
1 
 

REANALYSIS AND INTEGRATION OF PUBLIC MICROARRAY DATASETS REVEALS 

NOVEL HOST GENES MODULATED IN LEPROSY 

 

Thyago Leal-Calvo1 

Milton Ozório Moraes1 

 
1Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-360, 

Brazil. 

  

Correspondence address: milton.moraes@fiocruz.br 

 

Abstract  

 

Background: Leprosy is an insidious disease caused primarily by mycobacteria. The 

difficulties in culturing this slow-growing bacteria together with the chronic progression of the 

disease have hampered the development of accurate methods for diagnosis. Host gene 

expression profiling is an important tool to assess overall tissue activity, whether in health or 

disease conditions. High-throughput gene expression experiments have become popular over 

the last decade or so, and public databases have been created to easily store and retrieve 

these data. This has enabled researchers to reuse and reanalyze existing datasets with the aim 

of generating novel and or more robust information. In this work, after a systematic search, nine 

microarray datasets evaluating host gene expression in leprosy were reanalyzed and the 

information was integrated to strengthen evidence of differential expression for several genes. 

Results: Reanalysis of individual datasets revealed several differentially expressed genes 

(DEGs). Then, five integration methods were tested, both at the P-value and effect size level. 

In the end, random effects model (REM) and ratio association (sdef) were selected as the main 

methods to pinpoint DEGs. Overall, some classic gene/pathways were found corroborating 

previous findings and validating this approach for analysis. Also, various original DEGs related 

to poorly understood processes in leprosy were described. Nevertheless, some of the novel 

genes have already been associated with leprosy pathogenesis by genetic or functional studies, 

whilst others are, as yet, unrelated or poorly studied in these contexts. 

Conclusions: This study reinforces evidences of differential expression of several genes and 

presents novel genes and pathways associated with leprosy pathogenesis. Altogether, these 

data are useful in better understanding host responses to the disease and, at the same time, 

provide a list of potential host biomarkers that could be useful in complementing leprosy 

diagnosis based on transcriptional levels. 

 

Keywords: reanalysis, gene expression, leprosy, meta-analysis, microarray, gene expression 

omnibus.  
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Background 

 

 Leprosy is a chronic infectious disease caused by Mycobacterium leprae. This pathogen 

preferably resides in skin macrophages and Schwann cells in peripheral nerves, which often 

results in strong inflammatory responses and nerve dysfunction [1–3]. Although curable, the 

World Health Organization (WHO) reported in 2017 a stagnant number of new leprosy cases 

globally, of which India and Brazil were the leaders [4]. Despite the effectiveness of treatment, 

transmission likely occurs prior to diagnosis since it is primarily detected based solely on clinical 

findings. As yet there is no gold standard method to differentiate asymptomatic infection from 

disease, and early detection and unambiguous diagnosis is incredibly difficult [5–8]. As 

exposure to the etiological agent is not sufficient to develop the disease [9], it is assumed that 

early diagnosis is key in controlling the disease transmission, along with chemo- and 

immunoprophylactic strategies for high risk individuals, such as household contacts [10]. 

Leprosy is considered a complex disease, as environmental and host genetic factors can affect 

the outcome during the different steps of the natural disease course. The stages that can be 

influenced can include mycobacterial clearance, progression to localized (tuberculoid, TT) or 

disseminated (lepromatous, LL) forms, and occurrence of reactional episodes (reversal 

reaction, RR,  or erythema nodosum leprosum, ENL) [5,11,12]. 

 To date, large-scale approaches, such genotyping through genomic scans, genome-

wide association studies or whole exome sequencing, or expression analysis through 

microarrays and RNA sequencing, have been connecting several important pathways and 

genes to the pathogenesis of leprosy [13–16]. High-throughput gene expression analysis can 

provide valuable information in the identification of genes involved in host responses to 

infection, to assess disease severity, and to discover biomarkers for both diagnosis and 

prognosis. These associations between either single nucleotide polymorphisms (SNP) depicted 

in genetic studies or genes/transcripts found in expression analysis, must then be 

independently confirmed using mechanistic biological studies [7,16,17]. In this regard, gene 

functional analysis is also an important aspect in defining host-M. leprae interaction [18–20]. 

