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Abstract 
Background: HIV controllers (HICs) constitute a heterogeneous group 
of HIV-1 individuals able to suppress plasma viremia to low or 
undetectable levels in the absence of antiretroviral therapy. Host 
genetic factors may be involved in the sustained control of viral 
replication observed. We investigated the distribution and the 
potential impact of human leukocyte antigens (HLA)-B and -C alleles, 
killer immunoglobulin-like receptor (KIR) genes, single nucleotide 
polymorphisms (SNPs) of the NLRP3, CARD8 and IL-1β inflammasome 
genes, and CCR5Δ32 mutation on the viral control among HICs. 
Methods: In total, 28 HICs were categorized as persistent elite 
controllers (PECs, n = 7), ebbing elite controllers (EECs, n = 7), and 
viremic controllers (VCs, n = 14) according to the level of natural 
suppression of viremia. HLA alleles were assigned by sequencing-
based typing, KIR alleles by polymerase chain reaction (PCR) 
sequence-specific amplification, SNPs by real-time PCR, and the CCR5
Δ32 mutation by PCR. 
Results: Significant differences were observed in the pairwise 
comparisons of protective HLA-B alleles, KIR Bx genotype, KIR2DL3 + 
C1 pair, KIR2DL5, and KIR2DS5 allelic carrier frequencies among the 
HIC groups. Multivariate models showed that HICs without the 
KIR2DL3 allele or without KIR2DL3 + C1/C2 pair, with the HLA-C*08 
allele or with the NLRP3 rs10754558-G SNP had a higher mean hazard 
of a viral load above 2,000 copies/mL, while a lower mean hazard of 
this event was observed for HICs with KIR2DL5, KIR2DS1, KIR2DS5, 
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and KIR3DS1 alleles. Moreover, HICs with the KIR2DS5 allele had less 
risk of undergoing viral load (VL) blips within the same normalized 
period than those participants without this allele, while HICs without 
the KIR2DL3 allele had a mean higher risk of experiencing VL blips. 
Conclusions: These results indicate that innate immune mechanisms 
may play an essential role in modulating the sustained control of viral 
replication in HICs.

Keywords 
HIV controllers, viral load, HLA, KIR, CCR5 Δ32, Inflammasome SNPs.

 
Page 2 of 18

F1000Research 2021, 10:546 Last updated: 13 JUL 2021

mailto:nathalia.beatriz2008@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.53683.1
https://doi.org/10.12688/f1000research.53683.1


Introduction
Different levels of viremia control are observed among human immunodeficiency virus (HIV)-1-infected individuals.
Approximately 1% of the HIV-1-seropositive population suppresses viral replication to extremely low or undetectable
levels in the absence of antiretroviral therapy and are termed HIV controllers (HICs) or elite controllers (ECs) (Deeks &
Walker, 2007; Lambotte et al., 2005). HICs constitute a heterogeneous group of HIV-1-infected individuals, even when
compared to persons with low-level viremia, they exhibit marked genetic and immunologic heterogeneity (Pereyra et al.,
2008; Côrtes et al., 2015). Heterogeneity in viral load (VL), classification criteria and follow-up time to define the EC
profile is also observed among the studies (Gurdasani et al., 2014; Navarrete-Muñoz et al., 2020). The mechanisms
involved in the control of viral replication remain to be fully elucidated. Some studies point to the role of viral features in
this phenomenon, while others focus on the role of host genetic in the efficient control of HIV-1 observed among HICs
(Côrtes et al., 2015; Balasubramaniam et al., 2019).

Human leukocyte antigens (HLA) class I molecules have a crucial role in the cytotoxic T-lymphocyte (CTL) response.
Genes that encode these molecules have been consistently associated with distinct patterns observed in the dynamics of
HIV-1 infection (McLaren & Carrington, 2015), among which we can highlight the protective role attributed to the
HLA-B*27 andB*57 alleles in EC cohorts (Lécuroux et al., 2014;Migueles et al., 2000; Fellay et al., 2007; Pereyra et al.,
2010). However, the presence of HLA-B*27 and B*57 cannot be directly related to viral control, since some HIV-1-
infected individuals who harbor these alleles present absence of viremia control (Pereyra et al., 2008; Emu et al., 2008).
While HLA-B alleles are well-reported markers of HIV disease progression and control (McLaren & Carrington, 2015),
HLA-C alleles have been neglected. HLA-C alleles were generally considered inferior in restricting CTLs responses
compared to HLA-A and –B (Kulpa & Collins, 2011). On the other hand, they act as excellent ligands for killer
immunoglobulin-like receptor (KIR) receptors on natural killer (NK) cells and protect target cells from lysis mediated by
NK cells (Kulpa & Collins, 2011). In this context, the HLA-C locus emerged as an important host genetic determinant of
HIV infection outcomes. The HLA-C*08 andHLA-C*18 alleles have already been associated with better disease control
in a study of HIV controllers (Lazaryan et al., 2011), and the HLA-C*15 allele was a protective factor in a cohort of
exposed uninfected infants (Bardeskar et al., 2018). Moreover, a single-nucleotide polymorphism 35 kb upstream the
HLA-C locus (rs9264942) showed the most significant association with viral load (VL) control (Fellay et al., 2007;
Thørner et al., 2016; Malnati et al., 2017). This variant has been associated with high HLA-C mRNA (messenger
ribonucleic acid) levels and higher surface expression of HLA-C alleles (Fellay et al., 2007; Thørner et al., 2016;Malnati
et al., 2017).

