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A B S T R A C T   

Although treatable with antibiotics, tuberculosis is a leading cause of death. Mycobacterium tuberculosis antibiotic 
resistance is becoming increasingly common and disease control is challenging. Conventional drug susceptibility 
testing takes weeks to produce results, and treatment is often initiated empirically. Therefore, new methods to 
determine drug susceptibility profiles are urgent. Here, we used mass-spectrometry-based metabolomics to 
characterize the metabolic landscape of drug-susceptible (DS), multidrug-resistant (MDR) and extensively drug- 
resistant (XDR) M. tuberculosis. Direct infusion mass spectrometry data showed that DS, MDR, and XDR strains 
have distinct metabolic profiles, which can be used to predict drug susceptibility and resistance. This was later 
confirmed by Ultra-High-Performance Liquid Chromatography and High-Resolution Mass Spectrometry, where 
we found that levels of ions presumptively identified as isoleucine, proline, hercynine, betaine, and pantothenic 
acid varied significantly between strains with different drug susceptibility profiles. We then confirmed the 
identification of proline and isoleucine and determined their absolute concentrations in bacterial extracts, and 
found significantly higher levels of these amino acids in DS strains, as compared to drug-resistant strains 
(combined MDR and XDR strains). Our results advance the current understanding of the effect of drug resistance 
on bacterial metabolism and open avenues for the detection of drug resistance biomarkers.   

1. Introduction 

Tuberculosis (TB) is a major public health issue and a leading cause 
of death worldwide. Drug resistance adds to this problem, and 
multidrug-resistant (MDR) TB cases are increasingly common [1,2]. 
Phenotypic drug susceptibility testing (DST) of M. tuberculosis is long 
and laborious, causing late diagnosis and failed therapy [3]. Two 
culture-based DST methods are routinely used: the proportions method, 
which takes ≥21 days and the BD BACTEC MGIT Automated Myco
bacterial Detection System, which takes 6–13 days [4,5]. Due to such 
long wait periods, treatment often needs to be initiated empirically, 

contributing to treatment failure. The treatment of drug-susceptible (DS) 
infections takes at least six months, also promoting high treatment 
default rates and the emergence of drug-resistant (DR) strains [6]. 
Exposure of M. tuberculosis to sub-optimal antibiotic concentrations 
during treatment favors the selection of mutations that provide drug 
resistance but also impact physiology, and DR bacteria may suffer 
‘fitness costs’, such as reductions in virulence, transmission, and growth 
[7], although compensatory mutations may be selected [8–10]. There
fore, metabolic changes elicited by drug resistance mutations may be 
used to predict drug resistance without the need for DST [11–13]. To 
this end, one tool that could aid in drug resistance prediction is 
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metabolomics, the analysis of the chemical complexity within biological 
samples [14]. Over the last several years, we used high-throughput 
metabolomics to probe the chemical composition of various sample 
types, and found that the metabolic fingerprints produced can help 
distinguish states of health and disease [15–24]. Therefore, we hy
pothesized that mutations leading to M. tuberculosis drug resistance 
cause metabolic alterations that could be detected by metabolomics. 
Here, we describe the use of metabolomics to characterize a set of DS, 
MDR, and extensively drug-resistant (XDR) M. tuberculosis strains. Our 
data show that drug susceptibility can be partially predicted using 
relative abundances of the metabolites found, sheding light on the 
metabolic effects of drug resistance in M. tuberculosis. Additionally, our 
findings may pave the way for the identification and validation of bio
markers for the rapid diagnosis of DR TB. 

2. Materials and methods 

2.1. M. tuberculosis strains 

Fifty-three strains from the strain collection of the National Refer
ence Laboratory in Tuberculosis and Other Mycobacterioses Ângela 
Maria Werneck (Oswaldo Cruz Foundation, Brazil) were used. 
M. tuberculosis complex identification was performed using the SD 
BIOLINE TB Ag MPT64 Rapid test (Standard Diagnostics, Yongin, 
Korea). 

