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SUMMARY

Leishmania braziliensis infection frequently results in cutaneous leishmaniasis
(CL). An increase in incidence of drug-resistant CL leading to treatment failure
has been reported. Identification of reliable predictors of treatment outcomes
is necessary to optimize patient care. Here, we performed a prospective case-
control study in which plasma levels of cytokines and lipid mediators were as-
sessed at different time points during antileishmanial therapy in patients with
CL from Brazil. Multidimensional analyses were employed to describe a combina-
tion of biomarkers able to predict and characterize treatment failure. We found a
biosignature influencedmainly by plasma levels of lipid mediators that accurately
predicted treatment failure. Furthermore, transcriptomic analysis of a publicly
available data set revealed that expression levels of genes related to lipid meta-
bolismmeasured in skin lesions could distinguish treatment outcomes in CL. Thus,
activation of pathways linked to lipid biosynthesis predicts treatment failure in
CL. The biomarkers identified may be further explored as therapeutic targets.

INTRODUCTION

Leishmaniasis is a group of diseases caused by Leishmania spp parasites. The World Health Organization

(WHO) considers leishmaniasis a serious public health concern (World Health Organization, 2018), with a

worldwide incidence reaching as high as 1,2 million new cases every year (Alvar et al., 2012). Individuals in-

fected with Leishmania can develop a wide spectrum of clinical manifestations, ranging from localized cuta-

neous disease (cutaneous leishmaniasis [CL]) to a chronic systemic illness named visceral leishmaniasis (VL)

(Dutra et al., 2011). The determinants of disease outcomes are described to involve factors directly linked to

parasite species, as well as those associated with the host immune system (Dutra et al., 2011). Brazil is a

major endemic region for both cutaneous and visceral leishmaniasis, with a recent geographical spread

of disease transmission and increased detection of cases in more urbanized areas (Bustamante et al.,

2009; Costa, 2008; Desjeux, 2001; Nascimento et al., 2008). Within this country, Leishmania braziliensis ac-

counts for the vast majority of the CL cases (Scorza et al., 2017). This parasite species has been associated

with development of different clinical forms such as localized, mucosal, and disseminated leishmaniasis

(Queiroz et al., 2012; Scorza et al., 2017), highlighting its contribution to the high burden of this disease.

Although there are many different pathophysiologic mechanisms underlying the progression of distinct

clinical forms of leishmaniasis, the treatment options are few, with no significant recent advances in the field

that have led to implementation of new therapies (Uliana et al., 2018).

Pentavalent antimonials (Sbv) are the first-line drugs used to treat leishmaniasis in Brazil and other countries

(World Health Organization, 2018). Other medications, such as amphotericin B, pentamidine, and miltefo-

sine, are often used as alternative treatment options in patients who have failed Sbv therapy or relapsed

(Uliana et al., 2018). Treatment failure is reflected by persistence of open ulcers without re-epithelization,

whereas relapse is defined as the reactivation of lesions once the therapy is terminated (Ponte-Sucre et al.,

2017). In Brazil, studies have shown that occurrence of treatment failure in CL can be as high as 45% (Ma-

chado et al., 2010; Prates et al., 2017). Factors that may underlie this high incidence of unfavorable
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outcomes are not fully understood. Early identification of patients at high risk of treatment failure can lead

to optimization of therapeutic regimens and potential reduction of drug resistance. In fact, a recent study

has demonstrated that expression levels of genes related to cytolytic and IL-1 pathways, as well as

increased counts of parasite transcripts in skin lesions, are able to predict treatment failure in patients

with CL (Amorim et al., 2019). However, such study was focused only on transcriptomic analysis and no eval-

uation of protein or lipid mediators in similar setting has been performed.

We have previously described that different clinical forms of CL are associated with distinct activation of the

eicosanoid pathway (França-Costa et al., 2016). Briefly, among the distinct disease presentations related to

CL, patients with localized cutaneous leishmaniasis (LCL) exhibit higher levels of prostaglandin E2 (PGE2),

whereas those with mucosal cutaneous leishmaniasis (MCL) display augmented levels of leukotriene B4

(LTB4) in plasma (França-Costa et al., 2016). Furthermore, a prospective cohort study of patients with VL

demonstrated that this disease presentation is associated with heightened levels of both inflammatory pro-

teins and lipid mediators, which significantly diminish after antileishmanial treatment (Araújo-Santos et al.,

2017). Whether a prospective change in biomarker signatures, especially in those composed by lipid me-

diators, among patients with CL undergoing treatment relates to risk of unfavorable outcomes has not

been previously described.

