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Abstract

In canine leishmaniosis caused by the protozoan Leishmania infantum, little is known about

how co-infections with or co-seropositivities for other pathogens can influence aggravation

of this disease. Therefore, the objectives of this study were to evaluate the frequency of co-

infections with or co-seropositivities for certain pathogens in dogs seropositive for L. infan-

tum and their relationship with clinical signs, histological changes and L. infantum load.

Sixty-six L. infantum-seropositive dogs were submitted to clinical examination, collection of

blood and bone marrow, culling, and necropsy. Antibodies against Anaplasma spp., Borrelia

burgdorferi sensu lato, Ehrlichia spp. and Toxoplasma gondii and Dirofilaria immitis antigens

were investigated in serum. Samples from different tissues were submitted to histopathol-

ogy and immunohistochemistry for the detection of Leishmania spp. and T. gondii. Quantita-

tive real-time PCR was used to assess the L. infantum load in spleen samples. For

detection of Coxiella burnetii, conventional PCR and nested PCR were performed using

bone marrow samples. All 66 dogs tested positive for L. infantum by qPCR and/or culture.

Fifty dogs (76%) were co-seropositive for at least one pathogen: T. gondii (59%), Ehrlichia

spp., (41%), and Anaplasma spp. (18%). Clinical signs were observed in 15 (94%) dogs

monoinfected with L. infantum and in 45 (90%) dogs co-seropositive for certain pathogens.

The L. infantum load in spleen and skin did not differ significantly between monoinfected

and co-seropositive dogs. The number of inflammatory cells was higher in the spleen, lung

and mammary gland of co-seropositive dogs and in the mitral valve of monoinfected dogs.

These results suggest that dogs infected with L. infantum and co-seropositive for certain
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pathogens are common in the region studied. However, co-seropositivities for certain patho-

gens did not aggravate clinical signs or L. infantum load, although they were associated with

a more intense inflammatory reaction in some organs.

Introduction

In Brazil, visceral leishmaniosis (VL) caused by the protozoan Leishmania (Leishmania) infan-
tum is a zoonosis of important public health concern. From 1990 to 2019, there were 93,614

confirmed human cases of VL in Brazil, with an average of 3,120 new cases per year [1]. The

main vector responsible for the transmission of this agent in the country is the sand fly Lutzo-
myia longipalpis [2]. In urban areas, the dog (Canis familiaris) is the main reservoir of L. infan-
tum and a source of vector infection [3].

Co-infections with or co-seropositivities for other pathogens are common in dogs infected

with L. infantum. These pathogens include the protozoa Babesia spp., Cystoisospora spp., Giar-
dia duodenalis, Hepatozoon canis, Neospora caninum, Toxoplasma gondii and Trypanosoma
spp. and bacteria such as Anaplasma spp., Bartonella henselae, Borrelia burgdorferi, Ehrlichia
canis and Rickettsia spp., as well as the helminths Acanthocheilonema reconditum, Ancylostoma
caninum, A. braziliense, Dioctophyme renale, Dipylidium caninum, Dirofilaria immitis, Toxo-
cara canis and Trichuris vulpis [4–13]. The presence of co-infections in dogs with leishmanio-

sis caused by L. infantum can aggravate the disease and increase animal mortality [7, 10, 13,

14]. However, studies that evaluate the parasite load and histological changes in different

organs together with clinical changes in co-infections with or co-seropositivities for L. infan-
tum in dogs are scarce. Such investigations would be important to determine whether dogs

infected with L. infantum and co-infected with or co-seropositive for certain pathogens have a

greater potential for transmission of L. infantum, and to subsequently develop preventive and

control measures for the involved agents. Within this context, the objectives of this study were

to evaluate the frequency of co-infections with or co-seropositivities for certain pathogens in

dogs infected with L. infantum and their relationship with clinical signs, histological changes

and L. infantum load.

Materials and methods

Dog population

This is a descriptive study of 66 dogs (38 males and 28 females) that tested seropositive for

L. infantum during the period from August 2016 to January 2019. Fifty-six of these dogs were

mongrel, three were Pinschers, two were Pit Bulls, two were Rottweilers, one was a Dachs-

hund, one was a Poodle, and one was a Chow-Chow. The age of the dogs ranged from 1 to 7

years in 58 (87.9%) animals, seven (10.6%) were older than 7 years, and one (1.5%) was less

than 11 months old. All dogs were from the town of Barra Mansa, state of Rio de Janeiro, Bra-

zil. This town is located in the south of the state (22˚32’25.19” S and 44˚10’35.33” W) and is an

endemic area for human and canine leishmaniosis caused by L. infantum [15, 16]. All animals

had owners and tested seropositive for anti-Leishmania antibodies by the rapid dual-path plat-

form (DPP1) assay (TR DPP1) [17] and by enzyme immunoassay (ELISA) [18]. Both serolog-

ical tests are produced by BioManguinhos (Fiocruz, Rio de Janeiro, Brazil). These tests were

performed by public health services participating in the VL surveillance and control program

of the state of Rio de Janeiro, with permission of the owners. Since they tested positive, the
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dogs were sent by the Municipal Health Department of Barra Mansa to be culled at the Evan-

dro Chagas National Institute of Infectious Diseases (INI-Fiocruz). Culling was performed

according to the recommendations of the Brazilian Ministry of Health for the control of VL

[2] and the owners provided signed consent for culling. The dogs were not housed for any

period of time prior to culling. The sample size included all dogs of the study population, i.e.,

all dogs that tested seropositive for L. infantum in the town of Barra Mansa and that were sent

to INI-Fiocruz during the study period.

Sample collection

Immediately after arrival at INI-Fiocruz, the dogs were restrained mechanically and submitted

to clinical evaluation, including inspection of behavior, alertness, posture, gait, skin, and oral

and ocular mucosae, as well as palpation of the superficial lymph nodes and organs. The fol-

lowing clinical signs of canine leishmaniosis caused by L. infantum (CanL) were considered:

thinness or cachexia; diffuse or localized alopecia; apathy; cutaneous lesions such as ulcers and

desquamation; onychogryphosis; enlargement of the superficial lymph nodes, liver or spleen

on palpation; keratoconjunctivitis; pale ocular or oral mucosae, and skeletal muscle atrophy

[19, 20]. The animals were divided into three groups according to the clinical signs of CanL:

no clinical signs, few clinical signs (up to three clinical signs), and multiple clinical signs (more

than three clinical signs) [21].