2.2. Drug susceptibility testing 

Strains were grown in Löwenstein Jensen (LJ) medium (Becton, 
Dickinson & Company, Franklin Lakes, USA). After incubation for ~20 
days at 37 ◦C, DST was performed using the BD BACTEC MGIT Auto
mated Mycobacterial Detection System (Becton, Dickinson & Company) 
following standard procedures. First-line drug concentrations were 1 
μg/mL for streptomycin and rifampicin, 0.1 μg/mL for isoniazid, and 5 
μg/mL for ethambutol (Becton, Dickinson & Company). Second-line 
drugs were used at 1 μg/mL for amikacin, 2 μg/mL for ofloxacin, 5 
μg/mL for kanamycin and 2.5 μg/mL for capreomycin (Sigma-Aldrich, 
St. Louis, USA). 

2.3. Mutation analysis 

Target genes were PCR-amplified and sequenced in a 3130 Genetic 
Analyzer (Applied Biosystems, Foster City, USA). Primer sequences and 
amplification conditions are shown in Table S1. Sequencing results were 
compared with Mycobacterium tuberculosis H37Rv sequences using on
line (NCBI, https://www.ncbi.nlm.nih.gov/) and offline tools (ApE A 
Plasmid Editor, http://jorgensen.biology.utah.edu/wayned/ape/). 

2.4. Metabolite extraction 

Strains were grown on LJ for 28 days at 37 ◦C. Colonies were 
transferred to vials with 2 mL of 7H9 broth supplemented with oleic 
acid, albumin, dextrose and catalase and glass beads, and vortexed. 
Bacterial suspensions were diluted 1:200 in 7H9 broth and the optical 
density (600 nm) was measured. Different culture volumes were 
centrifuged (4 min at 11,500 g), the supernatant discarded, and the 
pellet resuspended in 500 μL of acetonitrile (≥99.9%, Sigma-Aldrich). 
Volumes were calculated so that final ODs would be 5. Resuspended 
pellets were vortexed and kept in an ultrasonic bath for 3 min. Samples 
were centrifuged for 4 min at 11,500 g and the supernatant was 
collected, filtered (0.22-μm), and stored (− 20 ◦C). 

2.5. Direct infusion mass spectrometry (DI-MS) 

Extracts produced as described above were dried using a speedvac, 
resuspended in 1 mL of 60% acetonitrile (≥99.9%, Sigma-Aldrich), kept 

in an ultrasonic bath for 5 min, and centrifuged (14,000 g, 30 min) at 
6 ◦C. For positive ionization mode 0.1% formic acid was added; 0.5% 
ammonium hydroxide was added for negative mode. Quality control 
was performed by injecting a mixture of samples at the beginning and 
end of analyses, as well as after groups of 10 samples. Mass calibration 
(50–2000 m/z) was performed with a phosphoric acid solution. Samples 
were directly infused (randomly) into a Synapt G1 High Definition Mass 
Spectrometer (Waters, Milford, USA) at 10 μL/min. Scan range was 
100–1000 m/z for 5 min in dynamic mode and scan time of 0.8 s. Pos
itive mode was performed with capillary, sampling and extraction 
voltages at 3.2 kV, 30 V and 5 V. Source parameters for negative mode 
were 3 kV in the capillary, and cone of sampling and extraction at 50 and 
6 V. Other parameters included source temperature at 80 ◦C, desolvation 
temperature at 100 ◦C, 380 L/h gas flow and collision cell voltage at 6 V. 

2.6. DI-MS data processing 

MS data were acquired using MassLynx v.4.1 (Waters) and processed 
with MassLynx and MarkerLynx XS. Raw data were transformed to 
centroid mode using the “Accurate Mass Measure” tool, and resulting 
mass data were processed with MarkerLynx, using the parameters: 
“analysis type” = “combined scan range”, “peak separation” (Da) = 0.02 
and “marker intensity threshold (counts)" = 3,000, 6000 or 12,000. A 
two-dimensional data table (m/z versus peak intensity) was generated 
for each sample group. 

