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Immune reconstitution inflammatory syndrome (IRIS) is an inflammatory complication
associated with an underlying opportunistic infection that can be observed in HIV-infected
individuals shortly after the initiation of antiretroviral therapy, despite successful
suppression of HIV viral load and CD4+ T cell recovery. Better understanding of IRIS
pathogenesis would allow for targeted prevention and therapeutic approaches. In this
study, we sought to evaluate the metabolic perturbations in IRIS across longitudinal time
points using an unbiased plasma metabolomics approach as well as integrated analyses
to include plasma inflammatory biomarker profile and whole blood transcriptome. We
found that many lipid and amino acid metabolites differentiated IRIS from non-IRIS
conditions prior to antiretroviral therapy and during the IRIS event, implicating the
association between oxidative stress, tryptophan pathway, and lipid mediated signaling
and the development of IRIS. Lipid and amino acid metabolic pathways also significantly
correlated with inflammatory biomarkers such as IL-12p70 and IL-8 at the IRIS event,
indicating the role of cellular metabolism on cell type specific immune activation during the
IRIS episode and in turn the impact of immune activation on cellular metabolism. In
conclusion, we defined the metabolic profile of IRIS and revealed that perturbations in
metabolism may predispose HIV-infected individuals to IRIS development and contribute
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to the inflammatory manifestations during the IRIS event. Furthermore, our findings
expanded our current understanding IRIS pathogenesis and highlighted the significance
of lipid and amino acid metabolism in inflammatory complications.
Keywords: immune reconstitution inflammatory syndrome (IRIS), cell metabolism, metabolomics, immune
activation, HIV
INTRODUCTION

Antiretroviral therapy (ART) effectively controls HIV viral
replication and leads to the restoration of immune function,
which has greatly improved the life expectancy of people living
with HIV (PWH). Growing evidence suggests that a fraction of
HIV-infected patients, however, can still develop severe
inflammatory complications and experience clinical
deterioration within the first few weeks following the initiation
of ART despite successful suppression of HIV viral load and
recovery of CD4+ T cells (1). This condition, termed immune
reconstitution inflammatory syndrome (IRIS), presents with
clinical manifestations such as worsening lymphadenopathy,
fever, malaise, and worsening pulmonary infiltrates even with
microbiologic control of the underlying co-infection. Notably,
mycobacterial co-infections, such as Mycobacterium tuberculosis
(TB) and Mycobacterium avium complex (MAC), are frequently
associated with IRIS that can lead to higher morbidity and
mortality rates (2–5). The incidence of IRIS can vary
from <5% to as high as 50% and is dependent on several risk
factors including severe lymphopenia prior to starting ART as
well as disseminated infection with high antigen load (6).
Current management for IRIS involves clinical observation,
drainage of inflammatory collections, use of non-steroid anti-
inflammatory drugs (NSAIDs), or use of corticosteroids for
either prevention or treatment in high-risk TB patients (5, 7, 8).

A comprehensive understanding of IRIS is evolving, and it is
now well appreciated that IRIS pathogenesis is characterized by
dysregulated host innate and adaptive immune responses to the
underlying co-infection. More specifically, IRIS is associated with
hyperactivation of polyfunctional antigen-specific CD4+ T cells
resulting in exaggerated production of pro-inflammatory
cytokines such as TNF and IFN-g (3, 9–14). Additionally,
patients who develop IRIS display monocyte activation with
increased production of pro-inflammatory cytokines along
with altered gene expression profile both prior to ART
initiation and during the IRIS event (6, 15). Elevated levels of
soluble plasma biomarkers, cytokines, and chemokines
associated with both adaptive and innate immune activation
have also been described in IRIS including IL-6, IL-8,
granulocyte-macrophage colony-stimulating factor (GM-CSF),
sCD14 and the afore mentioned TNF and IFN-g (3, 6, 16–18). IL-
6, IL-8, GM-CSF, and sCD14 are of innate immune origins
reflecting pathogen activation of monocytes and macrophages (6,
16, 18). Chemokine IL-8 is also responsible for neutrophil
recruitment to sites of inflammation (16). The increased levels
of IFN-g and TNF indicate a T-helper 1 bias in IRIS T cell
responses. Furthermore, the role of pro-inflammatory cytokines
org 2
in mediating IRIS pathogenesis is elucidated through blockade or
ablation of IFN-g, TNF, and IL-6 in a MAC-IRIS murine model
as well as in IRIS patients who are refractory to steroid treatment
(10, 11, 19). Such robust systemic inflammation observed in IRIS
may be reflected in substantial immunometabolic shifts (5).
Indeed, IRIS was recently linked with higher metabolic activity
monitored by nuclear imaging technique 18F-fluorodeoxyglucose
positron emission tomography (FDG-PET). FDG-PET results
showed higher total glycolytic activity and standardized uptake
values in IRIS patients, which was also supported by increased
expression of glucose transporter 1 (GLUT-1) on both CD4+ T
cells and CD14+ monocytes (20).

A large number of studies underscores the importance of
intracellular metabolism for the maintenance of both T cell and
monocyte functions, since immune cells must cope with different
catabolic and anabolic demands in response to antigen activation
and other inflammatory stimuli. In particular, metabolic
reprogramming characterized by glycolytic shift and increased
mitochondria function greatly contributes to T cell effector
function and macrophage activation (21–28). Therefore, the
identification of immunometabolic requirements as well as
dysfunctional metabolic pathways may further unravel the
nuances surrounding IRIS pathogenesis.

