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Abstract

This review discusses the state of the art, challenges, and
perspectives in recent applications of nitroaromatics and
nitroheteroaromatics, which are redox-bio-activated drugs or
leads, in Medicinal Chemistry. It deals mainly with the elec-
trochemical approach toward the electron transfer-based mo-
lecular mechanisms of drug action, drug design, estimation
and measurement of redox potentials, correlation of physico-
chemical and pharmacological data, and electrochemical
studies of the main representatives of nitro-containing
prodrugs, along with approaches to combat their toxicity
issues, aiming at a better therapeutic profile. Electrochemical
investigation plays essential roles, being strategic in the design
and discovery of potential medicines.

Addresses
1 Instituto de Química e Biotecnologia, Universidade Federal de
Alagoas, Maceió, Alagoas, 57072-970, Brazil
2 Núcleo de Ciências Exatas – NCEx, Universidade Federal de
Alagoas, Campus de Arapiraca, Arapiraca, Alagoas, 57309-005, Brazil
3 Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo
Cruz, FIOCRUZ, Rio de Janeiro, Brazil
4 Centro Universitário CESMAC, R. da Harmonia, 57081-350, Maceió,
AL, Brazil

Corresponding author: Goulart, Marília O. F (mofg@qui.ufal.br),
(mariliaofg@gmail.com)
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
Current Opinion in Electrochemistry xxxx, xxx:xxx

This review comes from a themed issue on Organic and Molecular
Electrochemistry

Edited by Andrew Doherty

For a complete overview see the Issue and the Editorial

Available online xxx

https://doi.org/10.1016/j.coelec.2021.100740

2451-9103/© 2021 Elsevier B.V. All rights reserved.

Keywords
Oxidative stress, Bioreductive alkylation, Nitroreductases, Molecular
mechanism of action, Metabolism, Electrochemical parameters.
www.sciencedirect.com
Introduction
Life depends on molecular interactions, in particular,

redox reactions. As such, electrochemical methods have
become a powerful complementary tool for the charac-
terization and design of redox-modulating agents [1e3],
for example, in drug metabolism and toxicological
studies where mimics have been used to understand
phase 1 metabolic processes involving CYP450-
mediated oxidation and enzymatic bio-reductions [4e
6]. Such in vitro studies lead to an understanding of
in vivo metabolism, crucial for drug discovery, clinical
pharmacology, toxicology, and therapeutics [7,8]. A
recent example of the power of electrochemistry in this

area is the coupling of electrochemistry-based mass
spectrometry (MS) [4e6,9] with electrosynthesis [10]
to answer many questions about the metabolic behavior
of several compounds [4e7,9,10]. Another common
approach is studying therapeutically inactive prodrugs
that can be deliberately activated through redox-
biotransformation to the active form [2,3,7] and subse-
quently interrogated. Electrochemical systems using
biomimetics and/or prodrugs for drug development are
attractive due to their low cost, the ease of application,
the use of a mass-free reagent (the electron), and they

do not present any ethical issues regarding the use of
living subjects or animal tissues.

A significant class of electroactive organic compounds,
essentially prodrugs, are nitroaromatics [11e14]. The
nitro group plays fundamental roles in several scientific
fields since the more recent in organic electronics [15],
in environmental chemistry, and mainly in medicinal
chemistry, where it has always been considered to have a
double-sword nature, with prolonged use in therapeu-
tics, however, still considered a toxicophore [11e14].
Nitroaromatics are associated with mutagenicity, carci-
nogenicity, hepatotoxicity, and genotoxicity [11e14].
Due to a better understanding and new technological
advances, it is possible to overcome noxious effects fa-
voring the beneficial ones [16].
Current Opinion in Electrochemistry xxxx, xxx:xxx

119
120
121

mailto:mofg@qui.ufal.br
mailto:mariliaofg@gmail.com
http://www.sciencedirect.com/science/journal/18796257/vol/issue
https://doi.org/10.1016/j.coelec.2021.100740
https://doi.org/10.1016/j.coelec.2021.100740
www.sciencedirect.com/science/journal/24519103
www.sciencedirect.com/science/journal/24519103


2 Organic and Molecular Electrochemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

COELEC100740_proof ■ 23 April 2021 ■ 2/10
Figure 1a/b display the structures of the most clinically
important nitro-compounds where those under the A
heading are considered ‘essential’ (appear in ‘Drugbank’
and/or the WHO’s list of essential drugs), whereas those
under the B heading are deemed ‘relevant’ nitro-
compounds with reported biological activity and elec-
trochemical data.