2.7. Ultra-High-Performance Liquid Chromatography and High- 
Resolution Mass Spectrometry (UHPLC-HRMS) 

Initially, 100 μL of each sample in acetonitrile (≥99.9%, Fluka 
Analytical, Charlotte, USA) were dried and reconstituted in 200 μL of 5% 
methanol (99%, Tedia High Purity Solvents, Fairfield, USA). Quality 
control was performed with a mixture of samples (10 μL each) in 200 μL 
of 5% methanol, injected after each group of 7 samples. Mass mea
surements were calibrated using a calibrant solution (Thermo Scientific, 
Waltham, USA) containing caffeine, MRFA, and Ultramark 1621, from 
195 to 1522 m/z before acquisitions. In addition, a control sample of 
evaporated acetonitrile reconstituted in 200 μL of 5% methanol was 
injected. Samples were analyzed in triplicate by UHPLC-HRMS. Briefly, 
metabolites were purified and concentrated using an online C18 
enrichment column (Zorbax; rapid resolution HT 2.1 × 50 mm, pore size 
1.8 μm; Agilent, Santa Clara, USA). Chromatographic separation was 
performed on reverse phase using a 15-min gradient with solvents B 
(methanol, 0.1% formic acid) and A (ultrapure water, 0.1% formic acid, 
5 mM ammonium formate): 0–1 min, 5% B; 9 min, 60% B; 10 min, 100% 
B; 12 min, 100% B; 13 min, 5% B; 15 min, 5% B, at 500 μL/min. Me
tabolites were eluted directly into the high-resolution mass spectrometer 
(Q Exactive Plus Hybrid Quadrupole-Orbitrap MS, Thermo Scientific). 
Data were acquired in positive electrospray mode, with cone voltage at 
+3.9 kV. Sheath gas was 10 L/h, capillary temperature was 320 ◦C, and 
S-lens RF level was 50. Desolvation gas was high-purity N2 at 5 L/h at 
50 ◦C. Scan range was 67 to 1000 m/z, as profile mode, with resolution 
of 70,000 on FullMS. Automatic gain control (AGC) was 106, and 
maximum injection time (IT) was 50 ms. MS2 were acquired as data- 
dependent analysis (DDA), using the 15 most abundant m/z, with 
17,500 resolution, centroid, AGC 105 and maximum IT 100 ms. Isolation 
window of 2.0 m/z and offset of 0.5 m/z were used. Collision energy (CE) 
was stepped to 10/15/30 eV. 

2.8. UHPLC-HRMS data processing and metabolite identification 

UHPLC-HRMS spectra were acquired using Xcalibur 3.2 (Thermo 
Scientific). Data processing, analysis and metabolite identification were 
performed with Compound Discoverer 2.1 (Thermo Scientific) using the 
Categorical Factor to identify different sample groups and calculate ra
tios. The software workflow chosen was “Untargeted Metabolomics with 
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Statistics Detect Unknowns with ID using Online Databases”. For puta
tive identifications, databases were ChEMBL, E. coli Metabolome Data
base, Human Metabolome Database, KEGG, LipidMAPS, MassBank and 
Metabolights. 