The popularity of large-scale studies coupled with the search for scientific reproducibility and 

open science, has led to the creation of databases for the easy storage and retrieval or public 

data. NCBI’s Gene Expression Omnibus (GEO), one of the most important databases for gene 

expression data, has to this date 119,721 entries [21,22]. Despite their comprehensiveness, 

microarray-based studies may report findings that are not reproducible, or that fail to detect 
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minor differences among samples [23]. The combination of multiple independent studies can 

therefore increase reliability and generalizability of results [24], especially because manually 

comparing studies with distinct designs is not a trivial task. Therefore, reanalysis of existing 

data can yield relevant information that were not of immediate interest to the researchers who 

initially conducted the experiment. Reanalysis can also be used to independently validate 

related experiments, resulting in more robust evidences of differential expression [25–27]. 

 In this study, nine host gene expression studies linked to leprosy that had been 

deposited in GEO were comprehensively reanalyzed and integrated. Overall, the datasets of 

these experiments included human samples from all clinical classifications of the leprosy 

spectrum and experimental samples of murine cells. Genes that are consistently modulated 

across different independent studies were identified, and consequently yielded a significantly 

reduced number of false-positives and spurious signals than what would be expected by 

considering only one experiment. Some of these identified genes have been independently 

reported before, thus acting as analytical positive controls. Pathways that are clearly involved 

in leprosy pathogenesis, such as type 1 interferon and neutrophil mediated immunity, were 

enriched with these novel genes and therefore may be useful for constructing molecular 

signatures to improve diagnosis or be targets for prophylaxis and therapeutics.  

 

Results 

 

Search results and individual reanalysis 

 

A systematic search was conducted using specific keywords in GEO to identify leprosy-related 

datasets (See methods). Up until October 2017, 18 datasets were found, of which 9 (8 human, 

1 murine) were selected for reanalysis (Figure 1). Excluding criteria of datasets comprised 

those measuring non-coding RNAs or pathogen gene expression, studies involving compound 

stimulus, and/or those with only one sample biological group. Individual analysis of these public 

datasets revealed many differentially expressed genes (DEGs) across several comparisons 

within each study, encompassing various leprosy clinical forms and some in vitro experimental 

conditions, such as stimulus with live or sonicated M. leprae. As expected, in studies with few 

biological replicates no DEGs were detected after adjusting P-values for multiple testing. For 

this reason, the Guerreiro et al. (2013) [28] dataset was excluded from subsequent integration 
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analyses. Table 1 summarizes some information from the reanalyzed datasets and their public 

accession IDs. 

 

 

Fig 1 - Simplified flowchart of the reanalysis process.   

Initially, GEO was queried with specific keywords aiming at finding leprosy-related datasets. Further, 

studies were excluded according to study parameters, such as pathogen transcriptome profiling only, 

datasets measuring non-coding RNAs, compound stimulus and with insufficient groups or biological 

replicates. Then, the nine datasets were preprocessed individually using common statistical procedures 

and thresholds whenever possible, also including available covariates that could confound group-

specific differential gene expression. Next, both the lists of DEG with their P-values or normalized gene 

expression matrices were used with integration/meta-analytical tools to summarize evidence of 

differential expression across studies for related comparisons. Finally, the consolidated DEG lists were 

used as input in over-represented analysis in order to translate genes to biological processes according 

to Gene Ontology annotation. 
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Table  1. Description of the nine GEO datasets used in this study. 
GEO 

Accession 
Organism 

Sample 

type 
Sample groups (n) Microarray Platform Comparison Ref. 

GSE40950† H. sapiens Cell culture Infected (6), Control (6) Stanford Custom NA 28 

GSE35423 H. sapiens Cell culture 
Infected 24h (2), Control 24h (2), Infected 48h 

(2), Control 48h (2) 
Applied Biosystems In vitro 14 

GSE24280 H. sapiens 
Skin biopsy, 

blood* 

BT (6), MB (6), BT blood (6), MB blood (6), 

healthy skin (1) 
NimbleGen 

MB vs. PB  

LL vs. HS 
NA 

GSE443 H. sapiens Skin biopsy LL (6), BT (5) 
HG_U95Av2 

Affymetrix 
MB vs. PB 80 

GSE17763 H. sapiens Skin biopsy LL (7), BT (10), RR (7) HG-U133 Affymetrix MB vs. PB 81 

GSE16844 H. sapiens Skin biopsy ENL (6), LL (7) HG-U133 Affymetrix LL vs. ENL 47 

GSE74481 H. sapiens Skin biopsy 
TT (10),  BT (10),  BB (10),  BL (10),  LL (4),  

RR (14), ENL (10) , healthy (9) 
Agilent SurePrint 

MB vs. PB  

LL vs. HS 

LL vs. ENL 

82 

GSE100853 H. sapiens 

Whole 

blood 

culture 

Stimulated (51), Mock cultures (51) Illumina HumanHT In vitro 83 

GSE95748 
M. 