The application of metabolomics offers an untargeted global
approach for the identification of distinct metabolic signatures.
Metabolomics studies have demonstrated that immune activation
associated with mycobacterial infections or autoimmune
conditions substantially change the metabolic state of the
immune system, which, in turn, could also affect the host
response to the pathogen (29–34). To comprehend how
metabolic disturbances contribute to IRIS development and
progression, we devised an unbiased plasma metabolomics
approach to identify altered metabolite composition at
longitudinal time points in PWH who developed IRIS compared
to those who did not upon ART commencement. Our findings
suggested alterations of the metabolic profile in IRIS patients
mainly occurred before the initiation of ART and during the
IRIS event with perturbed lipid and amino acid metabolism that
further correlated with plasma inflammatory biomarkers.
MATERIALS AND METHODS

Study Design and Patient Cohort
HIV infected ART-naïve patients with CD4+ T cell count <100
cells/mL were enrolled in a prospective observational study at the
National Institutes of Health [PET Imaging and lymph node
assessment of IRIS in persons with AIDS (PANDORA)
June 2021 | Volume 12 | Article 693074
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NCT02147405]. The study was approved by the ethics
committee and all participants signed informed consent prior
to any study procedures. ART was started within 2 weeks of
study enrollment following standard treatment guidelines. IRIS
was diagnosed based on the AIDS Clinical Trials Group IRIS
definition criteria including CD4+ T-cell count increased by ≥50
cells/µl or >two-fold from pre-ART levels and/or HIV plasma
RNA reduced by >0.5 log10 copies/mL, and patient experienced
signs and symptoms of inflammatory conditions attributed to a
specific pathogen or condition that were not consistent with the
development of a new infection, predicted clinical course of a
pre-existing infection, or side effects of ART (4).

Metabolomics
Cryopreserved plasma samples from 13 IRIS and 17 non-IRIS
HIV-infected patients at the pre-ART, 1-2 months, and 12
months after ART initiation time points were collected. Non-
targeted metabolomics analysis was performed at Metabolon, Inc
using previously published method (35). Briefly, plasma samples
underwent methanol extraction, and the resulting extract was
used for metabolite analysis by ultra-high-performance liquid
chromatography/tandemmass spectrometry in both positive and
negative ion modes along with gas chromatography/mass
spectrometry to maximize compound detection and accuracy.
Metabolites were then identified by comparing the spectral
signature of sample metabolites to a reference library at
Metabolon, Inc. Spectral peaks were used for metabolite
identification by a proprietary visualization and interpretation
software. Area under the curve for the spectral peaks was used for
metabolite quantification. Raw data generated from peak
quantification were then normalized to correct for variation in
multi-day experiments, where each compound was normalized
to a median equal to one. The raw values after normalization are
included in Supplementary Table 1.

Plasma Biomarker Measurements
Concentrations of inflammatory biomarkers, including soluble PD-
1, soluble CD14, IL-6r,MCP1, GMCSF, TNF, IL-8, IL-6, IL-2, IL-1b,
IL-12p70, IL-10, IFN-g, and MPO, were measured in cryopreserved
plasma samples at the pre-ART and month 1 time points using a
customMeso Scale Discovery electrochemiluminescencemultiarray
kit following manufacturer recommendations. D-dimer was
measured by an enzyme-linked fluorescent assay on a VIDAS
instrument (bioMé rieux, Durham, North Carolina).

Statistical Methods
Comparisons of patients’ baseline characteristics between the
IRIS, non-IRIS, and mycobacterial-IRIS groups were performed
using the nonparametric Mann-Whitney U test. Frequencies of
female sex and race were assessed using Chi-square test. BMI at
the pre-ART, month 1, and month 12 time points were
compared using the Wilcoxon signed rank test.

Differentially expressed metabolites (DEMs) were determined
by multiple t-tests in a log2 transformed matrix comparing
individual metabolite levels of IRIS and non-IRIS patients.
FDR correction was not made for the identification of DEMs
Frontiers in Immunology | www.frontiersin.org 3
given the exploratory nature of the study. Venn diagram was
used to visualize unique and shared differentially expressed
metabolites. Hierarchical cluster analysis was performed using
the Ward’s method (with 100X bootstrap), and principal
component analysis (PCA) was performed using JMP
Statistical Discovery PRO (Version 13). Decision trees were
employed to identify a minimal set of markers allowing
separation between IRIS from non-IRIS, and mycobacterial
IRIS and other types of IRIS using J48 algorithm implemented
in the WEKA program (Waikato Environment for Knowledge
Analysis, version 3.6.11, University of Waikato, New Zealand)
(36). In order to estimate the classification accuracy of decision
tree models, we performed the sensitivity and specificity
measurement using the receiver–operating characteristic curve
(ROC) in JMP Statistical Discovery PRO (Version 13).

Co-expression module analysis for metabolic pathways was
executed using the CEMiTool package (37). This package
computes and identifies modules based on co-expressed/
regulated pathways that were altered in a specific sample
group. Module pathways were annotated based on reference
library provided byMetabolon Inc. The file was in a *.gmt set and
the enrichment values of each patient was used in correlation
plots. The correlation profiles between metabolic pathways and
plasma biomarkers at different time points were examined using
Spearman correlation matrices. Only statistically significant
correlations (p-values < 0.05 with r values above 0.7 and below
-0.7) were included in the network visualization. Circos plots
were used to illustrate the networks as previously reported (38).