2.9. Quantification of amino acids by selected reaction monitoring (SRM) 

Initially, 300 μL of samples in acetonitrile (>99.9% pure, Fluka 
Analytical) were dried and reconstituted in 600 μL of 5% methanol (99% 
pure, Tedia High Purity Solvent). Samples were analyzed in triplicate by 
ultra-high-performance liquid chromatography coupled with mass 
spectrometry (UHPLC-MS). Metabolites were purified and concentrated 
using the chromatographic settings described above. Metabolites were 
eluted directly into the mass spectrometer (TSQ Quantiva Triple-Stage 
Quadrupole, Thermo Scientific). Data were acquired in positive elec
trospray ion mode with 3.5 kV. Sheath gas was 40 L/h, auxiliar gas was 
10 L/h, sweep gas was 2 L/h, capillary temperature was 350 ◦C and 
vaporizer temperature was 400 ◦C. Detection and quantification of 
proline (m/z 70.17) and isoleucine (m/z 86.18) were performed based 
on ion fragmentation in MS2 mode using SRM of the 3 most intense 
transitions for each compound. Metabolites were quantified using cali
bration curves corresponding to their precursors and GABA (m/z 87.11) 
was used as internal standard. Samples were also spiked with GABA 
(0.01 ng/mL) as internal standard and amino acids were quantified 
based on signal intensities in a dweel time of 500 ms, with trigger 

acquisition upon detection of their transitions trace in a window of 8 
min. Additionally, RF lens was set to 66, quadrupole 1 and 3 resolution 
were 0.7 (FWHM), and CID gas in collision chamber was 1.5 mTor. 
Concentrations of proline and isoleucine in samples were calculated 
based on their most intense transition. 

2.10. Statistical data analyses 

Hierarchical clustering was carried out in MetaboAnalyst 
(htpp://www.metaboanalyst.ca/) based on degree of similarity of 
abundance profiles of metabolites with the highest discriminatory 
power between groups, to produce dendrograms. Clustering was 
generated using Euclidean distances and the Ward algorithm. 

Additionally, the dataset was manually analyzed using Microsoft 
Excel and GraphPad Prism 7 to compare the relative abundance of select 
ions between sample groups. Mean intensities were calculated for each 
group and ratios between means were obtained. Student’s t-tests were 
performed, and p < 0.05 was used for statistical significance. 

3. Results and discussion 

Metabolomics studies have furthered our knowledge of the biology 
of various organisms, how they respond to perturbations, how mutations 
alter metabolic functions, and how these changes correlate with health 
or disease. For instance, we have previously used DI-MS to characterize 

Fig. 1. Hierarchical clustering of metabolic profiles of DS, MDR, and XDR M. tuberculosis strains tested in Experiment A. Dendrograms and heat maps were 
generated using MetaboAnalyst and the 5 ions with the highest discriminatory power detected in positive ionization mode. Each line in the heatmap represents a 
metabolite and each column represents a strain. Metabolite intensity in each sample is represented in a standard scale from blue (lower intensity) to red (higher 
intensity). S, drug-susceptible strains; M, multidrugresistant strains; X, extensively drug-resistant strains. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 
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the metabolic fingerprint of sera from patients with leprosy, a disease 
caused by Mycobacterium leprae [18]. In line with this, various metab
olomics studies have searched for biomarkers in the context of TB [25]. 
Recently, one study searched for metabolomic signatures to predict TB 
progression from household contacts of TB index cases as well as disease 
severity in a non-human primate model [26]. Also, Cho et al. (2020) 
studied the serum metabolome of healthy individuals, subjects with 
latent M. tuberculosis infection, and active TB cases to search for bio
markers [27]. Biomarker identification in TB is an active area of 
research and is not limited to metabolomics of serum samples. Mehaffy 
et al. used proteomics to detect specific M. tuberculosis peptides in serum 
from patients with active and latent TB [28,29]. Other studies have 
investigated the chemical composition of urine in search of biomarkers 
[30]. 