Inflammasomes are cytosolic multiprotein complexes of the innate immune system responsible for activating inflam-
matory responses (Rathinam & Fitzgerald, 2016). These complexes regulate the maturation of cytokines of the IL-1
family, including IL-1β and IL-18 (Rathinam & Fitzgerald, 2016). Activation of the inflammasome during HIV-1
infection mainly contributes to immune hyperactivation, which is the main pathogenic mechanism of HIV-1 progression
(Marín-Palma et al., 2018). However, the relationship between inflammasome single nucleotide polymorphisms (SNPs)
and viral load control in the context of HIV-1 infection is still unclear. The genetic restriction to HIV-1 infection caused
by polymorphisms in the chemokine receptor CCR5 is another important factor that can modulate HIV-1 dynamics.
Homozygosity for a 32 base-pair deletion in theCCR5 gene (Δ32mutation) is considered as a resistant phenotype leading
to the protection of individuals against infection with HIV-1 R5 tropic lineages (Dean et al., 1996; Liu et al., 1996;
Samson et al., 1996; Marmor et al., 2011), while heterozygosity may result in in slower progression to acquired immune
deficiency syndrome (AIDS) (Huang et al., 1996; Sullivan et al., 2001).

Innate immunity mechanisms also participate in the sustained control of viral replication observed among ECs, mainly
effector responses mediated by NK cells (Tomescu et al., 2012). The activity of these cells contributes to reduce viral
replication in acute infection, thereby cooperating to the ability of ECs to control viremia (O'Connell et al., 2009).
Consistent associations betweenKIRgenes— expressed on the surface ofNK cells— and viral control have already been
described, highlighting the protective role conferred by KIR3DL1 associated with HLA-B molecules carrying the Bw4
motif (Martin et al., 2007). The inhibitory KIR2DL1, 2DL2, and 2DL3 recognize HLA-C ligands (Kulkarni et al., 2008),
but no consistent association between HLA-C/KIR alleles and viral control has been described so far. Other innate
immunological mechanisms have also been studied in ECs cohorts, including the ability of NK cells to induce cell death
by antibody-dependent cellular cytotoxicity (ADCC) (Lambotte et al., 2013).

Studies with HICsmay provide novel insights regarding host mechanisms of virus control (Hatano et al., 2009). Different
from previous studies withHICs from theUnited States and Europe (Lambotte et al., 2005; Pereyra et al., 2008;Walker&
Yu, 2013; Pernas et al., 2018), here, we have the opportunity to examine the role of these geneticmarkers in aHICs cohort
that contains a high degree of miscegenation, which characterizes the Brazilian population. Besides this, other genetic-
related particularities can be observed among Brazilians, such as the association of HLA-B*52 with the non-progression
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to AIDS (Teixeira et al., 2014). Therefore, in this study, we analyzed the distribution of HLA-B and -C, KIR, CCR5
genes, as well as selected SNPs to investigate their impact on the viral control observed in a cohort of Brazilian HICs.

Methods
Study subjects and ethical issues
The individual description of the HICs analyzed in this study had already been published (de Azevedo et al., 2017; Côrtes
et al., 2018; Caetano et al., 2020). Individuals who fulfilled the criteria of HICs were identified in a cohort of HIV-1
seropositive individuals followed at the Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz
(INI/FIOCRUZ), Rio de Janeiro, Brazil. These individuals were defined as subjects over 18 years old with documented
HIV-1 infection for >3 years and RNA viral load below the detection limit (40 or 80 copies/mL, depending on the year of
inclusion) in the absence of antiretroviral treatment. As this is a longitudinal study, these individuals were/have been
followed up and classified under one of the categories of viral control.

After 12 years of follow up, a cohort of 28 HICs could be composed including HIV-1-infected individuals classified in
three categories according to the plasmatic viral load (VL): (1) persistent elite controllers (PECs) if 100% of VLmeasures
were below the limit of detection (< LD; 50-80 copies/mL) for the respective available commercial assays (n = 7);
(2) ebbing elite controllers (EECs) if subjects had occasional (≤ 30%) episodes of transient low-level (> LD to
400 copies/mL) viremia (n = 7); and (3) viremic controllers (VCs) if most (≥ 70%) of VL determinations were between
51 and 2,000 copies/mL (n = 14). Occasional VL measurements above the upper limits were accepted for the EECs
and VCs. Participants were followed at least once every 6-12 months, starting in November 2008, to perform HIV-RNA
VL quantification and CD4+ T lymphocytes counts. In each visit, whole blood was collected into an ethylenediaminete-
traacetic acid (EDTA)-containing tube, and 1 mL was stored at -20 °C until use. At this moment, from the 28 individuals
[median follow-up = 9.02 years (interquartile range (IQR) = 6.46)], 11 are currently being followed up and 17 are no
longer study participants due to cART entry (n = 09) or loss of follow up (n = 08).

All participants provided written informed consent, and the ethical committee of Instituto Nacional de Infectologia
Evandro Chagas (INI-FIOCRUZ) approved the study (CAAE 1717.0.000.009-07). The corresponding documents can be
found as extended data (de Sá & Teixeira, 2021).

Genomic DNA extraction
DNAwas extracted fromwhole blood using theQIAampDNABloodMini Kit (QIAGEN,Hilden, Nordrhein-Westfalen,
Germany) according to the manufacturer’s instructions. The DNA concentration was determined using the Thermo
Scientific Nanodrop 2000 (Thermo Fisher Scientific, Waltham, Massachusetts, USA), and the filtrates containing the
isolated DNA were stored at �20 °C until used for genomic analysis.

HLA typing
High-resolution HLA-B and -C alleles typing was performed by automated nucleotide sequencing (sequencing-based
typing — SBT) according to the manufacturer’s instructions on the ABI platform using commercial kits (SECORE
Sequencing kit, Invitrogen by Life Technologies, Brown Deer, Wisconsin, USA). HLA-B and -C alleles were assigned
using a four-digit designation utilizing uTYPE® v6.0 SBT software (Invitrogen by Life Technologies, Brown Deer,
Wisconsin, USA). The grouping of HLA-B alleles in HLA Bw4 and/or Bw6 epitopes associated specificities followed
the Immuno Polymorphism Database (IPD)-International Immunogenetics Project (IMGT)/HLA nomenclature guide-
lines (Robinson et al., 2013). The grouping of HLA-C genes in C1 (HLA-C*01/*03/*07/*08/*12/*14/*16) and C2
(HLA-C*02/*04/*05/*06/*15/*17/*18) epitope-associated specificities was based in the classification currently used in
the literature (Mandelboim et al., 1996; Faridi & Agrawal, 2011; de Sá et al., 2020).