The repositioning of existing drugs or drug-like mole-
cules with known pharmacokinetics and safety profiles
has been an alternative strategy for a rapid approach to
identifying new effective and safe drugs. Thus, current
nitro-based antiparasitic drugs are not only viable for the
treatment of helminth and protozoan infections
Figure 1

Structures of the most clinically relevant nitrocompounds (a): Nitrocompounds
biological activities and studied by electrochemical methods. The authors gav

Current Opinion in Electrochemistry xxxx, xxx:xxx
(Figure 1a) but are also important candidates for new
pharmacological treatments [17], including for cancer
[18,19].

Because of its ability to easily undergo reduction at the
molecular level where follow-up bondecleavage re-
actions can generate localized, highly reactive, electro-
philic sites [12,20,21] the nitro-group is considered

versatile and essential for biological activity. As such,
investigating the fundamental molecular-level electro-
chemical behavior of nitroaromatic and heteroaromatic
compounds [22] is important for understanding their
biological and medicinal activities. Electrochemical
studies of nitro-compounds date back to the early 1900s
classified as essential drugs; (b): other nitroderivatives with relevant
e some of the acronyms.
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[22] and are continuously and comprehensively
reviewed in excellent books and articles [2,23e25].
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Nitrocompounds: relevance and molecular
mechanisms of action
The modes of action of nitrofurans, nitroimidazoles and
other nitrocompounds are not fully understood, but the
common pathways are represented in Figure 2.

It is broadly recognized that biological activities corre-
late with the redox properties of the nitro group and the
stability or the reactivity of generated reduced com-
pounds, which can react with biological nucleophilic

targets such as proteins, nucleic acids, aminoacids, and
Figure 2

(a) A closer look at the molecular mechanisms of action of nitroaromatics. Ada
of DNA through reductive elimination. Adapted from Ref. [20].

www.sciencedirect.com
enzymes, to induce desired or undesired biological
changes [11,12,14,16,21] (Figure 2a, b).

The biological activity also depends on the medium’s
oxygen content where it plays its role (normoxia: red
color versus hypoxia: blue color, Figure 2). Hypoxia is a
state of low oxygen tension found in numerous solid
tumors or other conditions. It is typically associated with

abnormal vasculature, which results in a reduced supply
of oxygen and nutrients and impaired delivery of drugs
[11,12]. The molecular oxygen level of normal tissues is
2%e9% v/v (on average 40 mm Hg pO2) [12]. In
contrast, in the hypoxic microenvironment, the O2 level
can reach 0.02%e2% v/v (below 10 mm Hg pO2) [12].
pted from Refs. [7,11,12,20]. (b) A general scheme related to the alkylation
Q3
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Legend: NRI: type I nitroreductase, NRII: type II
nitroreductase, NAD(P)H: nicotinamide adenine dinu-
cleotide (phosphate) reduced, NAD(P)þ: nicotinamide
adenine dinucleotide (phosphate) oxidized, MPO:
myeloperoxidase, SOD: superoxide dismutase, RSH:
thiols, RS2: disulfide, RNA: Ribonucleic acid.

The process of electron transfer is essential. Electro-

chemical studies of ArNO2, in protic, aprotic, mixed,
micellar, membrane-mimicking media, surface modi-
fiers, surfactants, with several electrodes [22] can
contribute to the understanding of their biological ac-
tivities [1,5,6,9,10,12,21,23,24].

The redox process, in the laboratory, can be compared to
the in vivo enzymatic one, allowing the first reduction
step by the capture of one electron, leading to ArNO2

�-,
typically obtained in aprotic, mixed or more basic protic
media, or by multiple electronic steps leading to the

different intermediates, practically to nitroso (ArNO),
hydroxylamine (ArNHOH), amine (ArNH2), azo
(ArN=NR), azoxy (ArNO]NAr), nitrenium (ArNHþ),
hydrazines (ArNH-NHAr) and others (Figure 2a).

The enzymes catalyze in vivo redox reactions. The
nitroreductases (NTR) are a family of FMN- or FAD-
dependent enzymes capable of metabolizing nitro-
aromatic compounds. NTRs utilize NADH or NADPH
as reductive cofactors [11,14,20]. The NTRs are
subdivided into two reduction types, depending upon

their reaction mechanisms. Type I NTRs catalyzes,
under anaerobic conditions, the reduction of ArNO2 to
produce biologically active reduced derivatives,
including nitrenium ions, which have a higher protein
binding affinity, compared to type II intermediates.
Under aerobic conditions, nitroreduction catalyzed by
type II NTRs produces reactive oxygen and nitrogen
species (ROS/RNS), causing oxidative stress to patho-
gens and their ultimate death (Figure 2a) [20]. How-
ever, it also causes deleterious mutagenicity and toxicity
[11,13,20].