After clinical examination, the animals were sedated by intramuscular administration of

ketamine hydrochloride (10 mg/kg) plus acepromazine maleate (0.2 mg/kg). Bone marrow

was then aspirated from the sternal manubrium. The bone marrow samples were collected

into sterile tubes containing EDTA and stored at -20˚C for further analysis by conventional

PCR and nested PCR for the detection of Coxiella burnetii DNA. Blood (1 to 3 mL) was col-

lected from the cephalic vein into a sterile vacuum tube without anticoagulant. After coagula-

tion, the blood samples were centrifuged at 1125 x g and the serum obtained was separated

and stored at -20˚C until the time of analysis. The serum was used for the detection of antibod-

ies against A. platys/A. phagocytophilum, B. burgdorferi, E. canis/E. ewingii and T. gondii and

for the investigation of D. immitis antigens. Next, the dogs were culled with an intravenous

overdose of sodium thiopental and potassium chloride in accordance with the guidelines of

the Federal Council of Veterinary Medicine of Brazil [22], and immediately necropsied.

During necropsy, the organs were examined macroscopically and samples of skin, spleen,

liver, lung, heart valves (tricuspid and mitral), uterus, and mammary gland were collected.

These tissue samples were fixed in 10% buffered formalin and embedded in paraffin (FFPE)

[23] for immunohistochemistry (IHC) (detection of amastigote forms of Leishmania spp.) and

histopathology. In addition, FFPE samples of the spleen, lungs and mammary glands obtained

from T. gondii-seropositive dogs in which an inflammatory infiltrate was identified by histopa-

thology were submitted to IHC for the detection of cysts or tachyzoites of this parasite. A sec-

ond spleen fragment was collected and stored at -20˚C in a sterile RNAse- and DNAse-free

tube for subsequent detection of L. infantum DNA by singleplex qPCR. For Leishmania detec-

tion by parasitological culture, samples of skin, spleen, popliteal lymph node and bone marrow

were collected aseptically and immersed in sterile saline.

Histopathology and immunohistochemistry for detection of Leishmania
and T. gondii
Serial sections (5μm) were cut from the paraffin blocks containing the tissues and mounted on

non-silanized slides for histopathology and on silanized slides for IHC.
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For histopathology, the tissues were stained with hematoxylin-eosin (HE) [23]. The inflam-

matory infiltrate in the tissues was classified as follows: granulomatous, predominance of cells

of the monocyte-macrophage system (activated macrophages, epithelioid macrophages, or

multinucleate giant cells); pyogranulomatous, predominance of cells of the monocyte-macro-

phage system amidst a high number of neutrophils; non-granulomatous, predominance of

other types of inflammatory cells (lymphocytes, plasma cells, and neutrophils). In addition,

inflammatory cells were quantified using a 1-mm2 optical grid and a manual cell counter

under a light microscope. The cells were counted in one field of the HE-stained histological

sections at 400× magnification, in the most cellular area of the lesion.

For IHC aimed at detecting amastigote forms of Leishmania spp., the tissues were submit-

ted to the steps of deparaffinization, rehydration, blocking of endogenous peroxidase, antigen

retrieval, blockade of nonspecific protein binding, and incubation with polyclonal rabbit anti-

Leishmania serum diluted 1:500, according to the protocol of Boechat et al. [24]. The polymer-

based HiDef Detection HRP™ Polymer System (Cell Marque, Rocklin, CA, USA) was used for

the detection of amastigote forms of Leishmania according to manufacturer recommenda-

tions. Histological sections of organs intensely parasitized with amastigote forms of Leish-
mania were incubated with non-immune homologous serum as negative control and with

polyclonal rabbit anti-Leishmania serum as positive control.

For the evaluation of skin parasite load by IHC, Leishmania amastigote forms were quanti-

fied as described for the quantification of inflammatory cells. However, the parasites were

counted in five fields at 400× magnification in the most parasitized areas. The average number

of Leishmania amastigote forms was calculated.

For IHC aimed at detecting T. gondii cysts and tachyzoites, the tissues (lung, mammary

glands, and spleen) were deparaffinized in xylene and rehydrated in decreasing concentrations

of ethanol. Endogenous peroxidase was blocked by incubating the histological sections in a

solution of 30% hydrogen peroxide and methanol (45 ml of hydrogen peroxide and 55 ml of

methanol) for 40 min at room temperature. Antigen retrieval was performed by incubating the

histological sections in Declere ™ buffer (Cell Marque, Rocklin, CA, USA) at 110˚C in a

Decloaking Chamber™ (Biocare Medical, Pacheco, CA, USA). For the blockade of nonspecific

protein binding, the histological sections were incubated with Background Block protein

blocking solution (Cell Marque, Rocklin, CA, USA) for 10 min at room temperature. The sec-

tions were then incubated with polyclonal anti-T. gondii antibody (rabbit) (Cell Marque, Rock-

lin, CA, USA) diluted 1:100 for 1 hour at room temperature. The HiDef Detection HRP™
Polymer System (Cell Marque, Rocklin, CA, USA) was used for the detection of T. gondii
according to manufacturer recommendations. The enzyme-substrate-chromogen reaction was

developed using diaminobenzidine (DAB) plus hydrogen peroxide (Sigma-Aldrich, St. Louis,

MO, USA). The sections were counterstained with modified Mayer’s hematoxylin (Thermo

Scientific, Fremont, CA, USA) for 2 min. Histological sections of tissues intensely parasitized

with parasite forms of T. gondii were incubated with non-immune homologous serum as nega-

tive control and with primary polyclonal anti-T. gondii antibody (rabbit) as positive control.

Parasitological culture and identification of Leishmania spp.

The fragments were cultured at 26–28˚C in Novy-MacNeal-Nicolle medium plus Schneider’s

Drosophila medium (Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10% fetal

bovine serum and penicillin and streptomycin as antibiotics [25]. The detailed protocol of par-

asite isolation in culture is registered at https://dx.doi.org/10.17504/protocols.io.22tggen. Para-

sites isolated in culture were identified as L. infantum by multilocus enzyme electrophoresis

[26].
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Singleplex qPCR for the diagnosis and quantification of L. infantum load

DNA was extracted from the samples using the DNeasy Blood & Tissue kit (Qiagen, Hilden,

Germany) according to manufacturer recommendations. Tissue fragments� 10 mg were

used. DNA was quantified in a Qubit 2.0 Fluorometer (Thermo Fisher Scientific, Waltham,

MA, USA) using the Qubit dsDNA HS Assay kit (Thermo Fisher Scientific, Waltham, MA,

USA) according to manufacturer instructions. Amplification was performed with the Ste-

pOne™ System (Applied Biosystems, Foster City, CA, USA) using 0.9 μM of LEISH-1 (5’-
AACTTTTCTGGTCCTCCGGGTAG-3’) and LEISH-2 (5’-ACCCCCAGTTTCCCGCC3’)

primers and the TaqMan MGB probe (FAM-5’AAAAATGGGTGCAGAAAT-3’-NFQ), fol-

lowing a previously described protocol [6].