KIR genotyping
Qualitative analysis of KIR geneswas performed using a commercial kit based on sequence-specific primer amplification
methods — SSP (SSP KIR Genotyping Kit, Invitrogen, Brown Deer, Wisconsin, USA). A total of 14 KIR genes and
2 KIR pseudogenes (2DL1, 2DL2, 2DL3, 2DL4, 2DL5, 2DS1, 2DS2, 2DS3, 2DS4, 2DS5, 3DL1, 3DL2, 3DL3, 3DS1,
2DP1, and 3DP1) were screened using this approach. KIR AA and Bx genotypes designation followed the current
working definition, which characterizes these genotypes based on the combinations of haplotype A (absence of all the
activating genes, except KIR2DS4) and haplotype B (presence of one or more of the activating genes) (Uhrberg et al.,
1997; Fernandes-Cardoso et al., 2016).

Single nucleotide polymorphism selection and genotyping
We selected four single nucleotide polymorphisms (SNPs) in 3 inflammasome genes based on previously published
data (Pontillo et al., 2013) and considering the relevance of each gene in the inflammasome pathway: CARD8 (Caspase
Activation and Recruitment Domains-8) rs2043211 and rs6509365; NLRP3 (Nucleotide oligomerization domain–Like
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Receptor family, Pyrin domain-containing protein-3) rs10754558; and IL-1β rs1143634. Besides that, we selected HLA-
C rs9264942 C>T (TaqMan® genotyping assay C_29901957_10) based on the association of this SNP with a lower
HIV-1 viral load (Fellay et al., 2007, 2009; Wei et al., 2015). SNP genotyping was performed using commercially
available TaqMan assays (AppliedBiosystems/AB andLife Technologies) using theABI7500Real-Time platform (AB).
Allelic discrimination was carried out by means of the Thermo Fisher Connect Software® version 1.

CCR5 genotyping
DNA samples were PCR amplified to determine the presence of the CCR5 Δ32 mutation. Primers (CCR5-F: GCT GTC
TTT GCG TCT CTC CCA GGA and CCR5-R: CTC ACA GCC CTG TGC CTC TTC TTC) were used to amplify a
239 base-pair (bp) fragment covering the Δ32 mutation region. The cycling conditions were: 1 cycle 94°C 5 minutes;
30 cycles 94°C 1minute, 60°C 30 seconds, 72°C 2minutes; 1 cycle 72°C 10minutes. The PCR amplified products (5 ul)
were separated by agarose gel electrophoresis and visualized by ethidium bromide staining. A single band of 239 bp
indicated the CCR5/CCR5 wild-type genotype, while the heterozygous genotype CCR5/Δ32 was detected by 239 and
207 bp bands, and the homozygous genotype Δ32/Δ32 by a single band of 207 bp.

Statistical analyses
Direct count estimated the frequencies of HLA,KIR, SNPs andCCR5 alleles and genotypes. Kruskal-Wallis ANOVAby
Ranks test was used to compare the sociodemographic, clinical, and laboratory characteristics among the different HICs
groups for continuous numerical variables. In contrast, for categorical nominal variables, Fisher's exact test was used
in the evaluation of frequencies among the different HICs groups. Tests of equal proportions were used to evaluate the
allele carriers’ relative frequencies among theHICs groups. For comparative purposes, HLA-B genomic distribution data
from the general Brazilian population were extracted from REDOME (National Registry of Bone Marrow Donors,
BrazilianMinistry of Health) data (Rede Brasil de Imunogenética, 2018), and for HLA-Cwe used data available at Allele
Frequencies Net Database.

To estimate the hazard of a transitory loss of virological control, defined as the observation of the first VL
determination above 2,000 copies/mL, we calculated person-years (pY) at risk for each patient between HIV diagnosis
and the occurrence of an event. Individuals were censored either at the time of final observation, death, cART (combined
antiretroviral therapy) initiation, or the last follow-up visit/exam, whichever occurred first. The effect of various risk
factors on the outcome was assessed using hazard ratios (HR) and corresponding 95% confidence intervals (CI), which
were estimated through the Cox proportional hazard model (Therneau & Grambsch, 2000).

To evaluate the occurrence of multiple events of VL blips, herein defined as the number of detectable viral loads
counted after HIV diagnosis and until cART initiation, we calculated the incidences/rates of the number of viral loads per
pY for each patient, and 95% CI were estimated according to asymptotic standard errors calculated from a Gamma
distribution (Lehmann & Casella, 1998). The effect of various risk factors on the outcome was assessed by relative risks
(RR) and corresponding 95% CI were estimated employing the Negative Binomial (NB) models. Individual exposure
time (in years) was used as an offset in the NB models (Hilbe, 2011).

Two-tailed levels of significance ≤ 0.01, 0.05 and 0.1 were considered “highly significant”, “significant” and
“suggestive”, respectively. All statistical analysis was performed using the R statistical software package, version
3.4.1 (R Development Core Team, 2017).

Results
Clinical and epidemiological characteristics of HICs
Table 1 depicts the main clinical and epidemiological characteristics of the HICs cohort distributed according to the viral
control groups (de Sá & Teixeira, 2021). Overall, we found a similar frequency of females and males (16 [57.1%] and
12 [42.9%], respectively), while 21 (75%) of the individuals have identified themselves as heterosexual and 6 (21.4%) as
men who have sex with men (MSM). Most heterosexual male (75%) and MSM subjects (83.3%) belonged to the VCs
group. The ethnic background composition was diverse, with an unequal distribution of White, Brown, and Black
participants among groups of HICs (P = 0.04). Participants had a median age of 32 (IQR 10.4) years old, with a similar
median age observed among the PECs (33 years old; IQR 6.9), EECs (37 years old; IQR 13.9), and VCs (30 years old;
IQR 9.8) groups.