RNA Extraction and Library Preparation
Whole blood samples from the pre-ART, month 1, and month 12
post-ART longitudinal time points were collected and sequenced in
2 batches indicated in Supplementary Table 1. All whole blood
samples were extracted using the PAXgene 96 Blood RNA Kit
(Qiagen, Valencia, CA) following manufacturer’s instructions. RNA
quality was assessed using 2100 Bioanalyzer RNA Pico 6000 kit
(Agilent Technologies, Santa Clara, CA). Following total RNA
extraction, each sample was subjected to purification steps using
Agencourt RNAClean XP beads and Globin Removal Mix and
instructions provided in the TruSeq Stranded Total RNA Sample
Preparation Guide (Illumina, Guide, Part# 15021048, Rev E).

For the first set of samples, the TruSeq Stranded Total RNA
Sample Preparation Kit was used to prepare sequencing libraries
exactly as specified in the manufacturer’s recommended
procedure followed by the usage of the RNA Adapter Plate for
dual indexing (Illumina, Guide, Part# 15021048, Rev. E). The
final libraries were assessed on the 2100 Bioanalyzer using
the DNA 1000 chip (Agilent Technologies) and quantified
using the Kapa Quantification Kit for Illumina Sequencing
(Kapa Biosystems, Boston, MA) on the CFX384 Real-Time
PCR Detection System (Bio-Rad Laboratories, Inc, Hercules,
CA). Libraries were then prepared for clustering to the flow
cell. On-board cluster generation and paired-end 76 base pair
sequencing were completed on the NextSeq550 (Ilumina, Inc,
San Diego, CA) using a High Output 150 cycle reagent kit. Three
more NextSeq runs were completed to increase the mapping
June 2021 | Volume 12 | Article 693074
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density. For the second set of samples, the TruSeq Stranded
mRNA Sample Preparation Kit was used to prepare sequencing
libraries exactly as specified in the manufacturer’s recommended
procedure followed by the usage of the RNA Adapter Plate for
dual indexing (Illumina, Guide, Part# 15031047, Rev. E). The
final libraries were assessed on the 2100 Bioanalyzer using the
DNA 1000 chip (Agilent Technologies). The fragment size
distribution of the libraries was within the manufacturer’s
specifications. TruSeq libraries were quantified on the CFX96
Touch real-time PCR instrument (BioRad, Hercules, CA) using
the Kapa Library Quant Universal qPCR mix and kit instructions
(Kapa Biosystems, Wilmington, MA). All samples were
individually sized and normalized to a 2nM concentration.
Samples were combined in equimolar ratios to create a single
pool, titrated to 9pM, and sequenced as 2 x 93 bp reads on
the HiSeq 2500 instrument using the HiSeq Rapid SBS 200
cycle kit, according to the manufacturer’s recommended
procedure (Illumina, San Diego, CA). A total of four Rapid
runs were performed to increase the mapping coverage.
Targets from the two batches were mapped and identified by
ENSG. Batch correction was performed using ComBat-seq
(https://github.com/zhangyuqing/ComBat-seq) from the
sva package to minimize experimental variance prior to
subsequent analysis.

Multi-Omics Factor Analysis (MOFA)
Multi-omics factor analysis (MOFA) is a computation method
that provides the characterization and visualization of multi-
layered biological processes to analyze the heterogeneity
between IRIS and non-IRIS conditions (39–42). In total, 8 IRIS
and 12 non-IRIS patients at the pre-ART and month 1 time points
with paired metabolome, transcriptome, and concentration of
plasma biomarker measurements were included in the analysis.
The MOFA model was employed to integrate the omics data
with a series of parameters including only paired samples in
all datasets, selection of factors with the removal of zero
variance, and factor tolerance to establish an exploratory model
(tolerance = 1). The mixture of variables with similar variance was
represented as latent factors based on an unsupervised factor
analysis. The MOFA model is able to automatically determine
Gaussian and Poisson distributions. All pipelines and analysis are
available in http://www.bioconductor.org/packages/devel/bioc/
html/MOFA.html.
Frontiers in Immunology | www.frontiersin.org 4
RESULTS

Patient Characteristics
Thirty HIV-infected ART naïve patients (22 males, 8 females) were
identified in the study cohort with a median age of 37 years
[interquartile range (IQR), 34-41]. Baseline demographic and
clinical characteristics are shown in Table 1. The sex proportion
was comparable and not significantly different between IRIS (female
23%) and non-IRIS (female 29%) groups (p-value=0.697). Prior to
ART initiation, the median CD4+ T cell count of all patients was 19
cells/mL (IQR, 9-42), and plasma HIV-RNA was 5.3 log10 copies/
mL (IQR, 4.9-5.8). Thirteen patients were diagnosed with IRIS as
previously described (20) with a median time between ART
initiation and onset of IRIS of 30 days (IQR, 27.5-36). There were
no statistically significant differences in demographics and clinical
characteristics between the IRIS and non-IRIS patients. The detailed
descriptions of IRIS types, co-infections, IRIS onset date, and
treatment are listed in Supplementary Table 1. Among the 13
IRIS patients, seven were diagnosed with mycobacterial IRIS (TB or
MAC). Other types of IRIS included cryptococcal, Kaposi’s
sarcoma, and progressive multifocal leukoencephalopathy IRIS
(Supplementary Table 1). All patients had significant CD4+ T
cell count recovery as well as HIV-RNA viral load suppression after
the initiation of ART (Supplementary Figures 1A, B). A significant
increase in BMI was also observed in all patients after ART at the
month 1 and month 12 time points (p<0.001) (Supplementary
Figure 1C).