For the quantification of parasite load, a standard curve was constructed with serial dilu-

tions (101 to 105 parasites) of L. infantum DNA (MHOM/BR/1974/PP75). Positive and nega-

tive controls were included in each amplification plate and a threshold of 0.1 was established.

The DNA of 1 × 105 promastigote forms of L. infantum obtained by parasitological culture was

used as positive control and ultrapure water as negative control. Samples in which DNA ampli-

fication occurred after the 37th cycle were classified as undetectable. The L. infantum load was

expressed as the natural logarithm of the number of parasite genome equivalents (gEq)/ng of

DNA.

Conventional PCR for the detection of C. burnetii DNA

Forty-five bone marrow samples were submitted to conventional PCR as previously described

[27]. The QBT-1 (5’TATGTATCCACCGTAGCCAGT C-3’) and QBT-2 (5’-CCCAACAACA
CCTCCTTATTC-3’) primers were used for the amplification of a 687-bp fragment. The reac-

tion mixture contained 0.2 μM of each primer (Invitrogen, Life Technologies, São Paulo, Bra-

zil), 200 μM of dNTP (20 mM of each deoxynucleotide triphosphate), 1.5 mM MgCl2, 0.5 U

Platinum1 Taq DNA polymerase (Invitrogen, Carlsbad, CA, USA), 4 μL DNA, and nuclease-

free water (Promega, Madison, WI, USA) in a final volume of 25 μL. The cycling conditions

were described previously [28]. To confirm the amplification, the generated products were

separated on an agarose gel stained with 10 μL of Gel RED solution (10,000X) per 100 μL of

agarose gel, visualized, and recorded with a photodocumentation system. The target products

were then purified using the BigDye Terminator1 X-Purification kit (Applied Biosystems,

Foster City, CA, USA). The products obtained were sequenced using the BigDye1 Terminator

V3.1 Cycle Sequencing kit (Applied Biosystems, Foster City, CA, USA) and the ABI PRISM1

3100 software (Applied Biosystems, Foster City, CA, USA). Partial sequences were compared

with the htpAB gene from BLAST1.

Nested PCR for the detection of C. burnetii DNA

To increase the sensitivity and specificity of PCR for the detection of C. burnetii DNA, all sam-

ples were submitted to a second reaction (“nested”) using the QBT N3+ (5’-AAG CGT GTG
GAG GAG CGA ACC-3’) and QBT N4- (5’-CTC GTA ATC ACC AAT CGC TTC GTC-
3’) primer pair [29]. The positive controls used in PCR were extracted from cultures of cells

infected with C. burnetii. A volume of the DNA solution of 4 μL was used in the conventional

PCR assay and of 2 μL in the nested PCR assay.

For amplification, the reaction contained 1X PCR buffer 10 X, 0.2 μM of each primer (Invi-

trogen, Life Technologies Brazil), 1.5 mM MgCl2, 200 μM dNTP mixture (20 mM of each

deoxynucleotide triphosphate), 0.5 U Platinum Taq DNA polymerase (Invitrogen, Carlsbad,

CA, USA), 2 μL of sample DNA, and nuclease-free water (Promega, Madison, WI, USA) in a

volume of 25 μL. The amplification was performed in a thermocycler (Applied Biosystem
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Veriti 96) using the previously described cycling conditions [29]. To confirm the amplification,

the generated products were separated on a 1% agarose gel stained with 10 μL of RED Gel solu-

tion (10,000X) per 100 μL of agarose gel. The target products were purified, sequenced, and

compared as described in the previous item for conventional PCR.

Serological detection of antibodies to Anaplasma spp., B. burgdorferi and

Ehrlichia spp., and of D. immitis antigens

The ELISA 4 Dx1 Plus test (IDEXX1, Westbrook, ME, USA) was used for the serological

detection of antibodies to A. platys/A. phagocytophilum, B. burgdorferi and E. canis/E. ewingii,
and of D. immitis antigens following the recommendations of the manufacturer. According to

the manufacturer, this test has the following sensitivities and specificities, respectively: 90.3%

and 94.3% for Anaplasma spp., 94.1% and 96.2% for B. burgdorferi, 99.0% and 99.3% for

D. immitis, and 97.1% and 95.3% for Ehrlichia spp.

Detection of anti-T. gondii antibodies in serum

The indirect immunofluorescence antibody test (IFAT) was used as described previously [30].

Anti-dog IgG (whole molecule) FITC antibody produced in rabbits was used as conjugate

(Sigma-Aldrich Co., MO, USA). The sera were first diluted 1:16 and then at a ratio of four

until 1:256. Samples with a titer of 1:16 or higher were considered positive. Previously known

positive and negative controls were included in each analysis. IFAT is considered to have good

specificity and sensitivity and is recommended for the immunodiagnosis of T. gondii infection

in dogs, where it can be used as the only test [31].

Statistical analysis

Data were analyzed using the free R software, version 3.5.1 [32]. Clinical signs, positivity in the

diagnostic tests, and histological changes are described as simple frequencies. For the descrip-

tion of continuous variables (number of inflammatory cells and parasite load), the median

(50th percentile) was calculated and the minimum and maximum values are reported. For

inflammatory cells, the 75th percentile was also calculated.

The normality of the quantitative variables (parasite load and inflammatory cells) was

rejected by the Shapiro-Wilk test at a significance level of 5%, which indicated the use of non-

parametric tests for the analysis of these variables. The Mann-Whitney test and Fisher’s exact

test were used for comparison of the quantitative and qualitative variables, respectively,

between the monoinfected and co-seropositive groups. Boxplots were constructed for the

graphical presentation of the comparison of parasite load. The median parasite load in the

spleen was expressed as the natural logarithm of the parasite genome equivalents/nanogram of

DNA (gEq/ng). A p-value < 0.05 indicates statistical significance.