Based on these and other studies, we hypothesized that 
M. tuberculosis strains with different drug susceptibility profiles would 
be metabolically distinct, and untargeted metabolomics could reveal 
recognizable metabolic patterns correlated with drug susceptibility or 
resistance. Thus, we selected 53 M. tuberculosis strains and evaluated 
their susceptibility to first and second-line drugs (Table S2). Then, two 
independent, chronologically separated DI-MS analyses were performed 

to evaluate potential metabolic differences between DS, MDR, and XDR 
strains. Initially, 10 DS strains (S1–S10), 8 MDR strains (M1-M8), and 10 
XDR strains (X1-X10) were selected for metabolic characterization. As 
described below, and due to the promising results obtained with the first 
strain set, a second set was later selected: 8 DS strains (S11–S18), 9 MDR 
strains (M9-M17), and 8 XDR strains (X11-X18) (Table S2). For clarity, 
these independent analyses are hereafter referred to as “Experiment A′′

and “Experiment B”. 
The strains comprising each of the strain sets were selected based on 

(i) availability in our collection, (ii) ability to grow from frozen stocks, 
and (iii) similarity regarding drug susceptibility profiles. Regarding the 
latter, MDR strains that were resistant to rifampicin and isoniazid but 
susceptible to all other drugs tested were selected, and XDR strains 
selected were those which were resistant to as many antibiotics as 
possible. Assignment to Experiment A or B was completely random, as 
these analyses were chronologically independent. The reason for 
adopting this experimental setup was to be sure that results could be 
obtained (i) in different mass spectrometry runs and (ii) using different 
sets of strains. Direct infusion mass spectrometry is highly sensitive to 
ion suppression, and two separate runs of the same samples will 
invariably produce differences in the ions detected. Therefore, although 

Fig. 2. Hierarchical clustering of metabolic profiles of DS, MDR, and XDR M. tuberculosis strains tested in Experiment B. Dendrograms and heat maps were 
generated using MetaboAnalyst and the 5 ions with the highest discriminatory power detected in positive ionization mode. Each line in the heatmap represents a 
metabolite and each column represents a strain. Metabolite intensity in each sample is represented in a standard scale from blue (lower intensity) to red (higher 
intensity). S, drug-susceptible strains; M, multidrugresistant strains; X, extensively drug-resistant strains. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 
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results from a single run with all strains may present greater potential for 
the detection of biomarkers with more statistically robust differences, 
this would not be a good representation of a real-life application of the 
method for the diagnosis of drug resistance based on metabolic profiles. 

Following DI-MS, we filtered our dataset to include only ions that 
were detected in at least 80% of samples of at least one group. We then 
analyzed these data using MetaboAnalyst and performed hierarchical 
clustering using all metabolites or only the 5 metabolites with the 
highest discriminatory power. In Experiment A, hierarchical clustering 
using all metabolites produced a remarkable separation between XDR 
and other groups in positive mode, although no significant separation 
was observed between MDR and DS strains (data not shown). In negative 
mode, we did not observe good separation between groups using all 
filtered metabolites (data not shown). When we considered only the 5 
metabolites with the highest discriminatory power, a clear separation 
between all sample groups was observed in positive ionization (Fig. S1). 
When using the top 5 metabolites from negative mode, an excellent 
separation between DS and DR strains was observed, although no sig
nificant separation was observed between MDR and XDR strains 
(Fig. S1). Given the promising results obtained in positive ionization 
mode, we then characterized the second set of strains in an identical 
manner. In Experiment B, when the top 5 ions were considered, we 
observed a significant separation of MDR strains compared to DS and 
XDR strains. However, strains from the two other groups were 
completely mixed and could not be distinguished based on the top 5 ions 
(Fig. S2). 