The Plasma Metabolite Composition
Is Different Between IRIS and
Non-IRIS Groups
In order to understand the major metabolic alterations
associated with IRIS development, we performed an untargeted
metabolomics profiling that identified over 800 metabolites in all
plasma samples from a library of over 5000 metabolites
composed of amino acids, peptides, carbohydrates, lipids,
energy molecules, nucleotides, cofactors and vitamins, and
xenobiotics. First, we sought to investigate global differences in
the metabolome of patients who developed IRIS compared to
those who did not at each study time point. By using a threshold
of p<0.05, 68 differentially expressed metabolites (DEMs) were
identified at the pre-ART time point (Figure 1A). After 1 month
of ART initiation or during the IRIS event, 69 DEMs were
TABLE 1 | Baseline Demographic and Clinical Characteristics of Study Participants.

All Patients (n = 30) Non-IRIS (n = 17) IRIS (n = 13) P-value IRIS vs. Non-IRIS

Age, years median (IQR) 37 (34-41) 36 (35-41) 37 (33-43) 0.812
Female sex, No. (%) 8 (27) 5 (29) 3 (23) 0.697
Race,
White 1 0 1
African American 14 8 6
Hispanic 14 8 6
Asian 1 1 0

BMI, kg/m2, median (IQR) 22.7 (19.4-24.6) 22.7 (18.6-24.8) 22.7 (19.5-24.3) 0.613
CD4+ T cell/mL, median (IQR) 19 (9-42) 17 (7-32) 26 (11-44) 0.502
HIV RNA, log10 copies/mL, median (IQR) 5.3 (4.9-5.8) 5 (4.5-5.6) 5.7 (5.1-6) 0.053
June 2021 |
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identified (Figure 1B). At the month 12 time point, the number
of DEMs was reduced to 28 (Figure 1C). Detailed DEM identities
and reported values are shown in Supplementary Table 1. Most of
the DEMs were not shared between time points suggesting that the
metabolome of IRIS patients is dynamic and changes over
time (Figure 1D).

Following the identification of individual DEMs, we found
that the DEMs were also able to distinguish most of IRIS and
non-IRIS patients at each time point based on principal
component analysis (PCA) (Figures 2A–C). We extended
these findings by using an unsupervised hierarchical clustering,
which further confirmed the discriminatory power of the DEMs
for IRIS and non-IRIS patients at each time point
(Supplementary Figures 2A–C). These findings demonstrated
that IRIS patients already exhibited a distinct metabolic profile
Frontiers in Immunology | www.frontiersin.org 5
prior to the initiation of ART that persist through the IRIS event.
Additionally, alterations in metabolic profile were still detectable
up to a year after ART commencement although the differences
were less conspicuous.

We next attempted to identify the most informative
metabolites driving the distinct metabolic signatures for IRIS
development at each time point. By using a machine learning
approach named decision tree, we were able to select the
minimum number of metabolites that differentiated IRIS from
non-IRIS groups. Notably, at the pre-ART time point, three
metabolites were defined as the most informative: oxidized
cysteinyl-glycine (Cys-Gly Oxidized), 1-myristoyl-2-palmitoyl-
GPC (14:0/16:0), and sulfate of piperine metabolite C18H21NO3

(Figure 2D). The combined result of these three metabolites could
distinguish IRIS from non-IRIS group with high level of accuracy
A

D

B C

FIGURE 1 | Global metabolite expression comparing IRIS with non-IRIS patients. Volcano plots depicting differences in metabolite levels between IRIS and non-IRIS
patients are shown for the pre-ART (A), month 1 (B), and month 12 (C) post-ART time points. The significance threshold (p-value=0.05) is indicated by the red
dashed line. Metabolites above the significance threshold are defined as the differentially expressed metabolites (DEMs). Each point represents an identified
metabolite that is significantly upregulated (red) or downregulated (blue) in the IRIS group. (D) Venn diagram illustrating the numbers of differentially expressed
metabolites is shown. Blue color represents the number of significantly downregulated metabolites comparing IRIS and non-IRIS groups, and red color represents
the number of metabolites that are upregulated.
June 2021 | Volume 12 | Article 693074
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[area under the curve (AUC): 0.93, p<0.0001] (Figures 2G). At
month 1, quinolinate, gluconate, and serine were the top analytes
driving the distinction (AUC: 0.93, p<0.0001) (Figures 2E, H),
and lastly at month 12, adipoylcarnitine (C6-DC), 1-(1-enyl-
palmitoyl)-2-oleoyl-GPE (P-16:0/18:1), and adipate (C6-DC)
accounted for the separation of the clinical groups (AUC: 0.92,
p<0.0001) (Figures 2F, I).

Altered Amino Acid and Lipid Metabolism
Are Associated With IRIS Development
We next sought to evaluate metabolic alterations on a pathway
level that could differentiate IRIS from non-IRIS condition using
a co-expressed pathway modules approach as described by Russo
et al. (37). Cellular processes, especially cell metabolism, are
highly complex and often regulated through many interacting
networks. Therefore, the co-expression analysis would extract
co-regulated metabolic pathways associated with IRIS
pathogenesis that may have more biological relevance. Briefly,
the co-expressed pathway analysis groups metabolites with
similar fold-change measurements comparing IRIS to non-IRIS
groups and their respective annotated metabolic pathways based
Frontiers in Immunology | www.frontiersin.org 6
on the Metabolon reference library into modules (M). Module
activity or representation distinguishing IRIS and non-IRIS
condition was indicated by the computed network enrichment
scores (NES). From our analysis, we identified three annotated
co-expressed modules with varying levels of representation at
each study time points comparing IRIS with non-IRIS groups
(Figure 3A). At the pre-ART time point, module 4 (M4) initially
had low representation in patients who developed IRIS that
became upregulated at month 12 (Figure 3A). M3 had low
representation in the IRIS group at the month 1 time point
followed by an increased representation at month 12
(Figure 3A). M1 was only identified to be underrepresented at
the month 1 time point (Figure 3A). Furthermore, the identified
modules encompassed metabolic pathways of amino acid and
lipid metabolism (Figure 3B). Specifically, M1 was defined by
metabolic pathways for long chain fatty acids and
polyunsaturated fatty acids n3 and n6 metabolism. M3
included pathways for sphingolipid and phosphatidylcholine
metabolism. The final module M4 was composed of histidine
and gamma glutamyl amino acid metabolism (Figure 3B). By
using the top metabolic pathway identified in each module in an
A B C