musculus 
Cell culture 

Control (2), Infected 14 days (2), Infected 28 

days (2), pSLCs (2) 
Affymetrix Mouse In vitro 52 

†Dataset excluded from integration/meta-analysis due to no differentially expressed genes during individual 
analysis. *Blood samples were not considered in this work, because it was only represented in one dataset at the 
time. MB: multibacillary leprosy; TT: tuberculoid leprosy; BT: borderline tuberculoid; BB: borderline-borderline; BL: 
borderline-lepromatous; LL: lepromatous lepromatous; RR: reversal reaction or type 1 reaction (T1R); ENL: 
erythema nodosum leprosum or type 2 reaction (T2R). 

 

Common differentially expressed genes by the ratio association (sdef) method and meta-

analysis tools 

 

After individual differential expression analysis for each of the nine included studies, samples 

were grouped from the different studies into four comparison categories based on clinical 

features to find common DEGs, i.e. LL vs. BT (4 independent datasets); LL vs. ENL (2 ind. 

datasets); LL vs. Control (2 ind. datasets); in vitro experiments of Stimulated vs. Control (3 ind. 

datasets, 6 comparisons) (Table 1 and Figure 2). Hence, only genes common to most or all 

studies within each category, mapped by Entrezid, were used in the ratio association test, 

hereafter referred as the sdef method, and the meta-analysis procedures (see Methods). 

According to the publication that defined sdef, the method is considered conservative with less 

type 1 errors in expense of more type 2 errors [29]. Additional gene expression meta-analysis 

tools from MetaDE R package were also used, such as the P-value-based methods, r-th 
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ordered P-value (rOP), maximum P-value (maxP), and sum of ranks (SR), and the random 

effects model (REM), which is based on the effect size. 

Figure 2 shows the number of genes selected, with a false discovery rate (FDR) less 

than or equal to 0.1, from each integration approach and the intersection between the different 

methods. The rOP and maxP methods were more liberal and selected more DEGs for all 

comparison categories. In the two-study cases, such as LL vs. ENL, the maxP and rOP are 

equivalent and selected the same genes (Figure 1bc). As expected, sdef selected few genes 

(98), but the most conservative procedure was the SR tool, which resulted in 66 genes in LL 

vs. BT (Figure 1a), and even fewer for the other comparisons (Figure 1bcd). Overall, the ratio 

association method (sdef) gave intermediate results, selecting more genes than SR, but fewer 

than REM, rOP, or maxP. Unlike all the other approaches, the REM method considers the effect 

size and its sign/direction, where larger effects with the same sign across studies are more 

likely to be truly differentially expressed. For this reason, the REM was used to select genes 

from LL vs. BT and LL vs. ENL comparisons. However, due to some dataset-specific limitations 

(See methods section), the sdef method was used for LL vs. Control and Stimulated vs. Control 

(in vitro) comparisons (Additional File 1 – Tables S3 and S4; Additional File 2 – Figures S1 and 

S2). 
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Fig 2 - Upset plots showing the number of identified genes from each method and their 
intersection. 
Vertical bars show the number common genes (intersection size) from a given set of methods (bottom 
filled connected circles). Horizontal bars illustrate the total number of genes (set size) output from each 
integration or meta-analysis method. Dashed boxes contain genes selected in common from all 
methods. a Genes selected for LL vs. BT comparisons (4 independent datasets). b LL vs. Control (2 
ind. datasets); c LL vs. ENL (2 ind. datasets); d in vitro experiments stimulated vs. Control (3 ind. 
datasets, 6 comparisons). 
 

 

Table 2 shows the top 20 genes selected from the LL vs. BT comparison using the REM 

approach. With a FDR at 10%, 475 genes were considered statistically significant by this 

method and 36 were identified by all five tested methods (Figure 1a). Excluding the SR, 26 

other genes were also considered differentially expressed, totaling 501 genes. Among the top 

selected DEGs with higher expression in LL than BT skin biopsies are: CCR1, CD14, GDF15, 

APOE, APOC1, P2RX4, LIPA, and LGALS9. Whilst for the converse, some of the more 
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expressed in BT than LL are: GATA3, KRT5, LTB, VDR, KRT14, DSG, SCEL, GBP2, S100B, 

and NEBL (Table 2; Additional File 1 – Table S1). 