Results described above showed that metabolites can serve, though 
to a limited extent, as indicators of drug susceptibility. To determine if 
this strategy could achieve higher predictive power during comparisons 
of only two strain groups, we performed hierarchical clustering 
comparing two groups at a time, using positive ionization data. These 
analyses were carried out based on the degree of similarity of abundance 
profiles of the top 5 metabolites. First, we compared DS and MDR strains 
and found that this analysis produced an excellent separation between 
these groups in Experiments A and B (Figs. 1 and 2, top panels). We then 
compared DS and XDR strains, obtaining perfect separation in Experi
ment A and moderate separation in Experiment B (Figs. 1 and 2, middle 
panels). The final analysis compared MDR and XDR strains; again, an 
excellent separation between groups could be observed (Figs. 1 and 2, 
bottom panels). Therefore, our data on metabolic profiles of DS, MDR, 
and XDR strains and hierarchical clustering showed that at least some 
strains could be identified based on their clustering, especially in binary 
comparisons. It is worth noting that as few as 5 ions were required to 
obtain separation, suggesting that broad metabolic profiling assays may 
not be required to predict drug resistance. 

Given that clustering of metabolomics data suggested that, although 
useful, phenotypical drug resistance profiles are not always associated 
with metabolic fingerprints, we sought to determine if differences in the 
occurrence of genetic determinants of resistance were responsible for 
some of the discrepancies observed. Therefore, we sequenced genes 
involved in resistance to first- and second-line drugs (rpoB, katG, inhA, 
gyrA, and rrs), searched for mutations known to be associated with drug 
resistance and compared results to phenotypic data. By doing so, we 
found apparent discrepancies between genetic and phenotypic data, 
where mutations associated with resistance were found in DS strains, 
whereas no mutations were found in some DR strains (Table S3). 

Among the discordant results, we observed the absence of rrs mu
tations in strains that were phenotypically resistant to amikacin and 
kanamycin (X6, X9, X10, X12, X15, and X16), absence of gyrA mutations 
in one strain phenotypically resistant to ofloxacin (X15), absence of katG 
and inhA mutations in isoniazid-resistant strains (M6, M12, X1, X2, X14, 
and X7), absence of rpoB mutations associated with resistance in a 
rifampicin-resistant strain (M12) and presence of a inhA mutation in a 
phenotypically DS strain (S1). Despite these disagreements, most strains 
whose metabolic fingerprints did not cluster as expected did not present 
genotype-phenotype discrepancies. An exception to this is M4; despite 

being (phenotypically) MDR, and sensitive to second-line drugs, it pre
sented a mutation in gyrA that confers resistance to ofloxacin. Fig. S1 
shows M4 grouped with XDR strains when positive ionization data was 
analyzed. Although this strain was phenotypically susceptible to oflox
acin, clustering with XDR strains is compatible with the presence of a 
resistance marker to a second-line drug. 

To validate DI-MS results, we performed UHPLC-HRMS using 3 
strains from each group (Table S2). For this, we chose strains that were 
genetically similar and whose DNA sequences corroborated phenotypic 
data. Metabolic data were processed as described above, and 

Fig. 3. Hierarchical clustering of metabolic profiles of DS, MDR, and XDR 
M. tuberculosis strains obtained by UHPLC-MS. Dendrograms and heat maps 
were generated using MetaboAnalyst and the 25 (top panel) or 5 (bottom panel) 
ions with the highest discriminatory power detected in positive ionization 
mode. Each line in the heatmap represents a metabolite and each column 
represents a strain. Metabolite intensity in each sample is represented in a 
standard scale from blue (lower intensity) to red (higher intensity). S, suscep
tible strains; M, multidrug-resistant strains; X, extensively drug-resistant strains. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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dendrograms were generated using the 25 and 5 metabolites with the 
highest discriminatory power. By doing so, we observed a remarkable 
separation between the three groups (Fig. 3). As previously, we also 
performed binary analyses based on the top 5 metabolites. As expected, 
clustering was entirely congruent with phenotypic DST profiles (data 
not shown). 

In addition to parental m/z detection, we performed collision- 
induced dissociation and analyzed daughter ions, allowing us to 
obtain putative identities through comparisons of fragmentation pro
files. We then selected a few compounds based on 3 criteria: highest 
signal intensity ratios, statistically significant (p < 0.05) differences in 
levels between strain groups and putative identities with simple chem
ical nature. By doing so, we attempted to select compounds that hold 
significant discriminatory power and molecular characteristics that 
would allow detection by simple methods. As a result, levels of isoleu
cine, proline, hercynine, betaine, and pantothenic acid were compared 
between groups, showing that relative levels of these metabolites varied 
significantly (Fig. 4). 