All HICs groups displayed a median CD4+ T cells count above 800 cells/μL (IQR 431). Further details about
immunological and virological characteristics of most HICs of this study were depicted in previous studies from our
group (Bello et al., 2009; Côrtes et al., 2015, 2018; de Azevedo et al., 2017; Caetano et al., 2020).
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Distribution of HLA-B, -C, KIR, and CCR5 genes among HICs
Table 2 describes the relative frequencies of HLA-B and -C, KIR, and CCR5Δ32 alleles carriers found in the different
HICs groups. Due to the dependence between the genotypes, we did not perform this comparative analysis for the SNPs
included in this study. However, the complete genetic characterization of the analyzedmarkers is depicted in Table 3.We
observed significant differences between PECs and EECs for protective HLA-B alleles, KIR Bx genotype, KIR2DL5,
and KIR2DS5 allelic carrier frequencies. Among EECs and VCs, the frequencies of KIR Bx genotype, KIR2DL3 + C1
pair, KIR2DL2, KIR2DL5, and KIR2DS2 alleles carriers were also significantly distinct. The only genetic marker with
significantly different frequencies between PECs and VCs was KIR2DS5. It is noticeable that HLA-B protective alleles
(HLA-B*27, B*52, and/or B*57) were found in 71% of the PECs, 43% of the VCs, and only 14% of the EECs.

To check for an enrichment of protective HLA alleles in our cohort, we compared the classical protective HLA-B and -C
frequencies here obtained with those from the general Brazilian population, and with HIV-1-infected individuals who
progressed to AIDS (Teixeira et al. 2014; Biberg-Salum et al., 2018), considered as HIV non-controllers (HIV-NC)
(Table 4). For HLA-B, we noted that the frequency of carriers of these alleles in our HICs cohort (0.464; n = 13) is
on average 3.34-fold higher (P< 0.001) than in the overall Brazilian population (0.139; n = 396,740) and 3.22-fold higher
(P= 0.014) in theHIV non-controllers group (0.144; n = 29). Similarly, for HLA-Cwe noted that the frequency of carriers
of these alleles in our HICs cohort (0.571; n = 16) is on average 3.60-fold higher (P < 0.001) than in the overall Brazilian
population (0.159; n = 42) and 3.50-fold higher (P < 0.001) than in the HIV non-controllers group (0.161; n = 26). Only

Table 1. Clinical and epidemiological data of HIV controllers (HICs).

Features Overall PECs
(N = 7)

EECs
(N = 7)

VCs
(N = 14)

P-valuea

Age (years)b (IQR) 32.72 (10.4) 33.7 (6.9) 37.2 (13.9) 30.1 (9.8) 0.5291

Gender; n (%)

Female 16 (57.1) 5 (17.9) 6 (21.4) 5 (17.9) 0.084

Male 12 (42.9) 2 (7.1) 1 (3.6) 9 (32.1)

Skin color; n (%)

Black 7 (25) 0 (0) 1 (3.6) 6 (21.4) 0.0431

Brown 11 (39.3) 6 (21.4) 2 (7.1) 3 (10.7)

White 10 (35.7) 1 (3.6) 4 (14.3) 5 (17.9)

Educationc; n (%)

Illiterate 1 (3.6) 1 (3.6) 0 (0) 0 (0) 0.2544

Early childhood education 1 (3.6) 0 (0) 1 (3.6) 0 (0)

Primary 6 (21.4) 0 (0) 3 (10.7) 3 (10.7)

Lower-secondary 6 (21.4) 2 (7.1) 2 (7.1) 2 (7.1)

Upper-secondary 11 (39.3) 3 (10.7) 1 (3.6) 7 (25)

Bachelor 3 (10.7) 1 (3.6) 0 (0) 2 (7.1)

HIV transmission route; n (%)

Heterosexual 21 (75.0) 6 (21.4) 7 (25) 8 (28.6) 0.2301

MSM 6 (21.4) 1 (3.6) 0 (0) 5 (17.9)

Unknown 1 (3.6) 0 (0) 0 (0) 1 (3.6)

Clinical parameters

CD4 Count (cells/μL)d (IQR) 994 (431) 1219 (246) 1071 (597) 825 (465) 0.1533

Viral Load (copies/mL)d (IQR) 120 (492) 49 (0) 82 (32) 548 (507) < 0.0001

aFor categorical nominal variables, P-values were calculated using Fisher's exact test. For continuous numeric variables, P-values were
calculated using Kruskal-Wallis ANOVA by Ranks test. Differences were considered significant with a value of P < 0.05.
bAge at HIV diagnosis.
cClassification according to the International Standard Classification of Education (ISCED) maintained by the United Nations Educational,
Scientific, and Cultural Organization (UNESCO).
dMiddle cumulative CD4+ T Cells Count and HIV-1 Viral Load.
Abbreviations: HICs = HIV controllers; PECs = persistent elite controllers; EECs = ebbing elite controllers; VCs = viremic controllers. IQR =
interquartile range.

Page 6 of 18

F1000Research 2021, 10:546 Last updated: 13 JUL 2021



Table 2. Relative frequencies ofHLA-B, HLA-C, KIR, andCCR5Δ32 alleles carriers’amongHIV controllers (HICs).