Ethics statement

This study was carried out in strict accordance with the recommendations of the Brazilian

Ministry of Health and the Federal Council on Veterinary Medicine, with permission of the

owners. The study protocol was approved by the Ethics Committee on Animal Use of the

Oswaldo Cruz Foundation (CEUA/Fiocruz; Permit Numbers: LW-54/13 and LW-24/17). The

dogs were sedated by intramuscular administration of ketamine hydrochloride and aceproma-

zine maleate and culled with an intravenous overdose of sodium thiopental and potassium

chloride. All efforts were made to minimize suffering.
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Results

All 66 L. infantum-seropositive dogs investigated in this study had infection with L. infantum
confirmed by qPCR and/or culture, as described below. Among these 66 dogs, 50 (76%) had

antibodies against at least one pathogen other than L. infantum (co-seropositive group). The

remaining 16 dogs (24%) did not have antibodies against certain pathogens other than L.

infantum and were thus considered monoinfected with L. infantum (monoinfected group).

The following frequencies of co-seropositivity for certain pathogens were observed in the 66

dogs investigated: T. gondii (59%), Ehrlichia spp. (41%), and Anaplasma spp. (18%). None of

the animals was positive for B. burgdorferi, C. burnetii, or D. immitis. Among the 50 co-sero-

positive dogs, 19 (38%) were co-seropositive only for T. gondii, 12 (24%) for T. gondii and Ehr-
lichia spp., 7 (14%) only for Ehrlichia spp., 5 (10%) for Ehrlichia spp., Anaplasma spp. and T.

gondii, 3 (6%) for Ehrlichia spp. and Anaplasma spp., 3 (6%) for Anaplasma spp. and T. gondii,
and 1 (2%) only for Anaplasma spp. Statistical analysis of the association of breed with the

monoinfected and co-seropositive groups was not possible because of the small number of

breed dogs.

Clinical signs compatible with CanL were present in 60 (91%) of the 66 dogs evaluated and

absent in six (9%). Clinical signs were observed in 15 (94%) of the 16 dogs monoinfected with

L. infantum and in 45 (90%) of the 50 co-seropositive dogs. When the frequency of clinical

signs of CanL was compared between monoinfected and co-seropositive dogs, no significant

difference was observed (p = 0.407). Table 1 shows the frequency of each clinical sign observed

in monoinfected and co-seropositive dogs and no significant difference was observed between

the two groups.

Evaluation of L. infantum load in the spleen revealed positive results in all 66 dogs and a

median parasite load of 6.912 gEq/ng. The median L. infantum load was 8.589 gEq/ng in the

monoinfected group and 6.364 gEq/ng in the co-seropositive group (Fig 1). However, this dif-

ference in the median L. infantum load in the spleen between the two groups was not signifi-

cant (p = 0.45). The following median L. infantum loads expressed as gEq/ng were found in

the spleen of co-seropositive animals: 11.967 when co-seropositive for Anaplasma spp. (n = 1),

7.166 (-0.256 to 14.603) when co-seropositive for T. gondii (n = 19), 6.340 (-1.808 to 12.054)

when co-seropositive for with Ehrlichia spp. and Anaplasma spp. (n = 3), 5.828 (-1.420 to

16.621) when co-seropositive for T. gondii and Ehrlichia spp. (n = 12), 5.725 (0.048 to 9.667)

when co-seropositive for Ehrlichia spp. (n = 7), 5.190 (2.117 to 6.331) when co-seropositive for

Ehrlichia spp., Anaplasma spp. and T. gondii (n = 5), and 4.905 (0.986 to 7.705) when co-sero-

positive for Anaplasma spp. and T. gondii (n = 3).

Histopathology revealed changes in at least one of the organs studied in 15 (93.8%) of the

16 monoinfected dogs. All 50 (100%) co-seropositive dogs exhibited some type of histological

alteration in the examined tissues. Table 2 shows the frequencies of the main histological

changes observed in monoinfected and co-seropositive dogs.

The number of inflammatory cells observed in each organ of monoinfected and co-seropos-

itive animals is shown in Table 3. The number of inflammatory cells/mm2 observed in each

organ according to the co-seropositivity for certain pathogens is given in the S1 Table.

Immunohistochemistry revealed the presence of amastigote forms of Leishmania spp. in all

types of organs studied. In addition, amastigote forms were detected in at least one of the

organs in 12 (75%) monoinfected dogs and in 39 (78%) co-seropositive dogs. There was no dif-

ference in the positivity for amastigote forms of Leishmania spp. between monoinfected and

co-seropositive dogs in any of the organs studied (Table 4).

The histological changes and amastigote forms detected by IHC in monoinfected and co-

seropositive dogs are shown in Fig 2A–2H.
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The median load of amastigote forms of Leishmania spp. per mm2 skin quantified by IHC

was 2.3 (0–19.6) in monoinfected dogs and 0.9 (0–70.6) in co-seropositive dogs (Fig 3), but the

difference was not statistically significant (p = 0.704).

Among the 39 T. gondii-seropositive dogs, an inflammatory infiltrate was observed in 33

spleens, 26 lungs, and 14 mammary glands. These samples were processed for IHC to detect T.

gondii cysts or tachyzoites. One spleen sample and two lung samples were lost during process-

ing. None of the samples examined by IHC were positive for this parasite.

Using parasitological culture for the detection of Leishmania, 13 (81.3%) of the monoin-

fected dogs had positive results in at least one sample studied; 2 dogs (12.5%) did not test posi-

tive for Leishmania by culture or IHC. Among the co-seropositive dogs, 40 (80%) were

positive for Leishmania in the parasitological culture, while 5 (10%) did not test positive for

Leishmania by culture or IHC. In total, 59 dogs (89.4%) tested positive for Leishmania by IHC

and/or parasitological culture. All parasitological culture isolates from the samples examined

were identified as L. infantum.

Table 1. Frequency of clinical signs in dogs infected with Leishmania infantum, August 2016 to January 2019 (Barra Mansa, Rio de Janeiro, Brazil).