 

Table 2 - Top 20 genes selected by the REM from LL vs. BT comparison across four datasets. 
Entrezid Symbol std. log2FC 95% CI FDR Tau2 

1230 CCR1 1.872 [1.217, 2.527] 0.0001 0.000 

3852 KRT5 -2.040 [-2.782, -1.298] 0.0001 0.087 

7421 VDR -1.785 [-2.433, -1.136] 0.0001 0.000 

929 CD14 1.800 [1.148, 2.452] 0.0001 0.000 

2941 GSTA4 -1.759 [-2.406, -1.113] 0.0001 0.000 

2697 GJA1 -1.695 [-2.332, -1.058] 0.0002 0.000 

605 BCL7A -1.857 [-2.557, -1.157] 0.0002 0.058 

1948 EFNB2 -1.653 [-2.292, -1.013] 0.0002 0.000 

9518 GDF15 2.077 [1.275, 2.879] 0.0002 0.174 

5783 PTPN13 -1.702 [-2.367, -1.037] 0.0003 0.029 

6351 CCL4 1.616 [0.984, 2.247] 0.0003 0.000 

4689 NCF4 1.566 [0.938, 2.195] 0.0005 0.000 

3613 IMPA2 -1.776 [-2.491, -1.061] 0.0005 0.090 

1212 CLTB -1.551 [-2.177, -0.924] 0.0005 0.000 

3615 IMPDH2 -1.546 [-2.175, -0.916] 0.0005 0.000 

348 APOE 1.522 [0.899, 2.144] 0.0006 0.000 

55556 ENOSF1 1.528 [0.897, 2.158] 0.0007 0.005 

2212 FCGR2A 1.716 [0.996, 2.436] 0.0008 0.103 

27076 LYPD3 -1.475 [-2.095, -0.855] 0.0008 0.000 

7291 TWIST1 -1.479 [-2.101, -0.857] 0.0008 0.000 

Genes shown are the top 20 with smallest adjusted P-value (FDR). FDR, false discovery ratio. Tau2
 is 

a represents the between-study variance. 

 

Table 3 shows the top 20 genes selected by the REM method for LL vs. ENL comparison 

from two studies. With a 10% FDR, 1857 genes were selected (Figure 2b, Additional File 1 – 

Table S2). Of these, 16 were commonly discovered by all five methods, and excluding the SR, 

another 575 genes were common to REM, sdef, rOP, and maxP (Figure 2b). Among the top 

genes found by REM that are more expressed in ENL than LL are: PROCR, AKR1B10, 

S100A12, PTX3, PI15, CYP7B1, STEAP1, LTF, ANGPTL4, and RNASE2. Conversely, genes 

such as PER3, ANKMY2H, MOAP1, GPNMB, LIPA, P2RX7, and SEPTIN8 have higher 

expression in LL than ENL skin lesions (Table 3; Additional File 1 – Table S2). 
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Table 3 - Top 20 genes selected by the REM from LL vs. ENL comparison across two datasets. 
Entrezid Symbol std. log2FC 95% CI FDR Tau2 

10544 PROCR -3.705 [-4.992, -2.417] 0.0001 0.00 

57016 AKR1B10 -3.940 [-5.294, -2.586] 0.0001 0.00 

6283 S100A12 -3.853 [-5.177, -2.529] 0.0001 0.00 

8863 PER3 3.713 [2.424, 5.002] 0.0001 0.00 

9420 CYP7B1 -3.571 [-4.831, -2.311] 0.0001 0.00 

1117 CHI3L2 -3.321 [-4.527, -2.114] 0.0001 0.00 

57037 ANKMY2 3.334 [2.125, 4.544] 0.0001 0.00 

64112 MOAP1 3.344 [2.132, 4.556] 0.0001 0.00 

7837 PXDN -3.446 [-4.69, -2.202] 0.0001 0.00 

1466 CSRP2 -3.285 [-4.485, -2.085] 0.0002 0.00 

4502 MT2A -3.238 [-4.428, -2.048] 0.0002 0.00 

57178 ZMIZ1 3.384 [2.138, 4.629] 0.0002 0.02 

154141 MBOAT1 3.165 [1.985, 4.344] 0.0002 0.00 

4495 MT1G -3.075 [-4.233, -1.917] 0.0003 0.00 

23034 SAMD4A 3.061 [1.905, 4.218] 0.0003 0.00 

56649 TMPRSS4 -3.610 [-4.98, -2.241] 0.0003 0.13 

10457 GPNMB 3.003 [1.852, 4.154] 0.0003 0.00 

51050 PI15 -2.995 [-4.144, -1.846] 0.0003 0.00 

5806 PTX3 -2.983 [-4.122, -1.843] 0.0003 0.00 

5879 RAC1 2.996 [1.852, 4.14] 0.0003 0.00 

Genes shown are the top 20 with smallest adjusted P-value (FDR). FDR, false discovery ratio. Tau2
  

represents the between-study variance. 

