that chikun-

gunya was mostly reported in the Northeast region between 2015 and 2018, the South region

had the lowest incidence in the entire time period, and that contrary to all other regions, the

Southeast has presented an increasing incidence trend over the years (Fig 1B).

To explore in more detail the evolutionary relationship of these new MT sequences in the

Brazilian context and to infer the ancestral location of CHIKV strains circulating in MT, we

used a Bayesian discrete phylogeographic approach, employing the uncorrelated relaxed

molecular clock and a Bayesian Skyline coalescent model (and a linear regression of root-to-
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tip genetic distance against sampling date which revealed sufficient temporal signal, r2 = 0.70;

S1 Fig) in a dataset comprising the new MT sequences described in this study plus 96 pub-

lished CHIKV genomes (Fig 1C). The Bayesian demographic reconstructions (Fig 1C, super-

imposed to the tree) provided evidence of seasonal oscillations, although with wide credible

intervals, highlighting a slight but gradual decline of the median Effective population size (Ne)

estimated over 2018–2020 which appears to be in agreement with decreasing incidence in time

(Fig 1B).

Fig 1. CHIKV transmission dynamics in Brazil (2014–2019). (A) Map of Brazil and Americas showing sampling location of the CHIKV genomes from this study (white

circles). (B) Weekly notified chikungunya cases normalized per 100K individuals per Brazilian region in 2015–2020 (until EW06). Incidence (cases per 100K population)

is presented in log10 for visual purposes. Epidemic curves are coloured according to geographical macro region: SE = Southeast, NE = Northeast, MW = Midwest,

N = North, S = South. (C) Time-scaled phylogeographic tree of 120 complete and near-complete CHIKV genome sequences from the ECSA genotype sampled in Brazil

and Americas. Colours represent different sampling locations according to the legend on the left of the tree. Tip circles (white) represent the genome sequences generated

in this study. Skyline plot (black and gray lines) is superimposed. Relative genetic diversity is represented here as a surrogate for the product of effective population size

and generation time. The solid black line represents the mean relative genetic diversity and the light gray area around the line represents the 95% HPD interval of the

estimates.

https://doi.org/10.1371/journal.pntd.0009290.g001
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Our Maximum clade credibility (MCC) tree showed that the new 2018 MT isolates formed

a single well-supported clade, with posterior support of 1.0 (Fig 1C). Interestingly, these new

isolates did not group with the other six previously published sequences sampled in 2017 also

from Cuiabá-MT [28]. As these 2017 MT sequences also formed a well-supported clade (poste-

rior support = 1.0), our MCC tree topology suggests that at least two independent introduc-

tions of the ECSA lineage occurred in MT. A previous study reported the circulation of

CHIKV ECSA lineage in MT and indicated, by RT-qPCR, that the earliest human case of the

disease recorded in that state dates to July 2015 [8]. From our time-measured tree, we esti-

mated the time of the most recent common ancestor (TMRCA) of the two independent intro-

duction events in MT to be between late September 2016 (May 2016 to December 2016, 95%

HPD) for the first introduction event, and early February 2017 (September 2016 to June 2017,

95% HPD) for the second event. This interval does not include the earliest CHIKV positive

case previously reported in MT and this divergence might display an absence of sufficient data

because of non-sampling of earliest isolates [8].

The phylogeographic analysis showed that CHIKV was most likely introduced in MT from

a dispersion event originating in the northeastern region of Brazil (location probability 0.98).

Clades comprising other isolates from 2017–2018 and sampled in the northeastern region

illustrate the persistence and re-emergence of the ECSA lineage in the northeastern region of

Brazil since its introduction in 2014. In addition, our tree shows the 2018 MT outbreak clade is

closely related to the clade containing isolates from Paraguay sampled in 2018, when 1,237

CHIKV cases were reported in that country [1]. We estimate that the TMRCA of the isolates

from Paraguay dates back to December 2017 (June 2017 to May 2018, 95% HPD) and probably

originated in the midwestern region of Brazil (location probability 0.90). This would be the

second event of cross border transmission from Brazil, as our tree also shows isolates from

Haiti sampled in 2016 clustered with an isolate from Northeast Brazil also sampled in 2016

(posterior support = 0.97, location probability 0.97). These results indicate a possible role of

Brazil as a source for cross-border dispersion of the CHIKV ECSA lineage to other countries

in the Americas since its introduction into the country.

Discussion

More than 930,000 cases have been notified since CHIKV was first detected in Brazil in 2014

(4). Despite this large burden of disease, much is unknown about the origins of the virus

responsible for the Brazilian outbreaks. To get more insight regarding CHIKV dispersion

through different Brazilian regions and South American countries we generated 24 partial and

near complete genome sequences from the 2018-CHIKV-ECSA epidemic registered in the

state of Mato Grosso (MT), Midwest of Brazil, using a combined strategy of a mobile sequenc-

ing mission through this region, genomic, and epidemiological analysis.

Epidemiological data revealed yearly patterns of CHIKV transmission with a reduction in the

number of reported cases over 2018–2020, likely a consequence of an expected, gradual accumula-

tion of herd-immunity over the 7 years since its introduction in 2014. Phylogeographic recon-

structions suggest that at least two independent introductions of the ECSA lineage occurred in

MT from a dispersion event originating in the northeastern region of Brazil and estimated the

time of the most recent common ancestor (TMRCA) to be between late September 2016 for the

first introduction event, and early February 2017 for the second event. Furthermore, our analysis

suggests that the midwestern Brazilian region appears to have acted as a source of virus transmis-

sion towards Paraguay, a bordering South American country to the Brazilian Midwest.

In summary, our data reveals a complex pattern of CHIKV transmission between epidemic

seasons and sampled locations and suggests that Brazil has played a role as source for
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international dispersion (enhanced by cross-border transmission to other Americas countries

such as Paraguay and Haiti) of the CHIKV-ECSA genotype to other American countries.

Those results highlight the utility of combining genomic, epidemiological and evolutionary

methods to understand ongoing mosquito-borne epidemics. Our analyses further indicate that

additional data is required to better identify routes of CHIKV-ECSA genotype transmission

into Brazil, and to understand its transmission dynamics through other American countries.
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