As shown in Fig. 4, levels of a metabolite presumptively identified as 
pantothenic acid were significantly higher in DS strains. Pantothenic 
acid is essential for the synthesis of coenzyme A and acyl carrier protein, 
which play important roles as carriers of acyl groups in fatty acid 
metabolism, in the tricarboxylic acid cycle (TCA), and other reactions of 
intermediate metabolism [31]. Virtually nothing can be found in the 
literature regarding the role of pantothenic acid in drug resistance in 
M. tuberculosis. However, using metabolomics, Lau et al. (2015) have 
described the presence of high levels of dexpanthenol, the alcohol 
analog of pantothenic acid, in cultures of M. tuberculosis strains, as 
compared to non-tuberculous mycobacteria [32]. 

Besides pantothenic acid, higher levels of hercynine and betaine 
were detected in XDR strains. Hercynine catalysis is an intermediate step 

in the biosynthesis of ergothioneine, which in turn is one of the major 
redox buffers that protect bacteria against oxidative agents, in addition 
to regulating microbial physiology, cell metabolism and pathogenesis 
[33,34]. Therefore, it is possible that the accumulation of hercynine is 
due to the high demand for ergothioneine synthesis to combat the high 
oxidative stress that may result from drug resistance mutations, which 
lie in genes critical for bacterial survival, having effects on important 
cellular processes. One such gene is rpoB, and it is worth noting that 
rifampicin inhibits transcription of bacterial DNA by binding to the RNA 
polymerase subunit encoded by this gene [35,36]. Although very little 
can be found in the literature about the role of hercynine in 
M. tuberculosis, Saini and colleagues (2016) have studied the role of the 
related compound ergothioneine in drug susceptibility and oxidative 
stress in this organism. Their data confirm the central role of ergo
thioneine in the control of endogenous reactive oxygen species and in 
the protection of M. tuberculosis against diverse oxidative stressors, such 
as hydrogen peroxide, paraquat, menadione, and cumene hydroperox
ide. Of particular relevance to our data, Saini and colleagues demon
strated that a mutant with compromised ability to synthesize 
ergothioneine shows increased susceptibility to rifampicin, isoniazid, 
bedaquiline, and clofazimine, confirming the involvement of this com
pound in pathways that affect phenotypic drug resistance [37]. 

Data presented herein corroborate studies of rpoB mutations and 
their relationship with fatty acid metabolism. Du Preez and Loots 
demonstrated that rpoB mutants showed reduced synthesis of certain 
branched chain fatty acids required for mycolic acid synthesis [11]. In 
another study, authors observed a total loss of aconitic acid in rpoB 
mutants, disrupting the functionality of the enzyme aconitase, impor
tant in the TCA and in the stabilization and protection of mRNA against 
degradation during conditions of low iron concentration or oxidative 
stress [38]. Another important finding in rpoB mutants was the 