  

Gene ontology over-representation analysis 

 

After obtaining the lists of DEGs associated in different studies by the sdef or REM methods, 

the gene ontology over-representation analysis (ORA) was used to understand the possible 

biological role of these genes. In addition, to show the most common direction of regulation for 

genes in a given ontology a score was calculated, where positive scores signify that most of 

the genes are up-regulated and vice-versa [30]. 

For the LL vs. BT category, 313 genes with an FDR less than or equal to 0.1 and 

standardized |log2FC| greater than or equal to 1 were used in the analysis. In total, 138 gene 

ontology (GO) biological processes were enriched with an FDR < 0.1 for this category. The top 

20 GO biological processes are shown in Figure 3a (Additional File 3 – Table S5). Several 

biological processes had genes more expressed in LL than BT, such as ‘innate immune 
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response’, ‘regulation of response to external stimulus’, ‘inflammatory response’, ‘leukocyte 

migration’, ‘response to lipoprotein particle’ and ‘type 1 interferon signaling pathway’. Whilst, 

several epithelial ontologies had genes more expressed in BT than LL, like ‘epithelial cell 

differentiation’, ‘epidermis development’, ‘keratinocyte differentiation’ and ‘cornification’ (Figure 

3a; Additional File 3 – Table S5). Figure 3b shows some enriched processes together with the 

standardized log2FC for the annotated genes (Figure 3b; Additional File 3 – Table S5). 

 

Fig 3 - Enriched Gene Ontology biological processes from the LL vs. BT genes selected from 
random effects model (REM). a Top 20 ontologies with adj. P-value < 0.1 enriched from DEG selected 
by the REM method. X-axis shows the number of genes contained in the ontology and the dot size is 
proportional to this number. A score was calculated to show if genes within a given ontology were mostly 
up- or downregulated and are shown separately. b Heat plot showing some of the enriched biological 
processes with their gene members along with the effect size (standardized log2 fold change from REM 
according to Hedges & Olkin estimator). 
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For the LL vs. ENL comparison, the genes selected by the REM method with adjusted 

P-value (FDR) ≤ 0.01 and standardized |log2FC| ≥ 1 were used, which resulted in 1857 genes 

for enrichment analysis. Nine biological processes were enriched with an FDR < 0.1 and are 

shown in Figure z4a. Several ontologies were composed of up- and down-regulated (scores 

around 0.0) genes in LL vs. ENL, especially neutrophil-related processes and ‘iron ion 

homeostasis’ (Figure 4a; Additional File 3 – Table S6). Interestingly, the ontology ‘phagosome 

maturation’ contained more genes with higher expression in LL when compared to ENL skin 

lesions (Figure 4a; Additional File 3 – Table S6). 

 

Fig 4 - Enriched Gene Ontology biological processes from the LL vs. ENL genes selected from 
random effects model (REM). a Top 9 ontologies with adj. P-value < 0.1 enriched from DEG selected 
by the REM method. X-axis shows the number of genes contained in the ontology and the dot size is 
proportional to this number. A score was calculated to show if genes within a given ontology were mostly 
up- or downregulated and are shown separately. b Heat plot showing some of the enriched biological 
processes with their gene members along with the effect size (standardized log2 fold change from REM 
according to Hedges & Olkin unbiased estimator). 
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DISCUSSION 

 

 Using publicly available data deposited in GEO, nine microarray independent datasets 

linked to leprosy were selected and reanalyzed. Individual reanalysis revealed several 

statistically significant DEGs. In general, the reanalyzed results agreed with those from the 

original authors, although it was not our aim to individually compare them. Individual results 

were then integrated using aggregation and meta-analysis statistical tools to find common 

patterns of expression across different studies on similar biological groups. The integration 

provided a comprehensive view of the differential expression profile of several genes involved 

in processes ranging from the innate and adaptive immune system to structural components 

and metabolic pathways. In addition, future datasets, whether from microarrays or RNA 

sequencing can also add information regarding the revealed genes and pathways and could 

even be aggregated to create gene expression signatures representative of leprosy [31]. 

 Defining if a gene is differentially expressed in microarray or RNA-seq studies usually 

revolves around the adjusted P-value and an cutoff for the fold-change (effect size) [32,33]. 

Still, null hypothesis testing strongly depends on sample size, and underpowered experiments 

are expected to have few or no DEGs, depending on the investigated phenomenon [34,35]. For 

this reason, using multiple independent datasets confers an advantage in classifying genes as 

differentially expressed. 