Selective DNA alkylation (Figure 2a and b) is one of the
most important molecular mechanisms. Electrochemical
methods are advantageous in this topic, as they allow the
in situ and real-time redox activation of pro-drugs [26e
30].
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Nitrocompounds: electrochemistry
The determination of the standard potential (Eo’,Eredox,
E1/2, Ep1/2), experimentally or by computational ways,
together with an estimation of kinetic data, results from
several electrochemical techniques, in situ experiments,
electrochemically based hyphenated ones, and others,
and provide essential data to evaluate some of the main
physicochemical properties and the chemical outcomes
of the analyzed compounds. In many cases, these
Current Opinion in Electrochemistry xxxx, xxx:xxx
electrochemical parameters play a critical but rarely a
decisive role [1,2,31].

The majority of electrochemical and computational
studies have been used to obtain and estimate the Eredox

values (ArNO2/ArNO2
��), for the generation of a

persistent radical anion, through a reversible single
electron transfer, at the first wave potential, in an aprotic

medium. Some specialty solvents, like liquid and su-
percritical ammonia and room temperature ionic liquids,
were also used to mimic the nonpolar environment in
the cell, for instance, at the cell membranes [1e3,28],
and the catalytic sites of some enzymes. Nonacidic
conditions, in order to avoid protonation of the radical
anions, in aqueous solutions or mixtures with an organic
solvent, have also been used [22,27,28,32e34]. Struc-
tural aspects are also important to the stability of the
radical anion nitro: the presence of acidic hydrogen (may
cause self-protonation or interactions through hydrogen

bonding) [34], of a high local spin density (causing a
coupled chemical reaction), the existence of potential
leaving groups (leading to reductive elimination) [35e
37] or the possibility of ring fragmentation [14],
among others, may lead to unstable electrogenerated
intermediates.

The experimental values of E�0 have been found to
correlate linearly with calculated values of ELUMO [38].
Several advances in computer technology/DFT level of
theory and reduction data for nitroaromatics can be

obtained [39]. Pulse radiolysis had also been used but is
out of the present review’s scope, despite its relevance
[40,41].

Figure 3 displays several electrochemical results, with
the presentation of cyclic voltammograms, which allow
the understanding of the electronic mechanisms and
point to the potential use of electrochemistry toward
the rationale/practice of medicinal chemistry.

The following classes of electroactive nitro-containing
drugs are some of the most promising leads in medici-

nal chemistry.

Nitroimidazoles
Nitroimidazoles [42], represented, in Figure 1a, as
benznidazole [43], metronidazole [44], tinidazole,
pretomanid [45] (essential drugs), along with MTZ-N-
ethylX and 8PhSimidazo are versatile aromatic hetero-
cycles (Figure 1b), and often explored as a bioreductive
and hypoxia-selective [14,41] (Figure 2) class of com-
pounds [46e48]. Delamanid (Figure 1a), a drug for
tuberculosis and Visceral Leishmaniosis (VL), and
DNDi-0690, a delamanidederived 2-nitroimidazo-
oxazine, in phase-I clinical trials against VL, illustrate

well the strong potential of nitroimidazoles in the search
for novel drugs [14,46e48] (Figure 1). As
www.sciencedirect.com
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Figure 3

Cyclic voltammograms (CV) and schemes corresponding to the electrodic mechanisms, held in aprotic media, on glassy carbon electrode, for chosen
nitroaromatics, classified as nitrobenzylic, nitroquinones, Morita-Baylis–Hillman adducts (MBHA), and metronidazole derivatives.
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leishmanicidal, 8PhSimidazo (Figure 1) is the best hit,
selectively bioactivated by the Leshmania donovani type 1
NTR1, with Eredox �0.63 V versus NHE, being neither
mutagenic nor genotoxic, as well as its metabolites, thus,
a right candidate for further in vivo studies [45].
www.sciencedirect.com
Several metronidazole derivatives (MTZ-N1-ethylX)
(Figure 1b) were analyzed by CV, and their electrodic
mechanisms were obtained, with correlation with bio-
logical activity [36]. Three of these compounds, namely,
the iodo, bromo, and ammonium salt derivatives,
Current Opinion in Electrochemistry xxxx, xxx:xxx
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Figure 3

(continued)
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showed significant anti-Helicobacter pylori (strain resis-
tant to MTZ) activity. In an aprotic medium, the N1-
ethyl-halogenated compounds (-I, -Br) showed the

process to be an ECE system, with halide release, after
electrons’ uptake. This behavior represents a case of
dissociative electron transfer (DET) [37]. For the
ammonium salt, a self-protonation mechanism [22,34]
was also evident. Concerning biological activity, despite
the impossibility of establishing a correlation, it has
been observed that the more electrophilic compounds
showed better anti-H. pylori activity [36].