Features PECs
N=7

EECs
N=7

VCs
N=14

PECs vs.
EECs

VCs vs.
EECs

PECs vs.
VCs

n Freq n Freq n Freq P-valuea P-valuea P-valuea

Any protective HLA-Bb 5 0.714 1 0.143 6 0.429 0.002 0.071 0.289

HLA-B*27 1 0.143 0 0.000 1 0.071 NC NC 0.992

HLA-B*52 1 0.143 1 0.143 2 0.143 0.983 0.992 0.992

HLA-B*57 4 0.571 0 0.000 3 0.214 NC NC 0.139

Any protective HLA-Cc 2 0.286 4 0.571 8 0.571 0.861 0.999 0.288

HLA-C*08 0 0.000 2 0.286 2 0.143 0.802 0.944 NC

HLA-C*15 0 0.000 1 0.143 4 0.286 0.984 0.832 NC

HLA-C*18 2 0.286 2 0.286 3 0.214 0.996 0.998 0.998

KIR Bx genotype 6 0.857 2 0.286 11 0.786 0.037 0.001 0.992

KIR3DL1 + Bw4 0 0.000 0 0.000 2 0.143 NC NC NC

KIR3DL1 +Bw4/Bw6 5 0.714 4 0.571 9 0.643 0.998 0.999 0.998

KIR3DL1 + Bw6 1 0.143 2 0.286 3 0.214 0.996 0.998 0.992

KIR3DS1 + Bw4 1 0.143 1 0.143 2 0.143 0.984 0.992 0.992

KIR3DS1 + Bw4/Bw6 1 0.143 0 0.000 2 0.143 NC NC 0.992

KIR3DS1 + Bw6 1 0.143 0 0.000 0 0.000 NC NC 0.832

KIR2DL1 + C2 3 0.429 1 0.143 3 0.214 0.548 0.992 0.754

KIR2DL1 + C1/C2 4 0.571 3 0.429 11 0.786 0.998 0.139 0.754

KIR2DL2 + C1 0 0.000 0 0.000 0 0.000 NC NC NC

KIR2DL2 + C1/C2 3 0.429 0 0.000 6 0.429 NC NC 0.999

KIR2DL3 + C1 0 0.000 3 0.429 0 0.000 0.386 0.033 NC

KIR2DL3 + C1/C2 4 0.571 3 0.429 8 0.571 0.998 0.964 0.999

KIR2DS1 + C2 2 0.286 0 0.000 1 0.071 NC NC 0.667

KIR2DS1 + C1/C2 2 0.286 1 0.143 4 0.286 0.984 0.832 0.998

KIR2DS2 + C1 0 0.000 0 0.000 0 0.000 NC NC NC

KIR2DS2 + C1/C2 2 0.286 0 0.000 6 0.429 NC NC 0.944

KIR2DL2 4 0.571 1 0.143 7 0.500 0.066 0.007 0.999

KIR2DL3 7 1.000 7 1.000 11 0.786 NC NC NC

KIR2DL5 5 0.714 1 0.143 7 0.500 0.002 0.007 0.667

KIR2DS1 4 0.571 1 0.143 5 0.357 0.066 0.363 0.754

KIR2DS2 3 0.429 1 0.143 7 0.500 0.548 0.007 0.999

KIR2DS3 1 0.143 0 0.000 4 0.286 NC NC 0.832

KIR2DS4 6 0.857 6 0.857 14 1.000 0.984 0.832 0.832

KIR2DS5 6 0.857 1 0.143 5 0.357 <0.001 0.363 <0.001

KIR3DL1 6 0.857 6 0.857 14 1.000 0.984 0.832 0.832

KIR3DS1 4 0.571 1 0.143 4 0.286 0.066 0.832 0.398

CCR5Δ32 1 0.143 1 0.143 2 0.143 0.984 0.992 0.992
aP-values were calculated using Tests of Equal Proportions. Differences were considered significant with a value of P < 0.05.
bProtective HLA-B alleles included HLA-B*27, B*52, and B*57 alleles.
cProtective HLA-C alleles included HLA-C*08, C*15, and C*18 alleles.
Abbreviations: PECs =persistent elite controllers; EECs = ebbing elite controllers; VCs = viremic controllers. NC=not calculated. N=number
of individuals in each HIC group. n = observed number of an allele/genetic marker carriers. Freq = relative frequency of carriers for each
allele/genetic marker, calculated as the number of carriers/N.
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two PECs carried the CC genotype in the HLA-C rs9264942 polymorphism. The KIR Bx genotype was found in 86%
of PECs, 79% of the VCs, and 29% of EECs. The KIR3DL1+Bw4 genotype was detected in only two VCs, and the
KIR3DS1+Bw4 genotype in four participants (one PEC, one EEC, and two VCs). All PECs and EECs had the KIR2DL3
allele. The CCR5Δ32 mutation was found in four heterozygous (WT/Δ32) participants (one PEC, one EEC, and two
VCs), resulting in an overall allelic frequency of 7.1%, and no homozygous (Δ32/Δ32) participants were identified in this
cohort. Therefore, we cannot assign any relation between this genetic marker and the distinct patterns of viremia control
observed in these HICs.

Episodes of high-level and detectable viremia among HICs
To test the potential relevance of genetic host factors in the risk of a transitory loss of virological control in some HICs,
we conducted Cox proportional hazard multivariate analysis to identify factors associated with the occurrence of the
high-level viremia (> 2,000 copies/mL) (Table 5). A higher mean hazard of this event was observed for HICs without
the KIR2DL3 allele [aHR = 79.098 (3.236-1933.264); P = 0.007], HICs with the HLA-C*08 allele [aHR = 8.379
(1.181-59.472); P = 0.034], HICs with the C/G genotype [aHR = 7.462 (2.294-2505.478); P = 0.042] and G/G genotype
[aHR = 75.817 (2.294-2505.478); P = 0.015] in the NLRP3 polymorphism (rs10754558), and HICs without the
KIR2DL3 + C1/C2 pair [aHR = 11.78 (1.602-86.619); P = 0.015] than for their counterparts. In the other way, a lower
mean hazard of this event was observed for HICs with the following alleles: KIR2DL5 [aHR = 0.131 (0.023-0.738);
P = 0.021], KIR2DS1 [aHR = 0.109 (0.014-0.867); P = 0.036], KIR2DS5 [aHR = 0.058 (0.007-0.466); P = 0.007], and
KIR3DS1 [aHR = 0.108 (0.013-0.876); P = 0.037] when compared with their counterparts.

The relative risk of occurring any event of detectable viremia (VL blip) was also evaluated by means of the negative
binomial (NB) multivariate models (Table 6). Overall, HICs with the KIR2DS5 allele [aRR = 0.294 (0.122-0.705);

Table 4. Distribution of protective HLA-B and HLA-C alleles of HICs, HIV non-controllers and the Brazilian
general population.