Nevertheless, only assessing the final published list of DEGs from an individual study 

further limits common discoveries, as several factors must be accounted for before comparing 

the final lists. This practice is considered biased because: 1. not all genes screened in one 

study are also assayed in another one, especially if they are from different microarray platforms 

and manufacturers; 2. the statistical framework used, as well as the P-value correction method 

and thresholds, dictates the size of the final list of genes; 3. preprocessing and normalization 

methods have substantial impact on the resulting list of genes; 4. some annotation identifiers 

are more biased than others and usually are redundant, especially gene symbols; 5. some 

datasets do not have their findings reported in peer-reviewed journals [36–39]. For this reason, 

reanalyzing each study from the raw data using consistent procedures and common statistical 

settings, accounting for the caveats described, is a good workaround to produces more 

comparable lists. 

In this work, five aggregation/meta-analysis tools were used to screen and select 

common DEGs, one based on P-values and the other on standardized effect sizes [40]. 
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Through this aggregating approach, several DEGs that were poorly or not previously described 

in leprosy were discovered. Although the precise role of these genes is still unknown, their 

importance can be inferred based on gene ontology analysis and previously elucidated 

pathways deemed relevant in the host response to leprosy. GO enrichment of the lists of 

consistent (same effect size sign) DEGs from the LL vs. BT context revealed several genes 

involved with epithelial cell differentiation, skin development, keratinocyte differentiation, and 

cornification that were down-regulated in multibacillary (LL) compared to paucibacillary (BT) 

leprosy. Moreover, a similar profile is seen when comparing LL lesions with healthy skin 

(Additional Files 1 and 2, TableS3, Figure S1), with several genes involved in epidermis 

development and keratinocyte differentiation being less expressed in lepromatous lesions. 

Whilst the genes primarily up-regulated in LL vs. BT or LL vs. Control are involved with 

endocytosis [41], phagocytosis, lysosomes, lipid transport and metabolism [42–44], secretory 

granules, immune response, iron transport and ferric iron binding [45], neutrophil activation and 

degranulation [46,47], for which some work has been conducted by other leprosy researchers. 

Together, these data suggest that in the skin, multiple cell types are involved with the disease, 

especially neutrophils and perhaps the, as yet, poorly studied keratinocytes [48,49]. 

 Several cornification and skin development genes were extensively down-regulated in 

multibacillary leprosy (LL). Given that this effect is repeatedly observed in independent samples 

analyzed by distinct microarray technologies, it is unlikely that this phenomenon was not 

accurate. Two hypotheses can be formulated to explain this substantial down-regulation of 

keratinocyte-associated genes. First, this may be the result of inflammatory processes in the 

skin leading to epidermis thinning [50,51], resulting in lower numbers of keratinocytes being 

sampled. Second, M. leprae may directly or indirectly slow or arrest keratinocyte terminal 

differentiation during cornification. This could be as either a consequence from immunological 

activity surrounding keratinocytes or these cells being directly infected and reprogrammed 

[48,49]. Masaki et al. have already shown a similar phenomenon in which M. leprae is capable 

of reprogramming Schwann cells to de-differentiate into stem-like states in order to survive and 

disseminate [52–55]. In any case, further experiments are needed to understand this process 

more precisely. 

 Interestingly, reanalysis of three studies based on in vitro experiments demonstrated 

common activated genes, although they were generated using different stimuli on distinct cells. 

Furthermore, enrichment analysis of these genes resulted in several converging ontologies 

when comparing the results obtained from datasets on human skin biopsies. This approach has 
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strengthened the importance of some previous known pathways, such as: type 1 and 2 

interferon pathways [15,56], tumor necrosis factor [57], and NF-kappa B signaling [58,59]. 

 Although gene expression can be validated by other techniques, such as qPCR, the 

analysis of multiple microarrays from independent samples, performed by different researchers 

in different laboratories, producing analogous results are a good indicator of true differential 

gene expression, especially in cases where more than three datasets were examined. 

However, proper replication of our findings in independent samples and with a different method 

may still be important to truly estimate gene expression differences [34,37,60]. 

 

Conclusions 

 

In this study nine public microarray datasets regarding leprosy were reanalyzed using a 

standardized approach, integrating their individual results to uncover differential gene 

expression signals. Aggregation of the results revealed several genes involved in leprosy 

pathogenesis that are already being investigated, as well as many novel candidates that may 

be pivotal in a comprehensive understanding of the host response to the disease. Genes that 

were more likely to be differentially expressed based on direction of the modulation and 

statistical significance were selected and combined from multiple independent datasets. 