D E F

G H I

FIGURE 2 | Differentially expressed metabolites (DEMs) prediction of IRIS. Identified DEMs are analyzed using PCA for the pre-ART (A), month 1 (B), and month 12
(C) time points. Decision tree models of the predicting metabolites are shown for the pre-ART (D), month 1 (E), and month 12 (F) time points. ROC analysis
illustrating the decision tree discrimination power is shown in (G), (H), and (I) for the pre-ART, month 1, and month 12 time points respectively.
June 2021 | Volume 12 | Article 693074
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unsupervised hierarchal clustering, we found that these three
pathways were unable to distinctly cluster individual samples
based on time points (Supplementary Figure 2D). These results
demonstrated that although specific metabolic pathways
were differentially and dynamically represented in IRIS at each
study time point, the top module pathways alone were
not sufficient to characterize the nuances in metabolic
changes over time.

Plasma Pro-Inflammatory Biomarkers
Correlate With Metabolic Pathways in IRIS
Following the identification of DEMs and metabolic pathways
unique to IRIS development, we investigated the association of
metabolic pathways with plasma biomarker levels at the pre-ART
and month 1 time points. At the pre-ART time point, there were
no significant differences in the levels of measured plasma
biomarkers between IRIS and non-IRIS patients (Figure 4A).
After 1 month of ART initiation or during the IRIS event,
biomarker measurements for soluble (s) CD14, MCP1, GMCSF,
TNF, IL-8, and IL-6 were elevated in IRIS patients (Figure 4B).

Next, we correlated the metabolic pathway enrichment scores
with plasma biomarker measurements using Spearman
correlation matrices. Correlations achieving statistical
significance (p-value <0.05, -0.7 < r > 0.7) were identified at
the pre-ART and month 1 time points for both IRIS and non-
IRIS groups (Figure 4C). We found that most of the significant
correlations between plasma biomarkers and metabolic pathways
occurred in the IRIS group during the IRIS event. The correlated
metabolic pathways were in the lipid and amino acids
metabolism families, indicating their potential regulatory
involvement in IRIS pathogenesis and the implication of
immune activation on lipid and amino acid metabolism
disruptions. Specifically, lysophospholipid negatively correlated
with TNF, and long chain fatty acids positively correlated with
sCD14 and IL-2. Histidine metabolism positively correlated with
sPD-1 and negatively correlated with IL-12p70. Lastly, tyrosine
metabolism positively correlated with MPO and IL-8.
Frontiers in Immunology | www.frontiersin.org 7
Metabolome Complements the Plasma
Biomarker Profile and the Transcriptome
in a Multi-Omics Analysis to
Characterize IRIS
Given the complexity of metabolic regulations in immune
responses and IRIS pathogenesis, we performed an integrative
multi-omics analysis of the metabolome, transcriptome, and
plasma biomarkers comparing IRIS and non-IRIS patients. In
total, there were 8 IRIS patients and 12 non-IRIS patients with
full pairing of the three omics datasets (Supplementary Table 1).
Through the MOFA pipeline, we identified four latent factors that
had discriminatory power to differentiate IRIS and non-IRIS
conditions based on the omics data input (Supplementary
Figure 3). Latent factor 1 (LF1) exhibited the strongest
differentiating power between IRIS and non-IRIS groups,
whereas latent factor 4 had the lowest differentiating potential.
Within LF1, plasma biomarkers and transcriptome showed higher
degree of variance compare to the metabolome. We also
determined the top 10 metabolites and plasma biomarkers, and
the top 20 transcriptomic pathways that contributed to the
differentiating potential of LF1 (Supplementary Figures 3B–D).
Specifically, metabolites identified in LF1 were mostly amino acids
or amino acids derivatives, and the transcriptomics pathways
included RNA processing and modification, B cell signaling, and
antimicrobial peptides transcription.

Plasma Metabolomic Profiles Distinguish
Mycobacterial IRIS From Other
Types of IRIS
As co-infections may have distinct impact on IRIS pathogenesis,
we further compared the metabolic profiles of patients with
different types of IRIS stratified based on mycobacterial IRIS
and IRIS caused by other pathogens (Supplementary Table 1).
Among the 17 HIV-infected non-IRIS individuals, six had
mycobacterial co-infection (Supplementary Table 1). At
baseline, the overall plasma metabolome based on all identified
metabolites was not affected by the different co-infections
A B

FIGURE 3 | Metabolic pathway module analysis. Co-expressed pathway modules are obtained by using metabolite fold-difference values comparing IRIS with non-
IRIS groups analyzed with the CEMiTool R package. (A) Module activity for each time point is shown. Color scale reflects the network enrichment score (NES) of
each module. Red color indicates a high degree of representation and blue represents low degree of representation. (B) Metabolic pathways that define the three
identified modules are depicted. Bar graphs show the –log10 adjusted p-value of fold difference from the metabolomics dataset. The vertical dashed red line indicates
an adjusted p-value of 0.05.
June 2021 | Volume 12 | Article 693074