HLA alleles Brazilian
general
population
(BGP)a

N = 2.847.869

HICs
N = 28

HIV-NCb

N = 201
BGP vs.
HICs

HICs vs.
HIV-NC

BGP vs.
HIV-NC

HLA-B n Freq n Freq n Freq P-value P-value P-value

Any protective
HLA-Bc

396,740 0.139 13 0.464 29 0.144 < 1e-12 0.013 0.999

HLA-B*27 126,605 0.044 2 0.071 4 0.02 < 1e-12 0.700 0.946

HLA-B*52 110,700 0.039 4 0.143 11 0.055 < 1e-12 0.976 0.998

HLA-B*57 159,435 0.056 7 0.25 14 0.07 < 1e-12 0.801 0.999

Brazilian
general
population
(BGP)d

N = 264

HICs
N = 28

HIV-NCe

N = 161
BGP vs.
HICs

HICs vs.
HIV-NC

BGP vs.
HIV-NC

HLA-C n Freq n Freq n Freq P-value P-value P-value

Any
protective
HLA-Cf

42 0.159 16 0.571 26 0.161 3,1 e-06 0.0008 0.999

HLA-C*08 20 0.076 4 0.143 10 0.062 0.964 0.984 0.995

HLA-C*15 22 0.083 5 0.179 11 0.068 0.919 0.978 0.998

HLA-C*18 0 0 7 0.25 5 0.031 NC 0.985 NC

P-values were calculated using the unconditional logistic regression model. Differences were considered significant with a value of * P <
0.05.
aData from Brazilian Registry of Bone Marrow Donors (REDOME).
bData from Teixeira et al., 2014.
cProtective HLA-B alleles included HLA-B*27, B*52, and B*57 alleles.
dData from Allele Frequencies Net Database (http://www.allelefrequencies.net).
eData from Biberg-Salum et al., 2018.
fProtective HLA-C alleles included HLA-C*08, C*15, and C*18 alleles.
Abbreviations: HICs = HIV controllers; HIV-NC = HIV non-controllers; BGP = Brazilian general population; N = number of individuals; n =
observed number of an allele carriers; Freq = relative frequency of carriers for each allele, calculated as the number of carriers/N; NC = not
calculated.
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P = 0.006] had less risk of undergoing VL blips within the same normalized period than those participants without
this allele. Conversely, HICs without the KIR2DL3 allele [aHR = 4.987 (1.174-21.196); P = 0.03] had a mean higher
risk of experiencing VL blips within the same normalized period than those with this allele. The results of Cox's
proportional hazard multivariate analysis and Negative Binomial (NB) models of the HLA-C and inflamassome SNPs
are depicted in Tables 7 and 8.

Our results point to a protective role for KIR2DL3 and KIR2DS5 alleles since the absence of the former was associated
both with a higher risk of a transitory loss of virological control and to a higher risk of any event of detectable viremia
(VL blip); while the presence of the latter was associated to a lower risk of these events. Epidemiological features were

Table 5. Effect of risk/protective factors associated with a transitory loss of virological control estimated by
Cox proportional hazard models.

Features Levelsa Eventb pYc HR (95% CI); P-value aHR (95% CI)d; P-value

Overall 10 304,61

Gender Female 3 191,09 Reference Reference

Male 7 113,51 6.42 (1.281-32.189);
0.024

4.644 (0.772-27.926);
0.093

KIR2DL3 1 8 291,62 Reference Reference

0 2 12,99 9.647 (1.556-59.798);
0.015

79.098 (3.236-1933.264);
0.007

KIR2DL5 0 7 160,04 Reference Reference

1 3 144,56 0.487 (0.125-1.895);
0.299

0.131 (0.023-0.738);
0.021

KIR2DS1 0 8 198,98 Reference Reference

1 2 105,62 0.528 (0.11-2.533);
0.425

0.109 (0.014-0.867);
0.036

KIR2DS5 0 8 163,41 Reference Reference

1 2 141,2
0.294 (0.062-1.389);
0.122

0.058 (0.007-0.466);
0.007

KIR3DS1 0 8 207,63 Reference Reference

1 2 96,98
0.598 (0.125-2.853);
0.519

0.108 (0.013-0.876);
0.037

HLA-C*08 0 7 278,82 Reference Reference

1 3 25,79
6.3 (1.398-28.398);
0.017

8.379 (1.181-59.472);
0.034

KIR2DL3 + C1/C2 1 5 187,93 Reference Reference

0 5 116,67
2.239 (0.596-8.411);
0.232

11.78 (1.602-86.619);
0.015

NLRP3 (rs10754558) C/C 3 177.62 Reference Reference

C/G 6
112.91 3.415 (0.842-13.843);

0.085
7.462 (1.074-51.847);
0.042

G/G 1
14.08 6.509 (0.602-70.387);

0.123
75.817 (2.294-2505.478);
0.015

C 12 468.14 Reference Reference

G
8 141.07 2.462 (0.682-8.888);

0.169
3.294 (0.773-14.032);
0.107

aLevels = 0 (absent); 1 (present).
bFirst HIV-1 VL determination above 2,000 copies/mL.
cpY: person-years at risk were calculated for each patient between HIV diagnosis and the occurrence of an event.
dHazard ratioswere adjustedbygender andeducationwhenever applicable,whichwere variables associatedwithanuncontrolled viremic
event in bivariate analysis (P < 0.2).
Abbreviations: HR = hazard ratios; aHR = adjusted hazard ratios.
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introduced in the multivariate models for controlling bias in the statistical analysis. The limited sample size and the study
design do not allow us to explore the associations involving these epidemiological features depicted in Tables 5 and 6.