Categories were formed by grouping samples from different studies to enable comparisons of 

differentially expressed genes across the disease spectrum as well as with healthy controls and 

for in vitro studies. Although some comparisons are underrepresented by the number of studies, 

the reanalyzed results pinpoint some pathways and genes that could be further characterized, 

for potential diagnostic purposes or for the general understanding of disease 

immunopathogenesis. In the future, when more datasets become available, we can expand this 

work and also create context-specific gene signatures for leprosy.  

 

Methods 

 

Search, selection and data retrieval 

 

Initially, a manual search of NCBI’s Gene Expression Omnibus (GEO) was conducted with the 

following string: "Mycobacterium leprae"[All Fields] OR "M. leprae"[All Fields] OR “leprae” [All 

Fields] OR ("leprosy"[MeSH Terms] OR leprosy[All Fields]) AND "gse"[Filter]. Search results 
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were examined, and datasets were excluded if they consisted of: a) gene expression only from 

the pathogen; b) compound co-stimulation; c) only one kind of sample which did not allow any 

comparison; and, d) probes targeting only non-coding RNAs. No studies were discarded due 

to publication or experiment date, microarray platform or unavailability of raw data since this 

would decrease even further the number of datasets available. Whenever possible, raw data 

were preferentially downloaded; otherwise, the GEO gene expression matrix was used. A check 

was performed to determine whether samples were duplicated between studies by accessing 

contents of the available papers and individual/sample descriptions from GEO [23,61]. For this 

reason, datasets regarding the in vivo mouse footpad model were excluded because of possible 

biological sample duplication (Additional File 1 – GEO Search Results). 

 

Microarray data analysis 

 

Raw data or expression matrices were imported to R environment software (version 3.4.1 

running on Rstudio IDE v. 1.1.383) powered by Bioconductor (v. 1.26.1) libraries, GEOquery 

(v. 2.42.0), Biobase (v. 2.36.2) and limma (v. 3.32.6) [62–66]. If raw data was available, an 

ExpressionSet object was built with raw files plus phenotype and feature data available from 

GEO or the original publication. Datasets were preprocessed according to chip technology, 

where Affymetrix and other single-channel technologies were normalized with a Robust 

Multichip Average (RMA) method using the affy R package (v. 1.54.0) [67,68]. Two-channel 

data were background-corrected using the normexp method with a custom offset value, 

followed by within array normalization (Shrunk Robust Splines), and a final quantile 

normalization between arrays (limma) [69,70]. Multidimensional scaling (MDS) plots and 

Principal Component Analysis (PCA) were performed to assess the structure of data. 

Duplicated genes (mapped by Entrezid) were filtered out according to the smallest mean 

expression across all samples. Differential gene expression analysis was done by fitting gene-

wise linear models and empirical Bayes moderated t-statistics, both implemented in limma 

[63,71]. Whenever available, covariates and batch information were included in the linear 

model. Resulting P-values were adjusted for multiple testing as proposed by Benjamini and 

Hochberg’s (BH) method [72] to control the FDR. The P-value distribution was visually 

inspected with histograms. Furthermore, the biomaRt (v. 2.32.1) R package was used to 

convert mouse genes to human orthologues Entrezid identifiers [73]. Finally, all ribosomal 

protein-coding genes were excluded from the processed expression matrices. 
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Common differentially expressed genes from independent studies by the association 

ratio method (sdef) 

 

To find an intersection of genes differentially expressed across studies, but for related 

comparisons, a frequentist and Bayesian association ratio analysis was employed [29]. Briefly, 

the chance association of genes from similar experiments is tested by a ratio measuring the 

relative increase of genes in common from different experiments with respect to the number 

expected by chance, that is, under the hypothesis of independence. Then, the statistical 

significance of this ratio is assessed by Monte Carlo permutation; also, a joint model of the 

experiments is formulated in a Bayesian framework. Four categories were created including 

different studies comparing similar groups; then, for each category, the ratio of observed to 

expected probability of genes to be in common was calculated by the frequentist and Bayesian 

methods, as proposed by the sdef (v. 1.6) R package [74]. For this analysis, all unique genes 

(Entrezid) with their corresponding nominal P-values were used. After obtaining the common 

DEGs list with the Bayesian approach, which considers an alpha threshold that maximizes the 

number of DEGs without the credibility interval including 1 (not rejecting the null), the nominal 

P-values were replaced by their FDR-adjusted counterparts calculated in limma. Thus, the 

association ratio method was used as an aggregation list tool. 