Here, we employed systems biology analyses to prospectively examine whether simultaneous assessment

of plasma levels of inflammatory proteins and lipid mediators could identify biomarkers able to predict and

characterize treatment failure in patients with CL from an endemic region in Brazil. Our findings identified a

biosignature highly influenced by unique expression of lipid mediators which is able to accurately predict

treatment failure. Such findings, if validated in other settings, may be useful for predicting therapeutic out-

comes in CL. In future studies, the molecules identified here as part of the biomarker signature could be

explored as potential targets in a host-directed therapy focused on reducing odds of treatment failure.
RESULTS

Patient Characteristics

A total of 63 patients with CL were included in the study. The median age of the study population was 27

years old (interquartile range [IQR]: 19–33), with the majority of the study participants being men (71%). The

groups of patients stratified according to treatment outcomes (cure vs. failure) were similar with regard to

age and sex (Table 1). In addition, the median disease duration was also similar between the groups (p =

0.8, Table 1). At pre-treatment, patients who further experienced treatment failure often presented with

increased number of lesions than those who were further cured (Figure S1).
A Unique Profile of Plasma Cytokines and Chemokines Characterizes Patients Who Fail

Antileishmanial Treatment

Cryopreserved plasma samples were used for measurements of several biomarkers. The overall design of

the analytical plan is described in Figure S2. We prospectively examined changes in plasma concentrations

of cytokines, chemokines, and growth factors in patients with CL undergoing antileishmanial treatment.We

compared plasma measurements in treatment-naı̈ve patients (day 0) and after treatment (day 60). To do

that, we first built a heatmap inputting log-transformed and z-score normalized data on the mean concen-

tration value for each biomarker calculated for each clinical group and time point. An unsupervised
Parameter Cure Failure p-value

N 31 32

Male, no (%) 21 (67.7%) 24 (75%) 0.5

Age, years 25 (13–52) 27 (16–56) 0.8

Disease duration, days 32 (21–90) 33 (15–70) 0.8

Table 1. Clinical and Epidemiological Characteristics for Patients with Cutaneous Leishmaniasis that Showed Cure

or Therapeutic Failure After Antileishmanial Treatment

The variables age and disease duration are presented as median values with range (minimum andmaximum values), whereas

sex and the number of active lesions were plotted as frequencies.
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Figure 1. Patients Who Failed Therapy Exhibit a Distinct Profile of Inflammatory Proteins in Plasma

Left panel Data onmean plasma concentration of each indicatedmarker per patient group and time point were log-transformed and Z score normalized, and

a heatmap was used to illustrate trends in data variation. A hierarchical cluster analysis (Ward’s method with 100X bootstrap) was used to group the

biomarkers with similar distribution between clinical groups and time points. Dendrograms represent Euclidean distance. Rigth panel Fold differences

between indicated means were calculated, and log10 values were plotted. Differences between day 60 and day 0 within each clinical group were examined

using the Wilcoxon matched paired test. Comparisons between the groups of treatment failure and cure at the indicated time points were performed using

the Mann-Whitney U test. Red bars indicate mediators that were significantly different between groups.
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hierarchical clustering (Ward’s method) was therefore used to test whether biomarkers could be grouped

based on similarity in their profile of expression between the clinical groups. By comparing the two clinical

groups, we observed that patients with CL who experienced treatment failure exhibited a unique bio-

signature characterized by a distinct expression profile of inflammatory cytokines in plasma in both study

time points (Figure 1, left panel). Furthermore, we calculated fold differences in concentration values of the

cytokines and growth factors between the time points within each clinical group and also between the clin-

ical groups in each time point, as depicted in Figure 1 (right panel). This approach was used to summarize

large numbers of comparisons. Details on the distribution of the individual values are shown in Figure 2