Discussion
In the present study, we characterized the distribution of HLA-B, HLA-C, KIR, SNPs of the NLRP3, CARD8, IL-1β,
and CCR5Δ32 mutation in a cohort of HICs with different levels of virological control. Our results show that host
genes classically associated with protective mechanisms are present in our HICs cohort. Despite the small number of
participants analyzed, we observed a higher frequency of HLA-B protective alleles in this cohort than in the general
Brazilian population and Brazilian HIV non-controllers (Teixeira et al., 2014), confirming the results of many studies
showing enrichment of protective B*27 andB*57 alleles inHICs (Migueles et al., 2000; Fellay et al., 2007; Pereyra et al.,
2010; Lécuroux et al., 2014).We also observed that B*27 and B*57 allele carriers’ frequencies were not different among
HICs groups. However, when considered together with HLA-B*52 composing the ‘protective HLA-B alleles’ group, a
significant difference of these alleles frequencies between PECs and EECs was observed (P = 0.002, Table 2). In this
study, multivariate models showed that some genetic markers were associated with a transitory loss of virological control
and/or of an event of detectable viremia (VL blip). A lower mean hazard for the risk of transitory loss of virological
control was observed for KIR2DL5, KIR2DS1, KIR3DS1, and KIR2DS5 alleles. In contrast, the HLA-C*08 allele and
the absence of KIR2DL3 and KIR3DL3+C1/C2 alleles were associated with an increased risk of this event (Table 5).
Additionally, KIR2DL3 allele absence was also associated with a higher risk of an event of detectable viremia (VL blip),
and KIR2DS5 was also associated with a lower risk of these events (Table 6), pointing to a protective role of these
alleles. Interestingly, no association was found for the CC genotype in the HLA C rs9264942 polymorphism with either
the hazard of an uncontrolled viremic event or the risk of undergoing VL blips. This variant (CC genotype) has been
associatedwith a higher viral load control (VL) in previous studies (Fellay et al., 2007; Thørner et al., 2016;Malnati et al.,
2017).

Studies have been associated KIR2DL3 receptor and its ligand HLA-C1 with a lower VL and a higher CD4+ T cell
count (Körner et al., 2014). In agreement with these studies, we observed an increased HR of a high-level viremic event
and a higher risk of experiencing VL blips in HICs without KIR2DL3. Inhibitory KIR receptors (KIR2DL2/KIR2DL3
heterozygosity) were associated with resistance to HIV-1 infection among female sex workers in the absence of
their respective HLA ligands. These results indicate that absence of these ligands may reduce the threshold for NK cell
activation via activating KIR, resulting in NK cytotoxic activity and early elimination of HIV-1 infected cells (Jennes
et al., 2006).

KIR2DS5 allele carriers had a lower mean hazard of high-level viremia (> 2,000 copies/mL) events and, in the mean, less
VL blip events than those without the allele (Table 5). This activating gene was associated with the protection against
HIV-1 infection of exposed uninfected infants (Chavan et al., 2016) and reducing HIV-1 transmission from mother to
child (Omosun et al., 2018). It remains unclear what mechanisms at the KIR2DS5 allele might result in this protection.
We speculate that the presence of activating mechanisms driven by this gene could impact viral control. This mechanism
may be due to the activation signal delivered to NK cells when activating receptors bind their ligand on the target cell
surface, leading to the activation of these cells and eliminating the pathogen (Srivastava et al., 2003).

Table 6. Effect of risk/protective factors associated with multiple events of viral load blips estimated by
Negative Binomial (NB) models.

Features Levelsa Number of eventsb pYc RR (95% CI); P-value aRR (95% CI)d; P-value

Overall 308 313,83

KIR2DL3 1 260 289,49 Reference Reference

0 48 24,34
2.669 (0.616-11.563);
0.189

4.987 (1.174-21.196);
0.03

KIR2DS5 0 210 175,5 Reference Reference

1 98 138,33
0.508 (0.199-1.298);
0.157

0.294 (0.122-0.705);
0.006

aLevels = 0 (absent); 1 (present).
bNumber of events: number of viral load blips (defined as the number of detectable HIV-1 viral loads after HIV diagnosis).
cpY: person-years at risk were calculated from HIV diagnosis until a cART treatment initiation.
dRelative risks were adjusted by gender, age at HIV diagnosis, education, and skin color whenever applicable, which were variables
associated with multiple events of viral load blips in the bivariate analysis (P < 0.2).
Abbreviations: RR = relative risk. aRR = adjusted relative risk.
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The relevance of NK cell function regarding the HIC status has been suggested by genetic studies (Martin et al., 2002,
2007). The effect of the combination of KIR3DS1+ NK cells with the Bw4 epitope reduces the susceptibility to HIV-1
infection, improves viremia control, and decreases CD4+ T cells depletion (Martin et al., 2002; Alter et al., 2007, 2009).
Moreover, in agreement with our results, the KIR3DS1 gene has been indicated as a protective factor in the resistance
to HIV in different routes of exposure (Boulet et al. 2008; Chavan et al. 2014; Habegger de Sorrentino et al. 2013;
Tallon et al. 2014). KIR2DL5 has already been associated with a reduced risk of HIV-1 infection and reduced HIV-1
transmission among Africans (Jennes et al., 2006; Omosun et al., 2018), but there is no previous report associating this
allele with virological control. The KIR2DS1 gene bind HLA-C molecules of the C2 group (Folley et al., 2008). It has
already been significantly associated with a lower viral load in HIV-1 patients from India (Chavan et al., 2014) and
South Africa (Wong et al., 2010).

The HLA-C*08 allele and the rs10754558 G allele were associated with an increased risk of transitory loss of virological
control in this study. Several researchers have reported the positive influence of these alleles in HIV disease course
(Lazaryan et al., 2011; Shepherd et al., 2015;Mhandire et al., 2018; Pontillo et al., 2010, 2012). The presence of the C*08
allele has already been associated with a high CD4+ T cell count (Mhandire et al., 2018), and this allele was enriched

Table 7. Cox's proportional hazard multivariate analysis of the HLA-C and inflamassome single nucleotide
polymorphisms (SNPs).