Nitroquinolinones
The reduction potentials of several 8-nitroquinolin-
2(1H)-ones (8NQO) (Figure 1b) were obtained [49,50].
The authors performed an electrochemistry-guided SAR

study and correlated theoretical and experimental
standard redox potentials with a good correlation. They
modulated the redox potential through substituent
modification in both rings. An intramolecular hydrogen
bond between the lactam ring and the nitro group was
shown to be necessary for the anodic shift of the redox
potential, along with the presence of electron-
withdrawing groups. Only substrates easily reduced
(Eredox > �0.6 V versus Normal Hydrogen Electrode,
Current Opinion in Electrochemistry xxxx, xxx:xxx
NHE) were active toward L. infantum. This was a very
successful example of medicinal electrochemistry,
allowing a rational conception guided by electro-

chemical parameters [49,50]. The 6-bromo and 6-
chloro-derivatives were shown to be potent, selective,
not genotoxic, being bioactivated by NTR-I [49]. They
appear to be good candidates as antitrypanosomal lead
compounds. Pharmacomodulation and electrochemical-
guided analysis revealed new leads [50].

Any interaction that stabilizes the nitro radical anion and
dianion in solution relative to the precursor makes
reduction easier, including solvation, ion-pairing,
hydrogen-bonding [22], and introduction of electron-

withdrawing groups [51]. Due to a good correlation
between theoretical and experimental electrochemical
data, the prediction of the redox potential was possible
and directed the synthesis of more promising active
compounds [51].

Nitrofurans/nitrothiophenes
Nifurtimox (NFX, Figure 1a) after reduction suffers
cleavage, and the electrogenerated compounds may
react with DNA [26]. DNA sensors are devices useful
for this type of biological screening [28,29].
www.sciencedirect.com
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Nitrobenzylic compounds
Nitrobenzyl compounds can be metabolized
in vivo generating reactive intermediates that can act as
redox cyclers or DNA alkylating agents (Figure 2),
responsible for their numerous biological activities,
especially antiparasitic and antitumor. As examples,
dissociative electron transfer (DET) with the release of
nitrate (reduced in vivo to NO) [35] and self-
protonation [36], evinced in electrochemical in-
vestigations (Figure 3), were assumed as relevant for
comparison with the in vitro antinoceptive and anti-

inflammatory data [35].

Nitroquinones
Nitropterocarpanequinone (Figure 1b) [52], a parasiti-
cidal agent, was thoroughly studied by electrochemistry
in comparison to its precursor [28]. The data obtained
regarding their reduction mechanisms, positive reac-
tivity with oxygen, and analysis of the electrogenerated
intermediates were useful in explaining their biological
outcomes. The main results and assignments of the
reduction peaks are shown in Figure 3, together with the
cyclic voltammetry [52].

Nitroaromatic-acrylates, Morita-Baylis–Hillman
adducts (MBHA)
Several synthetic compounds (MBHA, Figure 1b) with

significant leishmanicidal activity were investigated by
electrochemical methods (CV, DPV) and computational
studies. A strong correlation was obtained between Epc1
(first wave reduction potential) and IC50 values. Softer
compounds (lower molecular hardness, N) was the most
bioactive against Leishmania amazonensis [53,54]. The
main results and assignments of the reduction peaks are
shown in Figure 3, together with the cyclic voltammetry
of the ortho-derivative.

These are just some examples of the potential use of

electrochemistry in the area of nitro-containing drugs.
Q4
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Conclusions and perspectives
Electrochemistry has been used to further validate
proposed biological reduction mechanisms of com-

pounds that are eligible for preliminary and comple-
mentary biological screening. Electrochemical
techniques were used to choose the best leads against
etiologic agents of several diseases. Computational
estimation of redox potentials (typically versus NHE
and in aprotic medium) helped design the best pro-
totypes. However, the performing of complete electro-
chemical experiments (CV, DPV, SWV, electrolysis, and
others) would be much more influential, including
pieces of evidence of the electrogenerated products,
positively mimicking in vitro and in vivo metabolism.

When coupled with other techniques (in situ, spec-
troelectrochemistry) would allow a much more precise
and in-depth view of the process. The electrochemical
www.sciencedirect.com
methods do well to predict the molecular mechanism of
the present class of compounds. As an additional
competitive advantage, electrochemistry allows veri-
fying reductive cleavage in situ, the generated in-
termediates’ characterization, and the measure of the
number of transferred electrons. By controlling the
bioactivation of nitro compounds toward the maximi-
zation of such compounds’ bioactive potential, with a

concomitant minimization of toxicity issues, would lead
to these prodrugs’ therapeutic growth. As such, it is
recommended to continue to explore the redox mech-
anisms through theoretical and experimental
approaches.

Electrochemistry, in drug discovery and development,
has several desirable features and can be a useful guide
to the understanding of the phenomena of electron
transfer and further applications.
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