Clinical sign Monoinfected (n = 16) Co-seropositive (n = 50) p-value a

Splenomegaly 10 (62.5%) 30 (60.0%) 1.000

Onychogryphosis 8 (50.0%) 21 (42.0%) 0.773

Furfuraceous desquamation of skin 8 (50.0%) 21 (42.0%) 0.238

Dehydration 7 (43.8%) 18 (36.0%) 0.768

Thinness 6 (37.5%) 13 (26.0%) 0.526

Local alopecia 6 (37.5%) 12 (24.0%) 0.340

Regional lymphadenomegaly 5 (31.3%) 12 (24.0%) 0.743

Opaque hair 6 (37.5%) 11 (22.0%) 0.324

Skin ulcers 3 (18.8%) 14 (28.0%) 0.532

Keratoconjunctivitis 5 (31.3%) 11 (22.0%) 0.509

Hepatomegaly 5 (31.3%) 10 (20.0%) 0.493

Apathy 4 (25.0%) 9 (18.0%) 0.719

Pale mucosae 4 (25.0%) 9 (18.0%) 0.719

Generalized alopecia 3 (18.8%) 5 (10.0%) 0.390

Cachexia 1 (6.3%) 5 (10.0%) 1.000

Limb edema 2 (12.5%) 2 (4.0%) 0.245

Generalized lymphadenomegaly 0 (0.0%) 4 (8.0%) -b

Hyperemic mucosae 0 (0.0%) 2 (4.0%) -b

Lower limb paresis 0 (0.0%) 2 (4.0%) -b

Arthralgia 1 (6.3%) 0 (0.0%) -b

Epistaxis 0 (0.0%) 1 (2.0%) -b

Jaundice 0 (0.0%) 1 (2.0%) -b

Pain when palpating the kidneys 0 (0.0%) 1 (2.0%) -b

n: number of dogs. Co-seropositive: L. infantum-seropositive dogs with confirmed infection with this parasite by qPCR and/or culture and antibodies against at least

one pathogen other than L. infantum. Monoinfected: L. infantum-seropositive dogs with confirmed infection with this parasite by qPCR and/or culture and without

antibodies against certain pathogens other than L. infantum.
a The p-values were calculated using Fisher’s exact test (p� 0.05).
b Statistical analysis was not possible because of the absence of the clinical sign in one of the groups.

https://doi.org/10.1371/journal.pone.0247560.t001
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Discussion

A high frequency of co-seropositivity for certain pathogens in L. infantum-seropositive dogs

with infection with this parasite confirmed by PCR and/or culture was found, especially co-

seropositivity for T. gondii. Considering the breed, the results of this study can only be extrapo-

lated to other similar populations composed mainly of mongrel dogs (85%). A high frequency

of anti-T. gondii (62.9%) antibodies was also detected in dogs from a CanL-endemic area in

the state of São Paulo, Brazil [33]. However, in studies conducted in areas not endemic for

CanL in Brazil, the authors found frequencies of anti-Leishmania and anti-T. gondii antibodies

of 11.6% in dogs from Londrina, state of Paraná [34], and of 10.2% in dogs from the central

region of the state of Rio Grande do Sul [35]. These percentages are lower than those observed

in the present study. Paulan et al. [33] found a significant association between reactivity to

anti-L. infantum and anti-T. gondii antibodies in dogs. The authors suggested that the immu-

nosuppression caused by Leishmania may increase the susceptibility of these animals with

CanL to this coccidium. Additionally, Zulpo et al. [34] observed a higher frequency of anti-

Leishmania antibodies in dogs seropositive for T. gondii and Neospora. However, in the pres-

ent study, it was not possible to assess whether dogs with L. infantum are at increased risk of

infection with T. gondii or vice-versa because of the lack of a control group of dogs not infected

with L. infantum. The presence of L. infantum may have not increased the susceptibility to T.

gondii infection in this study, as observed in cats [36, 37], since a high frequency of anti-T. gon-
dii antibodies has been reported in pigs (65.8%) and chickens (47.8%) in the same area [38].

These results suggest high environmental contamination with T. gondii in Barra Mansa, which

may explain its high frequency also in dogs.

In the present study, the frequency of L. infantum and Ehrlichia spp. co-seropositivity was

high (41%) and higher than those reported in studies carried out on dogs from Cyprus (36.2%)

Fig 1. Leishmania infantum load expressed as the median natural logarithm of the number of parasite genomic equivalents (gEq)/ng of DNA in the spleen of

monoinfected (n = 16) and co-seropositive (n = 50) dogs. The horizontal black lines indicate the median parasite load. The vertical dotted lines indicate the

interquartile range. The dotted horizontal lines indicate the lower limit of positivity (threshold). The blue dots indicate the parasite load of each dog.

https://doi.org/10.1371/journal.pone.0247560.g001
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[39], Côte d’Ivoire (4.9%) [12], and Portugal (2.2%) [40]. This frequency was also higher than

those found in dogs from Campo Grande, Mato Grosso do Sul (31.7%) [41], and Cuiabá, Mato

Grosso (2.5%) [42], Brazil. On the other hand, higher frequencies of L. infantum and Ehrlichia
spp. co-seropositivity or co-infection than that observed here were reported in Ilha Solteira,

São Paulo, Brazil (74.3%) [33], and Catalonia, Spain (55.7%) [7]. Furthermore, the frequency

of L. infantum and Anaplasma spp. co-seropositivity in the present study was higher than that

reported in dogs from Cyprus (10.6%) [39] and Portugal (1.1%) [40], but lower than the 52.5%

Table 2. Main histological changes in dogs infected with Leishmania infantum, August 2016 to January 2019 (Barra Mansa, Rio de Janeiro, Brazil).

Sample Histological changes Monoinfected (n = 16) Co-seropositive (n = 50) p-valuea