Fig. 4. Relative levels of 5 metabolites 
whose levels differed significantly be
tween DS, MDR, and XDR strains. Metab
olite identifications were performed by 
UHPLC-HRMS in positive ionization mode 
and comparison of collision-induced frag
mentation patterns using Compound 
Discoverer. Compounds were selected based 
on ratios (and p values) between average 
signal intensities of each sample group (DS, 
MDR, XDR). Results shown are the averages 
of measurements from three strains, and bars 
indicate the standard deviations. DS, drug- 
susceptible strains; MDR, multidrug- 
resistant strains; XDR, extensively drug- 
resistant strains. ns: not statistically signifi
cant. *p < 0.05; **p < 0.01; ***p < 0.001; 
****p < 0.0001.   
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reduction of cell wall synthesis capacity, directly interfering with 
cellular homeostasis and oxidative stress. Confirming these findings, 
Loots found alterations in several metabolites related to cell wall 
maintenance in a rifampicin-resistant mutant [38]. These findings were 
in line with those reported by Bisson et al., and this reduction can be 
explained by positive regulation of phthiocerol dymicocerosates syn
thesis in an attempt to maintain or remodel the cell wall [39]. In 2014, 
Loots identified novel metabolic pathways and biomarkers comparing 
metabolite profiles of wild-type and isoniazid-resistant strains. High 
concentrations of metabolites associated with oxidative stress were 
found, and a higher susceptibility to oxidative stress in 
isoniazid-resistant strains was observed [12]. Therefore, lower levels of 
pantothenic acid in resistant strains and the consequent reduction in 
coenzyme A and acyl carrier protein synthesis may directly interfere in 
the synthesis of mycolic acid, an important cell wall component. 

Although to our knowledge no other studies comparing the metab
olome of DS, MDR, and XDR M. tuberculosis clinical strains have been 
published, Huang and colleagues used metabolomics to compare serum 
samples from healthy controls, DS-TB and MDR-TB patients [40]. Me
tabolites that distinguished MDR-TB from DS-TB and healthy control 
samples included N1-methyl-2-pyridone-5-carboxamide, 1-myris
toyl-sn-glycerol-3-phosphocholine, caprylic acid, and D-xylulose. Addi
tionally, pathway enrichment analysis suggested phospholipid cell 

membrane remodeling is an important feature of MDR-TB, results that 
are somewhat reminiscent of the ones described herein. 

Having identified multiple metabolites whose levels serve as in
dicators of drug susceptibility, we determined absolute concentrations 
of proline and isoleucine in DS, MDR and XDR strains through UHPLC- 
MS. Although relative levels of these compounds did not allow differ
entiation between MDR and XDR strains (Fig. 4), these metabolites were 
chosen due to their stability and potential for detection using simple 
biochemical methods, making them interesting targets for the devel
opment of biomarkers. Therefore, we produced standard curves for 
proline and isoleucine and compared signal intensities from ions 
detected in M. tuberculosis extracts to determine absolute concentra
tions. Results confirmed that both proline and isoleucine levels vary 
depending on drug susceptibility profiles (Fig. 5). As expected, MDR and 
XDR strains did not differ significantly regarding levels of these me
tabolites. However, levels of both amino acids were significantly 
different when DS and MDR strains were compared. In general, DS and 
XDR strains also showed profiles that looked clearly different, although 
this difference was not statistically significant owing to the presence of 
one outlier in the XDR group. Nevertheless, when we divided our strains 
in DS and DR groups, a statistically-significant difference in metabolite 
levels was observed. Both isoleucine and proline showed significantly 
higher levels in DS strains when compared to their DR counterparts 
(Fig. 5). 

Future work will focus on the analysis of larger groups of strains. It is 
important to point out that categorization of samples in MDR or XDR 
groups relies on DST of qualitative nature. The BACTEC MGIT System 
relies on O2 consumption by growing cultures. Once a culture reaches a 
growth threshold in the presence of an antibiotic it is considered 
“resistant”. However, strains that grow significantly well in the presence 
of an antibiotic without reaching that threshold are common. Determi
nation of minimum inhibitory concentrations for antibiotics and strains 
used herein may shed light on some apparent discrepancies found in our 
results. Limitations notwithstanding, our data show that metabolic 
markers of drug resistance can be found through metabolomics, and that 
simple metabolites may be used to differentiate strains regarding drug 
susceptibility profiles. Additionally, our data add to the current under
standing of the effect of drug resistance on bacterial metabolism, and 
highlights the importance of fatty acid and mycolic acid metabolism, 
essential for cell wall structure and the response to oxidative stress in 
M. tuberculosis. 
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