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Pei et al. Metabolic Signatures of HIV-Associated IRIS
(Supplementary Figure 4). Instead, the metabolic differences
relied on specific metabolites and metabolic pathways. In
particular, at the pre-ART time point, 58 metabolites were
exclusively found in mycobacterial IRIS whereas 69 were
uniquely modulated in the other types of IRIS group depicted in
a Venn diagram (Figure 5A). Using the identified DEMs
comparing mycobacterial IRIS, other types of IRIS, and non-
IRIS groups, PCA and unsupervised hierarchical clustering
analysis demonstrated that these three groups could be
separated with minimal overlap (Figure 5B and Supplementary
Figures 5A–D, 6A, 6C). The same Venn diagram and PCA
analyses were repeated for the month 1 time point, and we
Frontiers in Immunology | www.frontiersin.org 8
found that DEMs were sufficient to distinguish all three groups
(Figures 5E, F and Supplementary Figures 5E–H, 6B, 6D). We
then employed the decision tree model and ROC analysis to select
predictive metabolites at the pre-ART and month 1 time points.
Results revealed that adipoylcarnitine C6 DC and eugenol sulfate
could differentiate the outcome of mycobacterial IRIS, other types
of IRIS, or non-IRIS conditions at the pre-ART time point
(Figures 5C, D). At the month 1 time point, decision tree
model determined succinimide, 10-nonadecenoate 19 1n9, and
carotene-diol-3 exhibited discriminating power among the study
groups (Figure 5G). ROC analysis identified an overall lower
performance than that observed at the pre-ART time point, except
A B

C

FIGURE 4 | Association between metabolic pathways and systemic inflammation in IRIS. Fold change analysis between IRIS and non-IRIS groups of HIV viral load,
total CD4+ T cell count, and levels of plasma biomarkers are shown for the pre-ART (A) and month 1 (B) time points. The statistically significant differences are
shown in red bars. (C) Spearman correlations between levels of plasma biomarkers and normalized enrichment score from the co-expressed pathway modules at
the pre-ART and month 1 time points for IRIS and non-IRIS groups are depicted. Blue arcs represent negative correlations, and red arcs represent positive
correlations. Only statistically significant correlations with p-value <0.05 and correlation coefficient (r) above 0.7 or below -0.7 are portrayed.
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for discriminating the other IRIS group from mycobacterial IRIS
or non-IRIS groups (Figure 5H).

Furthermore, co-expressed modules analysis was performed
with same methodology used before for the comparison of
mycobacterial IRIS, other types of IRIS and non-IRIS groups.
There were 5 modules identified. Module representation for each
Frontiers in Immunology | www.frontiersin.org 9
group varied at different time points (Figure 6A). Metabolic
pathways identified in each module belonged in the lipid and
amino acid metabolism families, similar to those identified
comparing IRIS and non-IRIS groups (Figure 6B). When the top
pathway fromeachmodulewas analyzed for each individual sample,
we were unable to cluster the different group separately at the
A B

C D

E F

G H

FIGURE 5 | Unique metabolic signatures in different types of IRIS. Venn diagrams illustrating the number of unique and shared DEMs comparing mycobacterial IRIS
to other types of IRIS at the pre-ART (A) and month 1 (E) time points are shown. DEMs were used in a PCA plot to depict dimensionally reduced data distribution of
the mycobacterial IRIS, other types of IRIS, and non-IRIS groups at the pre-ART (B) and month 1 (F) time points. Decision tree models based on the DEMs are
presented for the pre-ART (C) and month 1 (G) time points. ROC analysis of the metabolites identified by the decision trees were used to test discrimination power
between each study group for pre-ART (D) and month 1 (H) time points. P-values for all the AUC measures were < 0.001.
A B

FIGURE 6 | Metabolic pathway module analysis for different types of IRIS. (A) Co-expressed pathway modules are obtained by CEMiTool R package using the
measured metabolite levels of mycobacterial IRIS, other types of IRIS, and non-IRIS groups at the pre-ART and month 1 time points. Module representation is
reflected by the network enrichment scores (NES) (B) Annotated metabolic pathways that define each statistically significant module are shown.
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pre-ART andmonth 1 time points (Supplementary Figures 6E, F),
which indicated these were not the only differentiating factors to
discriminate study groups. Together, these findings revealed a
perturbed host metabolism of IRIS that could potentially be
associated with the underlying opportunistic pathogens and/or
driven by differential gene regulation and inflammatory
cytokine release.
DISCUSSION

It has been well characterized that IRIS is associated with
aberrant innate and adaptive inflammatory responses to an
underlying co-infection in PWH. Metabolic regulation of
immune functions has gained growing attention in recent
years. Here, we investigated the role of immunometabolism in
IRIS pathogenesis through a comprehensive analysis of the
plasma metabolome. We examined the longitudinal metabolic
signatures across the pre-ART, IRIS event or 1 month post-ART
equivalent, and 12 months post-ART time points. In addition, we
compared various types of IRIS caused by different opportunistic
infections. To our knowledge, this is the first study to present
metabolomics analysis integrated with other biological
parameters, such as plasma biomarkers and the transcriptome,
to further decipher IRIS pathogenesis. Collectively, our findings
identified potential lipid and amino acid metabolism
perturbations in IRIS patients at the pre-ART and IRIS event
time points, which could provide novel insight on predictors and
therapeutic targets for IRIS.