Skin (n = 66) Granulomatous dermatitis 12 (75.0%) 34 (68.0%) 0.758

Non-granulomatous dermatitis 0 (0.0%) 6 (12.0%) -d

Hyperkeratosis 10 (62.5%) 28 (56.0%) 1.000

Total 14 (87.5%) 45 (90.0%) 0.204

Spleen (n = 66) Granulomatous splenitis 7 (43.7%) 37(74.0%) 0.068

Pyogranulomatous splenitis 2 (12.5%) 2 (4.0%) 0.245

Non-granulomatous splenitis 1 (6.2%) 2 (4.0%) 1.000

Total 10 (62.5%) 41 (82.0%) 0.019c

Liver (n = 66) Granulomatous hepatitis 12 (75.0%) 39 (78.0%) 1.000

Pyogranulomatous hepatitis 2 (12.5%) 1 (2.0%) 0.143

Non-granulomatous hepatitis 2 (12.5%) 5 (10.0%) 1.000

Vacuolar degeneration of hepatocytes 9 (56.2%) 12 (24.0%) 0.068

Total 16 (100.0%) 46 (92.0%) 1.000

Lung (n = 66) Granulomatous pneumonia 3 (18.7%) 22 (44.0%) 0.083

Pyogranulomatous pneumonia 3 (18.7%) 7 (14.0%) 0.695

Non-granulomatous pneumonia 2 (12.5%) 6 (12.0%) 1.000

Total 8 (50.0%) 35 (70.0%) 0.538

Tricuspid (n = 66) Granulomatous endocarditis 2 (12.5%) 7 (14.0%) 1.000

Non-granulomatous endocarditis 1 (6.2%) 2 (4.0%) 1.000

Total 3 (18.7%) 9 (18.0%) 1.000

Mitral (n = 66) Granulomatous endocarditis 2 (12.5%) 3 (6.0%) 0.588

Pyogranulomatous endocarditis 2 (12.5%) 0 (0.0%) -d

Non-granulomatous endocarditis 2 (12.5%) 2 (4.0%) 0.245

Total 6 (37.5%) 5 (10.0%) 0.019c

Mammary glandb (n = 28) Granulomatous mastitis 4 (44.4%) 9 (47.4%) 0.719

Non-granulomatous endocarditis 0 (0.0%) 5 (26.3%) -d

Total 4 (44.4%) 14 (73.6%) 1.000

Uterusb (n = 28) Granulomatous metritis 0 (0.0%) 4 (21.0%) -d

Pyogranulomatous metritis 0 (0.0%) 1 (5.3%) -d

Non-granulomatous metritis 0 (0.0%) 1 (5.3%) -d

Total 0 (0.0%) 6 (31.6%) -d

n: number of dogs. Total: total number of dogs with histological changes in the organ. Co-seropositive: L. infantum-seropositive dogs with confirmed infection with this

parasite by qPCR and/or culture and with antibodies against at least one pathogen other than L. infantum. Monoinfected: L. infantum-seropositive dogs with confirmed

infection with this parasite by qPCR and/or culture and without antibodies against certain pathogens other than L. infantum.
a The p-values were calculated using Fisher’s exact test (p� 0.05).
b The frequencies were calculated and statistical analysis was performed in 9 dogs of the monoinfected group and in 19 dogs of the co-seropositive group.
c Statistically significant difference (p� 0.05).
d Statistical analysis was not possible because of the absence of certain histological changes in one of the groups.

https://doi.org/10.1371/journal.pone.0247560.t002

PLOS ONE Co-seropositivities in dogs naturally infected with L. infantum

PLOS ONE | https://doi.org/10.1371/journal.pone.0247560 March 11, 2021 10 / 20

https://doi.org/10.1371/journal.pone.0247560.t002
https://doi.org/10.1371/journal.pone.0247560


observed among dogs from Spain [7]. In the United States, frequencies similar to those of the

present study were observed in dogs with CanL and co-infected with Ehrlichia spp. (41.7%) or

Anaplasma spp. (41.7%) [10]. Taken together, the results of these surveys and the present find-

ings demonstrate that co-infection with or co-seropositivity for Ehrlichia spp. and Anaplasma
spp. is common among dogs infected with L. infantum in different parts of the world.

The frequency of co-infection with or co-seropositivity for Ehrlichia spp. and Anaplasma
spp. can be quite high in regions with favorable environmental conditions for ticks, which are

Table 3. Number of inflammatory cells/mm2 observed in tissues of Leishmania infantum monoinfected and co-seropositive dogs, August 2016 to January 2019

(Barra Mansa, state of Rio de Janeiro, Brazil).

Samples Monoinfected (n = 16) Co-seropositive (n = 50) p-valuea

Min 50th percentile 75th percentile Max Min 50th percentile 75th percentile Max

Skin (n = 66) 0 195.0 243.2 481 0 132.5 241.2 587 0.538

Spleen (n = 66) 0 410.0 518.7 707 0 531.5 616.7 753 0.031c

Liver (n = 66) 0 197.0 331.2 534 0 291.5 385.0 936 0.170

Lung (n = 66) 0 103.5 326.5 434 0 321.0 463.2 618 0.049c

Tricuspid (n = 66) 0 0 0 686 0 0 0 300 0.888

Mitral (n = 66)b 0 0 101.5 471 0 0 0 371 0.046c

Uterus (n = 28)b 0 0 0 0 0 0 127.0 544 -d

Mammary gland (n = 28) b 67 149.0 240.0 267 0 323.5 427.5 581 0.041c

n: number of dogs examined; Min: minimum; 50th percentile: median; Max: maximum. Co-seropositive: L. infantum-seropositive dogs with confirmed infection with

this parasite by qPCR and/or culture and with antibodies against at least one pathogen other than L. infantum. Monoinfected: L. infantum-seropositive dogs with

confirmed infection with this parasite by qPCR and/or culture and without antibodies against certain pathogens other than L. infantum.
a The p-values were calculated using the Mann-Whitney test (p� 0.05).
b The number of inflammatory cells were calculated and statistical analysis was performed in 9 dogs of the monoinfected group and in 19 dogs of the co-seropositive

group.
c Statistically significant difference (p� 0.05).
d Statistical analysis of the organ was not possible because of the absence of inflammatory cells in the monoinfected group.

https://doi.org/10.1371/journal.pone.0247560.t003

Table 4. Frequency of positivity for Leishmania amastigotes forms in different organs of dogs infected with Leishmania infantum using immunohistochemistry,

August 2016 to January 2019 (Barra Mansa, state of Rio de Janeiro, Brazil).

Samples Monoinfected (n = 16) Co-seropositive (n = 50) p-valor a

Positive Negative Positive Negative

Skin (n = 66) 10 (62.5%) 6 (37.5%) 29 (58.0%) 21 (42.0%) 1.000

Spleen (n = 66) 9 (56.3%) 7 (43.7%) 31 (62.0%) 19 (38.0%) 0.772

Liver (n = 66) 10 (62.5%) 6 (37.5%) 30 (60.0%) 20 (40.0%) 1.000

Lung (n = 66) 0 (0.0%) 16 (100.0%) 4 (8.0%) 46 (92.0%) -c

Tricuspid (n = 66) 2 (12.5%) 14 (87.5%) 1 (2.0%) 49 (98.0%) 0.143

Mitral (n = 66) 2 (12.5%) 14 (87.5%) 0 (0.0%) 50 (100.0%) -c

Uterus (n = 28)b 1 (11.1%) 8 (88.9%) 3 (15.8%) 16 (84.2%) 1.000

Mammary gland (n = 28)b 5 (55.6%) 4 (44.4%) 10 (52.6%) 9 (47.4%) 0.173

n: number of dogs. Total: total number of dogs with histological changes in the organ. Co-seropositive: L. infantum-seropositive dogs with confirmed infection with this

parasite by qPCR and/or culture and with antibodies against at least one pathogen other than L. infantum. Monoinfected: L. infantum-seropositive dogs with confirmed

infection with this parasite by qPCR and/or culture and without antibodies against certain pathogens other than L. infantum.
a The p-values were calculated using Fisher’s exact test (p� 0.05).
b The frequencies were calculated and statistical analysis was performed in 9 dogs of the monoinfected group and in 19 dogs of the co-seropositive group.
c Statistical analysis was not possible because of the absence of positivity in one of the groups.