(comparisons between time points) and Figure S3 (between the clinical groups at each time point). In

the group of patients that were successfully treated, median values of TNF-a and IP-10 substantially

decreased whereas, those of IL-3 significantly increased at day 60 (Figure 2). Patients who failed therapy

exhibited a significant reduction in concentrations of IL-1a, TNF-a, IL-2, IP-10, and IL-6 with increased levels

of IL-8 after therapy (Figure 2). When the two clinical groups were compared at each time point, we

observed that, before therapy initiation, patients who would experience treatment failure displayed lower

levels of eotaxin and of IL-12p70 and increased concentrations of G-CSF compared to those in individuals

who were successfully treated (Figures 1 and S3). At day 60, treatment failure was associated with
iScience 23, 101840, December 18, 2020 3



Figure 2. Inflammatory Proteins in Plasma of Patients with Cutaneous Leishmaniasis According To Treatment

Outcome

Parameters that displayed statistically significant differences between the time points were tested using the Wilcoxon

matched pairs. *p % 0.01; **p % 0.001; ***p % 0.0001.
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heightened levels of eotaxin and diminished concentrations of GM-CSF, IFN-a2, IL-6, and of IL-3 (Figures 1

and S3).
Abundance of Lipid Mediators in Patients with Cutaneous Leishmaniasis according to

Treatment Outcomes

To gain insights into the association between a specific lipid profile and the treatment outcome of the study

population, two sets of analyses were performed. First, we prospectively assessed abundance levels of lipid

mediators in plasma and performed hierarchical clustering analysis. This analysis is useful because it con-

siders the representation of each given lipid individually in the total amount of measurable lipids detected

in the lipidomics assay. The lipidomics was able to detect lipid mediators from both the inflammatory and

resolution pathways, as well metabolites from the cyclooxygenase and lipoxygenase biosynthetic pathways
4 iScience 23, 101840, December 18, 2020
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(Figure 3). Irrespective of the study group or time point, the most abundant lipid mediators in the popula-

tion were LTB4, 5-HETE, 5-oxo-HETE, 12-HETE, 11-HETE, PGE2, and 15-HETE. In addition, the hierarchical

clustering revealed that the overall abundance profile of the lipid mediators was distinct between the

groups of patients who cured and those who failed treatment (Figure 3A), suggesting that there were dif-

ferences in relative concentration of several lipids relative to all those measure in the lipidomics. Such dif-

ference persisted at day 60 of follow-up. A second analysis of the same lipidomics data set was performed,

now considering the raw concentration values in plasma. Using this approach, we found that among all the

lipid mediators quantified, plasma concentrations of LTB4, 5-oxo-HETE, 12-oxo-HETE, 12-HETE, 11-HETE,

and of 15-HETE were all significantly reduced at day 60 compared to pre-treatment levels in patients who

were successfully treated but not in those from the treatment failure group (Figure 3B).
Correlation Networks between Plasma Proteins and Lipid Mediators

Next, we performed network analyses based on Spearman correlations to evaluate the relationship be-

tween lipid mediators and inflammatory proteins in plasma of the subgroups of patients at different

time points. The analytical steps leading to design of the correlation networks are illustrated in Figure S2.

This kind of analysis is used in systems biology to define statistical relationships between molecules that

may suggest regulation or even direct molecular interaction. This approach allowed us to visualize the qual-

ity (whether a correlation is positive or negative, indicated in the network by the color of the connecting

line) and strength (the thickness of the connecting line being proportional to the Spearman rank coefficient

rho value) of the associations in a given network. In such analytical setting, the number of connections (e.g.

statistically significant correlations) infers how coordinated a biological process is. Comparing networks

thus allow us to estimate the degree or regulation in a given clinical condition. In the context of this study,

we observed that, before treatment commencement, there were already major differences in the correla-

tion profiles, which involved bot number and directionality (e.g. positive or negative relationships) of sig-

nificant correlations (defined here as p-value <0.05 after adjustment for multiple comparisons; Figure 4). In

the group of patients who failed treatment later, there were a significantly higher number of relevant cor-

relations than that from the patients who were successfully treated (Figure 4). Moreover, the vast majority of

the statistically significant correlations detected in the treatment failure group were composed by positive

associations, whereas a higher number of negative correlations were found in those who were further

cured. At this time point, GCSF was the most relevant marker exhibiting positive relationships, whereas