We first identified more differentially expressed metabolites
and correlations between metabolic pathways and inflammatory
plasma biomarkers in IRIS patients prior to ART initiation and
during the IRIS event. This finding not only reflected the
association between cellular metabolism and the inflammatory
manifestation during the IRIS event, but also revealed disrupted
metabolism could be a predisposing factor for IRIS development.
Following the resolution of IRIS inflammatory manifestations,
metabolic differences diminished drastically by the month 12
time point between IRIS and non-IRIS groups. Although a small
number of DEMs, mostly belonging to amino acid and nucleotide
metabolism pathways, were still detectable at the month 12 time
point, these differences could be contributed to residual
inflammation, lifestyle, or medication. Furthermore, the
detection of metabolic changes at the pre-ART and IRIS event
in the current study was consistent with our previous findings of
increased metabolic activity accompanied with higher glucose
transporter expression on CD4+ T cells and monocytes in IRIS
patients prior to ART initiation and during the IRIS event (20).
IRIS pathogenesis has been characterized by exaggerated
immune activation including elevated plasma pro-
inflammatory biomarkers (6, 9, 16), skewed inflammatory
monocyte population (6), and robust polyfunctional antigen-
specific CD4+ T cell responses (3, 9, 12). In the context of
metabolism and immune activation, infection by invading
pathogen and T cell activation through T cell receptor ligation
trigger metabolic reprogramming defined by increased glycolysis
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and modified mitochondria function in T-helper 1 cells,
monocytes, and macrophages (22, 27, 28, 43). Metabolic
reprogramming, in turn, is also essential to effector function in
immune cells as blocking glycolysis and mitochondria function
can inhibit immune responses (22, 27). Metabolites can also act
as immunological mediators to regulate TCR activation,
epigenetic modifications, and expression of transcription
factors or cytokines (23, 44, 45). Consequently, disturbance of
the metabolic machinery and the generation of metabolites can
have a profound effect on immune activation and immune
activation may also induce metabolic changes. Therefore, our
observation of an altered plasma metabolite profile prior to ART
initiation and during the IRIS event conform with the established
connection between metabolic regulations and immune function.

The use of metabolite decision tree models, co-expressed
pathway module analysis, and plasma biomarker correlations
revealed amino acid and lipid metabolites as the predominant
variables that differentiated IRIS from non-IRIS conditions. First,
amino acids are known as the building blocks for protein
synthesis and protein-mediated inflammatory signaling (46,
47). In the pre-ART decision tree, oxidized cysteinyl-glycine
(cys-gly), a dipeptide composed of amino acid glycine with an
attached L-cysteinyl group, was the top metabolite to distinguish
IRIS from non-IRIS conditions. Cys-gly is an intermediate
metabolite in the glutathione metabolism pathway that can
regulate oxidative stress (48). Elevated level of cys-gly has been
shown to be associated with chronic immune activation in HIV-
infected individuals on ART (33). Therefore, the level of cys-gly
at the pre-ART time point could be an indication for heightened
immune activation and predisposes patients for the development
of IRIS. In the month 1 time point decision tree, another amino
acid derivative quinolinate was the first metabolite to
differentiate IRIS from non-IRIS condition. The catabolism of
tryptophan to kynurenine and subsequent downstream
metabolites including quinolinate have been implicated to have
immunoregulatory roles. Specifically, quinolinate is involved in
neurodegenerative diseases associated with AIDS (49, 50).
Increased activity of tryptophan metabolism, quantified by
elevated plasma ratio of kynurenine to tryptophan (KT ratio),
has also been observed in HIV patients and is associated HIV
disease severity and higher mortality rate (51, 52). In addition,
proinflammatory cytokine IFN-g induces the activity of the rate-
limiting enzyme indoleamine-2,3-deoxygenase (IDO) in
tryptophan metabolism (53). Thus, the tryptophan/kynurenine
pathway and associated metabolites could play a role in IRIS
pathogenesis as IRIS is characterized by exaggerated immune
responses and robust IFN-g production by antigen-specific
T cells.

In addition to the decision tree predictive metabolites,
correlations between metabolic pathways and plasma
biomarkers have revealed that amino acids histidine and
tyrosine metabolism may influence the inflammatory status of
IRIS. In particular, histidine metabolism was negatively
correlated with pro-inflammatory cytokine IL-12p70 and
positively correlated with inhibitory marker soluble PD-1.
Reduced histidine metabolism has been described in chronic
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inflammatory disease such as systemic lupus erythematosus (30,
31, 54). IFN-g has also been demonstrated to upregulate the
histidine catabolizing enzymes resulting in the depletion of free
histidine (55). Therefore, the correlations between histidine
metabolism and two plasma biomarkers essential for T cell
activation emphasized the potential inhibitory effect of
histidine metabolism in immune activation and IRIS
pathogenesis. Tyrosine metabolism was found to positively
correlate with both myeloperoxidase (MPO) and IL-8, which
are essential for neutrophil responses during an infection. The
induction of IL-8 facilitates innate immune responses to an
infection and mediate neutrophil chemotaxis (56). Neutrophils
at the inflammatory sites secrete enzyme MPO to generate
antimicrobial agent hypochlorous acid and the enzymatic
activity of MPO can be enhanced by free tyrosine in the
extracellular space (57). As a result, the correlation of tyrosine
metabolism with both IL-8 and MPO provide insight on the role
of neutrophils in mediating the aberrant inflammatory responses
in IRIS.