https://doi.org/10.1371/journal.pone.0247560.t004
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Fig 2. Histological findings in 66 dogs naturally infected with Leishmania infantum. (A) Hyperkeratosis and

granulomatous dermatitis consisting mainly of macrophages, as well as lymphocytes and plasma cells, in a

monoinfected dog. HE. (B) Brown-stained amastigote forms of Leishmania (arrows) inside macrophages in the skin of

the same monoinfected dog. IHC. (C) Diffuse granulomatous dermatitis consisting mainly of macrophages, as well as

lymphocytes and plasma cells, in a dog co-seropositive for Ehrlichia spp. and Toxoplasma gondii. HE. (D) Brown-

stained amastigote forms of Leishmania (arrows) inside macrophages in the skin of the same dog co-seropositive for

Ehrlichia spp. and T. gondii. IHC. (E) Granulomatous infiltrate around the teat canals and sinuses of the mammary

gland in a dog co-seropositive for T. gondii. HE. (F) Granulomatous inflammatory infiltrate in the tricuspid valve of a

monoinfected dog. HE. (G) Diffuse granulomatous interstitial pneumonia consisting mainly of macrophages in a dog
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the vectors of these pathogens [43]. According to Figueredo et al. [43], the presence of ticks

and the occurrence of pathogens transmitted by these vectors tend to be more common

among dogs in regions where the socioeconomic status of the population is low and dogs are

not in close contact with their owners (kept in the backyard or semi-restricted). In the city of

Barra Mansa, seropositivity of dogs for the proteobacteria Rickettsia rickettsii and/or R. parkeri,
which are also transmitted by ticks, has been demonstrated, with a frequency of 19.2% [44]. In

addition, anti-R. rickettsii antibodies and anti-L. infantum antibodies were simultaneously

detected in 7.7% of the examined dogs [45]. These studies and the present results suggest that

dogs from Barra Mansa are frequently exposed to ticks and to the agents transmitted by these

arthropods. The investigation of these co-infections or co-seropositivities is important since

dogs with CanL can exhibit clinical signs similar to those caused by tick-borne diseases, a fact

that makes the diagnosis of L. infantum difficult [39, 46]. Consequently, the dog remains in the

environment for a longer period and thus serves as a source of L. infantum infection for

sandflies.

In the present study, the absence of co-seropositivity for B. burgdorferi, C. burnetii or D.

immitis in L. infantum-seropositive and infected dogs suggests that the circulation of these

pathogens is low or does not occur in the area studied. Additional tests such as PCR for the

detection of D. immitis and B. burgdorferi may be useful to identify possible infected and non-

seropositive dogs. The absence of C. burnetii-positive dogs may be explained by the lack of

proximity of the dogs studied with infected sheep and goats, which act as important sources of

co-seropositive for T. gondii. Note the large numbers of lymphocytes and plasma cells and few neutrophils. HE. (H)

Multifocal granulomatous endocarditis and myocarditis consisting mainly of macrophages in a dog co-seropositive for

T. gondii. Note the large numbers of lymphocytes and few plasma cells. HE.

https://doi.org/10.1371/journal.pone.0247560.g002

Fig 3. Leishmania load expressed as number of amastigote forms per mm2 in the skin of monoinfected and co-seropositive dogs detected by

immunohistochemistry. The horizontal black lines indicate the median parasite load. The vertical dotted lines indicate the interquartile range. The blue dots

indicate the parasite load of each dog.

https://doi.org/10.1371/journal.pone.0247560.g003
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contamination with this bacterium [28]. However, co-infection with D. immitis and L. infan-
tum has been reported in dogs in Brazil [47, 48]. In addition, studies on L. infantum-seroposi-

tive dogs conducted in Europe demonstrated co-infection with or co-seropositivity for D.

immitis and B. burgdorferi, but the prevalence was low [10, 14, 39, 40, 49–52]. In these surveys,

the reported prevalence of D. immitis and L. infantum co-infection or co-seropositivity in dogs

was 1.2% to 8.3% in Portugal [40, 49], 4.3% in Cyprus [39], and 0.16% to 0.6% in Greece [11,

52]. Additionally, clinical cases of this co-infection in three dogs were reported in Italy [50].

Twenty-nine out of 98 (29.6%) dogs were co-infected with L. infantum and filariae, including

D. immitis, in Spain [14]. Co-seropositivity of dogs for L. infantum and B. burgdorferi was

observed in 14 of 2,620 dogs (0.5%) in Greece [11] and in 1 of 1,185 dogs (0.08%) in Portugal

[40]. However, this co-seropositivity or co-infection was not found in Cyprus [39] or Côte

d’Ivoire [12], in agreement with the present study. Although C. burnetii, D. immitis and B.

burgdorferi were not found in the area studied, the detection of C. burnetii in two dogs [28]

and a prevalence of D. immitis of 16.3 to 62.2% [53] and of B. burgdorferi of 1.4 to 41.9% [54]

have been reported in other cities in the state of Rio de Janeiro. Further studies on the occur-

rence of co-infection with these three pathogens in L. infantum-seropositive dogs are necessary

not only because they are zoonoses, but also because co-infections with filariae have been

shown to increase the severity of clinical signs of CanL [14].

In the study of Toepp et al. [10], the risk of L. infantum seropositivity was 1.68 times higher

among dogs seropositive for agents transmitted by ticks, such as Ehrlichia spp. and Anaplasma
spp., than among dogs that were not co-infected with these agents. In addition, in a study car-

ried out in the Campania region in Italy, the presence of antibodies against Neospora caninum
was the main risk factor for L. infantum seropositivity, while the presence of antibodies against

L. infantum was the main risk factor for N. caninum seropositivity [4]. Investigating the occur-

rence of co-infections in dogs living in VL-endemic areas is important since Leishmania infec-

tion can trigger an ineffective immune response that renders dogs more susceptible to other

infections, while co-infections can increase the dog’s susceptibility to Leishmania [4, 7, 10].

These hypotheses are reinforced by the high frequency of co-seropositivities among dogs sero-

positive for and/or infected with L. infantum found in this study and in other studies [4, 7, 10].