Features Alleles/
Genotypes

Eventa pYb HR (95% CI); P-value aHR (95% CI)c; P-value

Overall 10 304,61

HLA-C (rs9264942) T/T 5 134.17 Reference Reference

C/C 0 14.99 NC NC

T/C 5 155.44 0.87 (0.252-3.009);
0.826

0.763 (0.187-3.116);
0.706

T 15 423.79 Reference Reference

C 5 185.43 0.79 (0.188-3.317);
0.748

0.818 (0.186-3.609);
0.791

CARD8 (rs2043211) A/A 4 151.33 Reference Reference

A/T 6 140.99 1.566 (0.441-5.561);
0.488

1.751 (0.352-8.712);
0.494

T/T 0 12.28 NC NC

A 14 443.66 Reference Reference

T 6 165.56 1.173 (0.302-4.545);
0.818

1.273 (0.298-5.444);
0.745

CARD8 (rs6509365) A/A 3 103.19 Reference Reference

A/G 7 189.14 1.267 (0.326-4.919);
0.732

1.477 (0.35-6.235);
0.596

G/G 0 12.28 NC NC

A 13 395.51 Reference Reference

G 7 213.71 1.024 (0.279-3.756);
0.972

1.191 (0.316-4.494);
0.797

IL-1β (rs1143634) G/G 7 221.07 Reference Reference

A/A 0 7.04 NC NC

G/A 3 76.49 1.309 (0.334-5.13);
0.699

1.026 (0.22-4.777);
0.974

G 17 518.64 Reference Reference

A 3 90.58 1.079 (0.188-6.19);
0.932

0.937 (0.15-5.866);
0.945

aFirst HIV-1 VL determination above 2,000 copies/mL.
bpY: person-years at risk were calculated for each patient between HIV diagnosis and the occurrence of an event.
cHazard ratioswere adjustedbygender andeducationwhenever applicable,whichwere variables associatedwith anuncontrolled viremic
event in bivariate analysis.
Abbreviations: HR = hazard ratios; aHR = adjusted hazard ratios; NC = not calculated.
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among HIV controllers (Lazaryan et al., 2011) and long-term non-progressors (LTNPs) (Shepherd et al., 2015). The
NLRP3 rs10754558-G SNP has already been described as a protective factor against HIV-1 infection in different ethnic
groups (Pontillo et al., 2010, 2012). Moreover, in vitro assays showed that rs10754558 was associated with NLRP3
mRNA stability since the PBMCs isolated the CG and GG patients increase the NLRP3 expression approximately 2-fold

Table 8. Negative binomial (NB) models of the HLA-C and inflamassome single nucleotide polymorphisms
(SNPs).

Features Alleles/
Genotypes

Number of
eventsa

pYb RR (95% CI); P-value aRR (95% CI)c; P-value

Overall 308 114626

HLA-C
(rs9264942)

T/T 141 54208 Reference Reference

C/C 0 5434 NC NC

T/C 167 54984 1.015 (0.405-2.544);
0.974

1.671 (0.669-4.176);
0.272

T 449 163400 Reference Reference

C 167 65852 0.785 (0.271-2.274);
0.656

1.054 (0.382-2.906);
0.919

NLRP3
(rs10754558)

C/C 114 58743 Reference Reference

C/G 175 48388 1.791 (0.653-4.908);
0.257

1.978 (0.762-5.135);
0.161

G/G 19 7495 1.167 (0.167-8.16);
0.877

3.714 (0.578-23.878);
0.167

C 403 165874 Reference Reference

G 213 63378 1.321 (0.443-3.938);
0.617

1.612 (0.582-4.463);
0.358

CARD8
(rs2043211)

A/A 137 53667 Reference Reference

A/T 169 57697 1.328 (0.495-3.563);
0.573

0.8 (0.274-2.331); 0.682

T/T 2 3262 0.204 (0.011-3.846);
0.289

0.075 (0.004-1.428);
0.085

A 443 165031 Reference Reference

T 173 64221 1.067 (0.348-3.277);
0.909

0.814 (0.271-2.441);
0.713

CARD8
(rs6509365)

A/A 98 38696 Reference Reference

A/G 208 72668 1.459 (0.536-3.972);
0.46

1.179 (0.446-3.121);
0.74

G/G 2 3262 0.224 (0.012-4.273);
0.32

0.115 (0.006-2.169);
0.149

A 404 150060 Reference Reference

G 212 79192 1.108 (0.383-3.207);
0.85

1.001 (0.368-2.724);
0.998

IL-1β
(rs1143634)

G/G 222 81499 Reference Reference

A/A 0 2542 NC NC

G/A 86 30585 0.92 (0.322-2.626);
0.876

1.8 (0.691-4.684); 0.229

G 530 193583 Reference Reference

A 86 35669 0.746 (0.203-2.741);
0.659

1.23 (0.369-4.103);
0.736

aNumber of events: number of viral load blips (defined as the number of detectable HIV-1 viral loads after HIV diagnosis).
bpY: person-years at risk were calculated from HIV diagnosis until a cART treatment initiation.
cRelative risks were adjusted by gender, age at HIV diagnosis, education and skin color whenever applicable, which were variables
associated with multiple events of viral load blips in the bivariate analysis (P < 0.2).
Abbreviations: RR = risk ratios or relative risk; aRR = adjusted relative risk; NC = not calculated.
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when compared to CC patients (Ravimohan et al., 2018). These results indicate that the protection to the disease exerted
by the variant possibly depends on the stable expression of the NLRP3. Although our findings do not corroborate
previous studies, it is relevant to note that the current study has some limitations, as the lack of a functional NK cell
characterization of HICs and the limited number of participants enrolled in our cohort. EC cohorts are difficult to establish
and maintain, given that they represent a rare group of individuals. Therefore, to obtain more reliable results, additional
studies with larger populations and functional studies are needed to better understand the importance and role of theHLA-
C*08 and the rs10754558 G allele in the context of HIV infection.

In conclusion, our results showed an association between the absence and presence of host immunogenetic markers with
the frequencies of high-level viremia episodes and the frequency of VL blips in our HICs cohort, highlighting the
protective role of KIR2DL3 andKIR2DS5. Besides, we confirmed that protective HLA-B andHLA-C allelic frequencies
are higher in HICs than in HIV-1 non-controllers and in the general population. Although the limitations of this study, the
results presented here provide an essential contribution to understanding the genetic factors that can modulate viral
control in these individuals. Additional studies aiming to identify the role of host genetics in persistent vs. transient
control of HIV-1 replication in HICs will undoubtedly help amore efficient clinical management of this particular cohort.
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