Conversely, lipid metabolism is also crucial for immune cell
activation to provide both cell membrane structure and high energy
fuel to maintain memory responses (58, 59). We have identified
polyunsaturated fatty acids (PUFAs), long-chain fatty acids
(LCFAs), sphingolipids, phosphatidylcholines (PCs), and
lysophospholipids (LPLs) metabolism pathways to be differentially
expressed in IRIS. Another recent TB-IRIS metabolomics study also
described an altered plasma lipid metabolism signature in TB-IRIS
patients and highlighted the distinct differences of PUFAs (34).
PUFAs and PUFA-derived lipidmediators including prostaglandins
and lipoxins exhibit immunoregulatory functions in both the innate
and adaptive immune systems to modulate T cell activation,
cytokine production, cell membrane permeability, and
intracellular signaling (34, 60). In addition, dietary
supplementation of PUFAs were found to be effective in
modulating inflammatory responses in inflammatory bowel
disease (IBD) animal models (61). LCFAs are also crucial to
support T cell effector differentiation and function. When LCFA
oxidation is irreversibly inhibited, T cell differentiation and memory
T cell secondary activation were drastically hindered (62, 63). Lastly,
sphingolipids, PCs, and LPLs are membrane lipids that not only
provide membrane structure, but also function as signaling
molecules to elicit host immune responses in autoimmune and
cardiovascular diseases (64, 65). Sphingolipids have been targeted as
therapeutic measures in both asthma and IBD to reduce the levels of
pro-inflammatory cytokines and alleviate inflammation (66).
Together, our results and previously published studies provide
evidence for the intimate involvement of fatty acid metabolism in
inflammation and IRIS pathogenesis.

In an attempt to further delineate the implication of
metabolomics in IRIS pathogenesis, we employed the MOFA
model to incorporate the metabolome, transcriptome, and plasma
biomarker profile. We have demonstrated the success of this
approach previously in settings such as TB, diabetes, and
leishmaniasis, providing important insights into the pathogenesis
of these pathological conditions (40, 41, 67). The IRIS metabolome
provided complementary information that expanded our
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understanding of the profound immune activation observed in
IRIS patients. Within MOFA, the metabolic and transcriptomic
pathways variance was largely driven by amino acid metabolism
and protein translation machineries, which mirrored the other
findings in this study highlighting the crucial role of amino acids
in immune activation. Cellular metabolism is often regulated by
redundant pathways to maintain homeostasis when encountering
disruptive signals. This could explain the less robust variance
observed in IRIS plasma metabolome compared to the
transcriptome and the plasma biomarker profile, where protein
translation and concentration could be more direct
cellular readouts.

Finally, several additional key features that can influence the
metabolome include microbial invasion and sex (68, 69). We
postulate that the unique metabolic profile of different types of
IRIS are largely driven by the underlying co-infection as has been
previously demonstrated in TB (32, 70, 71). In particular, human
monocyte-derived macrophages infected with M. tuberculosis
could induce a shift from oxidative phosphorylation to aerobic
glycolysis (70). Another plasma metabolomics study showed
significantly different levels of lipid metabolites detected in
patients with active TB disease (32). Lastly, a multi-omics
study integrating plasma metabolome and cell transcriptome
identified signatures associated with TB progression in
glutathione pathway, sphingolipid pathway, and tRNA
processing (39). Thus, our findings contrasting different types
of IRIS likely reflect the distinct metabolic signature influenced
by the co-infection pathogen. The influence of sex on the
metabolome has been explored in several previous studies. By
using an untargeted metabolomics approach, differences in
plasma or serum metabolite composition including lipid
steroids and derivative metabolites, branched-chain amino
acids used for muscle building, and short-chain fatty acids
could be detected contrasting age-matched men and women
groups (72–74). Findings from these studies highlight the
importance of sex-matched study groups to ensure that
metabolomics results are not influenced by confounding
factors. In the current study, we have proportionate numbers
of female study participants in the IRIS and non-IRIS groups. In
addition, based on PCA analysis of all identified metabolites,
although limited by a small sample size, the effect of sex on the
metabolome was not different comparing IRIS and non-IRIS
groups at the three study time points (Supplementary Figure 7).

There were several limitations in our study. First, we had a
relatively small sample size especially of non-mycobacterial IRIS. In
addition, we were restricted by the number of fully matched samples
to perform the multi-omics analysis at each time point. Second, the
plasma metabolome embodies extracellular metabolites produced
from all cell types throughout the body. As a result, we cannot
determine the source of metabolite production or consumption.
Third, we lack extensive in vitro validation for the computationally
identified metabolic signatures, which could serve as predictive or
therapeutic targets. Lastly, we lack the inclusion of HIV uninfected
healthy donors as another comparator group.Althoughour IRIS and
non-IRIS group comparisons have been performed within a
homogenous HIV infection background, an uninfected control
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group with similar demographics could have provide the overall
framework of the healthy plasmametabolome and a better depiction
of the metabolic contributions to the pathological state of IRIS.

In conclusion, IRIS was associated with a distinct plasma
metabolomics profile characterized by perturbed lipid and amino
acid metabolism at the pre-ART and IRIS event time points. This
study expanded our understanding for the role of cellularmetabolism
in IRIS pathogenesis and complemented our previously findings
of glycolytic shift by FDG-PET scan and in vitro measurements
of glucose transporter expression on monocytes and T lymphocytes
(20). Thus, metabolic reprogramming could fuel the dysregulated
immune activation in IRIS and metabolic pathways may serve as
novel targets for preventative and therapeutic measures in
inflammatory complications.
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