Toepp et al. [10] also observed a significant association between exposure to agents trans-

mitted by ticks, such as Ehrlichia spp. and Anaplasma spp., and the progression of clinical

signs of CanL and a higher mortality rate in these dogs. These authors believe that co-infec-

tions alter the immunity of dogs, allowing L. infantum infection to thrive within the phago-

cytes leading to clinical disease. In another study [7], the frequency of anti-A. phagocytophilum
antibodies was significantly higher in dogs with CanL than in healthy dogs; in addition, these

antibodies were more frequent in dogs with more severe clinicopathological changes and with

more severe CanL. A study using histopathology found that the percentage of dogs with L.

infantum amastigote forms on the skin was almost double (36%) in the group of dogs co-

infected with L. infantum and E. canis when compared to the group of L. infantum-monoin-

fected dogs (19%) [55]. The authors attributed this result to the fact that E. canis caused a

reduction in the class II histocompatibility complex, leading to depression of the immune sys-

tem and favoring the multiplication of L. infantum. An experimental study on mice showed

that Ehrlichia spp. is able to reduce autophagy in infected macrophages, allowing the growth

and replication of bacteria and, consequently, of other intracellular agents such as Leishmania
[56]. However, in the present study, no significant association was found with clinical signs,

frequency of positivity for amastigote forms of Leishmania spp. in different tissues or L. infan-
tum load in co-seropositive dogs when compared to monoinfected dogs. This divergence to

the literature may be due to the small number of monoinfected animals in the present study,

which may have influenced the statistical analysis. Another explanation is the fact that we did
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not perform a longitudinal analysis, unlike Toepp et al. [10] who evaluated dogs for the pro-

gression of clinical signs and death over a 10-month period. Evaluation of the dogs for the

same or a longer period of time than that used by Toepp et al. [10] might have resulted in the

observation of worsening of the clinical status and a higher L. infantum load in co-seropositive

dogs.

Another hypothesis for the lack of aggravation of CanL due to co-seropositivity for certain

pathogens in the present study is that the seropositive dogs may not be co-infected or infection

with these pathogens is not active, but they were previously exposed to the pathogens and

exhibited detectable memory antibodies. Anti-E. canis antibodies can persist in the circulation

for a long time even after elimination of the agent [57]. In contrast, very recent infections may

have also contributed to false-negative results of the serological tests since most of them detect

IgG antibodies that are produced later [57]. As a result, dogs classified as monoinfected with L.

infantum may be infected with the other pathogens investigated but did not have enough time

to produce late-phase antibodies against these pathogens.

The possibility of a serological cross-reaction of other pathogens with L. infantum must also

be taken into account. Other Leishmania species [58], E. canis, Babesia canis, N. caninum, T.

gondii [59], Leptospira interrogans [58], Trypanosoma cruzi [59], and T. caninum [60] can

cross-react, thus causing false-positive results in serological L. infantum tests. However, previ-

ous studies reported that cross-reactivity with L. infantum in serological tests for B. canis and

E. canis is rare [61, 62] and the ELISA 4 Dx1 Plus test has high sensitivity and specificity.

Additionally, in the present study, about 90% of the dogs studied tested positive for Leishmania
by culture and/or IHC, and all of them tested positive for L. infantum by qPCR. Therefore,

cross-reactivity with antibodies of other agents is unlikely.

The possibility that the L. infantum-monoinfected dogs were actually co-infected with

other pathogens not investigated here, such as Babesia spp. and helminths, cannot be ruled

out. This fact may have contributed to the similarities in clinical signs, L. infantum positivity

and parasite load between monoinfected and co-seropositive dogs. However, the present

results do not rule out the possibility that co-infection with L. infantum and other pathogens

may exert immunomodulatory activity, preventing a synergistic effect on the aggravation of

diseases caused by these agents. Therefore, further studies are needed to better understand the

role of co-infections in modulating the immune system of dogs.

Although the number of clinical signs or parasite load was not higher in co-seropositive

dogs, a larger number of inflammatory cells was observed in the spleen, lung and mammary

gland of these dogs. Studies have associated the inflammatory reaction observed in these

organs with L. infantum infection in dogs [24, 63]. However, this inflammatory reaction is not

a specific histological alteration and it was not possible to correlate its presence with L. infan-
tum parasitism in all cases. Nevertheless, the participation of L. infantum in these histological

changes cannot be ruled based on the lack of detection of amastigote forms of this parasite

since these forms are heterogeneously distributed and may not be visualized depending on the

histological section examined, even if they are present in the tissue. In addition, even in the

absence of amastigote forms, the inflammatory reaction can be triggered by peripheral stimuli

such as parasite antigens, DNA or inflammatory mediators, as well as by the deposition of

immune complexes in tissues [64, 65]. In a previous study [6], the intensity of the inflamma-

tory infiltrate was higher in the central nervous system of dogs co-infected with T. gondii and

E. canis when compared to dogs infected only with L. infantum. Similarly, co-infections may

have contributed to aggravate the intensity of the inflammatory infiltrate in the spleen, lung

and mammary gland of the co-seropositive dogs studied here. However, the inflammatory

infiltrate in these organs was not associated with the detection of T. gondii by IHC. This result

suggests that T. gondii infection was latent in these animals, which is commonly seen in dogs
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[66] and was not reactivated by co-infection with L. infantum. On the other hand, co-infection

with Ehrlichia spp. and Anaplasma spp. may have contributed to a more intense inflammatory

infiltrate in the spleen and lung of the co-seropositive dogs in this study. This can be explained

by the fact that a perivascular inflammatory infiltrate consisting of macrophages and lympho-

cytes is the main histological alteration observed in the lungs and spleen of dogs infected with

E. canis and Anaplasma spp. [67, 68]. These dogs may have been in an early stage of the histo-

logical changes associated with L. infantum co-infections and the time was not sufficient to

develop apparent clinical signs related to the affected organ(s). This hypothesis could explain

why co-seropositivity for certain pathogens did not exacerbate the intensity of clinical signs in

the dogs studied.

Conclusions

The present results suggest that co-seropositivities for Anaplasma spp., Ehrlichia spp. and T.

gondii are common among dogs infected with L. infantum in the region studied. However,

these co-seropositivities did not aggravate clinical signs or L. infantum load, although they

were associated with a more intense inflammatory reaction in some organs.
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nanda Nazaré Morgado, Rodrigo Caldas Menezes.

PLOS ONE Co-seropositivities in dogs naturally infected with L. infantum

PLOS ONE | https://doi.org/10.1371/journal.pone.0247560 March 11, 2021 16 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0247560.s001
https://doi.org/10.1371/journal.pone.0247560
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Validation: Valéria da Costa Oliveira, Raquel de Vasconcellos Carvalhaes de Oliveira, Rodrigo

Caldas Menezes.
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