 

Meta-analysis for gene expression  

 

The developers of sdef proposed that this method is rather conservative, aiming for fewer false 

positives when compared to other methods [29,74]. For this reason, in this study the sdef 

approach was compared with more standard gene expression meta-analysis tools.  For this, 

the R MetaDE library was used [75], which implements 12 major meta-analysis methods for 

differential gene expression. Besides the maximum P-value (maxP), r-th ordered p-value (rOP), 

and sum of ranks (SR) P-value-based methods, the random effects model (REM) which is 

based on effect sizes was also tested [40,76,77]. The REM method requires at least two 

samples per group to compute the effect size, due to this, the comparison LL vs. Control was 

not used, as one of the datasets only contained one healthy sample (GSE24280). Furthermore, 

given that the in vitro datasets were generated with different stimuli (live or sonicated M. leprae) 

and on different cells (Schwann cells, whole-blood), it was expected that there would be 
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different modulation direction and, therefore, the REM method would be too conservative by 

penalizing discordant genes, even though they may have been strongly expressed irrespective 

of their direction. 

 

Gene ontology functional enrichment analysis  

 

Gene ontology over-representation analysis (ORA) was used to better understand the biological 

role of the resulting gene lists. For each comparison category, the DEG lists were tested for 

enriched functional categories according to the GO Biological Process (BP), and P-values were 

calculated based on the hypergeometric distribution [78]. P-values were also adjusted for 

multiple testing using the BH method [72] (clusterProfiler v. 3.4.4, [79]). For LL vs. BT and LL 

vs. ENL comparisons, the selected genes used were from the REM method with a standardized 

|log2FC| ≥ 1 and an FDR < 0.1 or 0.01. For the LL vs. Control, the genes from the sdef analysis 

with same gene expression direction in both studies were used. As for the in vitro comparison, 

the genes that resulted from the sdef approach with a median |log2FC| ≥ 0.5 (41% relative 

increased expression) were used. Since studies for the in vitro comparison were heterogeneous 

in experimental design, a filter for concordance modulation direction was not applied. Significant 

ontologies were visualized with custom functions from clusterProfiler R package [79]. A score 

was also calculated [30] to depict the proportion of up- or down-regulated genes that compose 

a given ontology; where positive scores mean most of the genes are up-regulated in a given 

ontology and vice-versa (Eq. 1). 

𝑠𝑐𝑜𝑟𝑒 =
(𝑛𝑢𝑝−𝑛𝑑𝑜𝑤𝑛)

√𝑐𝑜𝑢𝑛𝑡
  Eq. 1 

Inspection of gene lists 

 

The effect size (log2FC or standardized log2FC), direction of gene regulation (up- or down-

regulation), and adjusted P-values are collectively important metrics to rank critical genes for 

further investigation. Therefore, all genes that were found to be associated among independent 

studies were tabulated with their FDR-adjusted P-values, standardized log2FC (from REM) or 

median log2FC (from sdef), and number of related comparisons in which the gene was 

significantly modulated (FDR ≤ 0.1). These results are shown partially in the main text and fully 

within the supplemental files. 
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List of abbreviations 

 

sdef: ratio association method; REM: random effects model; rOP: r-th ordered p-value; maxP: 

maximum P-value; SR: sum of ranks; MB: multibacillary leprosy; PB: paucibacillary leprosy; 

DEG: differentially expressed gene; FDR: false discovery rate; BH: Benjamini-Hochberg; LL: 

lepromatous lepromatous leprosy; ENL: erythema nodosum leprosum; BT: borderline-

tuberculoid; FC: fold change; GEO: Gene Expression Omnibus; NCBI: National Center for 

Biotechnology Information. 

 

Additional Files 

 

Additional File 1 – Supplementary tables S1-S4 and GEO search results. Full table of 

results for the integration/meta-analysis with FDR ≤ 0.1. This file contains four .XLS 

spreadsheets with results for the LL vs. Control and Stimulated vs. Control (in vitro) categories 

not presented within main text. One .PDF containing the 18 results from the GEOquery. (.ZIP 

2.14 MB) 

 

Additional File 2 – Supplementary figures S1-S2 + REM forest plots. Enrichment analysis 

for the LL vs. Control and Stimulated vs. Control (in vitro) categories and forest plots for DEGs 

from LL vs. BT and LL vs. ENL random effects model (REM) estimates. (four .PDF files, .ZIP 

2.99 MB) 

 

Additional File 3 – Supplementary tables S5-S8. Four .XLS spreadsheets containing full 

enrichment results for all categories analyzed including the numeric score and its categorical 

label. (.ZIP 661 KB) 
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