MIP-1b and TGF-b were the parameters with the highest number of negative correlations in the group

of patients who were further cured. In the group who experienced treatment failure, several markers ex-

hibited similar number of correlations, with no clear predominance of any specific parameter. The few

negative relationships observed in the group of treatment failure at the study enrollment were between

AA and IL-1RA and between EPA and IL-1b or IL-2 (Figure 4).

The findings described above indicated that even before initiation of antileishmanial treatment, patients

who are prone to fail therapy already exhibit a distinct profile of associations between concentrations of

plasma lipid mediators and inflammatory proteins. Strikingly, such difference in the correlation profiles

was even more dramatic at day 60 of follow-up, when patients who were cured exhibited a predominance

of negative relationships, whereas those who failed treatment persisted with several positive interactions

(Figure 4). In the group constituted by those who were successfully treated at day 60, the most relevant

markers were eotaxin, IFNa2, and TGF-b, and the only positive correlation found was between EGF and

TXB2. On the converse, patients with treatment failure exhibited TGF-b, and eotaxin as the most relevant

nodes with negative correlations and TNF-b as the most significant marker with positive correlations in the

network (Figure 4).

The networks were further explored inmore details using node analyses. In such an analytical approach, the

markers of a given network are ranked according to the number of connections (e.g. statistically significant

correlations) that it is involved with. Each marker is represented by a node in the network. Highly connected

markers are thought to be relevant in the regulation of the biological process underlying the network pro-

file. Here, this analysis revealed the top 15 markers in each network that were highly connected. The top

highly connected markers were different between the groups and time points. While the biomarker profile

network at day 0 was dominated by lipid mediators in the patients who were cured (and this lipid mediator

profile remained predominant after treatment), in patients who failed therapy we observed that cytokines

represented the most predominant nodes in the networks. Interestingly, after treatment, this highlighted

profile has changed (Figure 4, right panels).
iScience 23, 101840, December 18, 2020 5



Figure 3. Abundance of lipid mediators in plasma identifies a distinct profile that characterizes patients who

failed antileishmanial treatment

(A) Abundance of each lipid mediator was calculated according to Methods. Hierarchical clustering (Ward’s method with

100X bootstrap) was performed to test whether the overall profile of lipid mediator abundance could group the patients

who failed treatment from those who cured at indicated time points.

(B) Individual parameters that displayed statistically significant differences between the time points tested by Wilcoxon

matched pairs test (after log10 transformation) are shown. *p % 0.01; **p % 0.001; ***p % 0.0001.
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To test whether the differences in the correlation profiles observed before therapy initiation could be used

to predict treatment failure, we employed a discriminant analysis based on canonical correlations (Manabe

et al., 2019). The canonical correlation analysis uses the correlation profiles between the markers of a given

network, rather than the raw concentration values of each marker, to calculate the prediction performance.

In the present study, this analysis was employed to perform a proof of concept that the correlation profiles

could be used to characterize and/or predict antileishmanial treatment outcomes. In this approach, we

tested three distinct models: one inputting only the inflammatory proteins, a second model inputting

data on lipid mediators, and a third model including data on both inflammatory proteins and lipid medi-

ators. Receiver operator characteristics (ROC) curve analysis demonstrated that all the predictive models
6 iScience 23, 101840, December 18, 2020



Figure 4. Network analysis of correlations between plasma proteins and lipid mediators in patients undergoing leishmaniasis treatment

Correlations were built using Spearman correlationmatrices. Each bar represents a different parameter. The length of each bar is proportional to the number

of significant correlations. The connecting lines represent statistically significant correlations (p < 0.05 after adjustment for multiple comparisons using the

Holm-Bonferroni’s method). Red connecting lines represent positive correlations, whereas blue lines infer negative correlations. The thickness of the

connecting lines is proportional to the Spearman correlation rank coefficient (rho) value. Markers that did not exhibit statistically significant correlations are

not shown. Node analyses shows the top 15 markers highly connected in each network.
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were able to discriminate treatment outcomes with high accuracy, with gain in power when data on both

proteins and lipid mediators were considered (Figure 5).
Multi-omic Factor Analysis Defined a Signature Enriched in Lipid Mediators that Predicts

Treatment Failure

To identify the main factors that were contributing to the prediction of treatment failure in the canonical

correlation analysis, we developed a factor analysis integrating the two data sets, one including plasma

levels of cytokines and a second including lipidomic measurements, using the Multi-Omic Factor Analysis

(MOFA) tool as previously described (Argelaguet et al., 2018). This approach is also focused on the corre-

lation profiles between the biomarkers measured. MOFA generates different combinations of either pro-

teins and/or lipid mediators that compose factors (‘‘latent factors’’) which correlations more robustly ac-

count for discrimination between the clinical groups. The analysis revealed that the latent factor 1 (LF1)

was the element that contributed the most for the distinction between treatment cure and failure (Fig-

ure 6A). In addition, the lipidomic correlation profile had more relevance in explaining the variance of

the LF1 than did the profile of plasma proteins (Figure 6A). Finally, we plotted the loading scores of the

LF1 to identify the most relevant lipid mediators and plasma proteins which correlation profiles could

explain the distinction of the treatment outcomes. We found that TNF-b was the most important plasma

protein (Figure 6B), whereas 12-oxo-HETE, 5-oxo-HETE, and LTB4 were the top loading parameters in

the lipid mediator component of LF1 (Figure 6C).
iScience 23, 101840, December 18, 2020 7



Figure 5. Canonical discriminant analysis of plasma proteins and lipidmetiator measures before therapy initiation

predicts treatment failure

Receiver operator characteristics (ROC) curve analysis of indicated models inputting data on plasma proteins, lipid

mediators, or both, was performed to test power to distinguish treatment cure from failure in patients with leishmaniasis

before initiation of antileishmanial therapy.
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Machine Learning Decision Tree Using Data from Lipidomics and Proteomics Predicts

Treatment Outcomes

The results so far indicated that correlation profiles are so distinct between the groups of patients with CL

and different treatment outcomes that could be used in a predictive model. To address the question on

whether there is a reasonable format to test prediction using concentration values of biomarkers, rather

than correlation profiles, we have employed a stepwise approach using machine learning decision tree

(Figure S4). A machine learning conditional tree inference model incorporating values of all the parameters

from both Luminex and lipidomics assays assessed at the study baseline (day 0) was designed to answer

two main issues: (i) to identify a combination of biomarkers that could best identify treatment failure cases;

(ii) to establish cut-off values of the markers that could be used to differentiate between treatment failure

and cure. This approach identified three significant splits in the decision tree, including circulating concen-

trations of eotaxin, 11-HETE, and TGF-b (Figure S4). The results indicate that a rational, stepwise assess-

ment of these three parameters could be used to help identifying patients with high risk of treatment

failure.
Analyses from Publicity Available Data Sets Validate the Involvement of the Lipid

Biosynthetic Pathway in Discriminating Different Treatment Outcomes in Patients with CL

To investigate the importance of the lipid biosynthetic pathway in patients with treatment failure, we re-

analyzed data from a RNAseq experiment recently published (Amorim et al., 2019), from an independent

patient cohort of the same endemic region. This analysis included transcriptomes of specimens obtained

from skin lesion biopsies collected prior to initiation of antileishmanial treatment. We focused the analysis

on genes which were associated with lipid biosynthetic pathway and observed that patients with CL ex-

hibited a completely distinct gene expression profile compared to uninfected healthy controls (HCs) which

was able to separate 2 different hierarchical clusters (Figure 7A). Surprisingly, the gene expression profile of

the genes related to the lipid pathway was not related to lesion size and parasitic load. Although this

approach failed to completely segregate clinical outcomes based on treatment outcomes, we observed

that there were two gene clusters which exhibited opposite expression profiles between patients with

CL and HCs (Figure 7A). In addition, a principal component analysis (PCA) model including expression

values of all genes included in the hierarchical analysis also demonstrated a complete segregation to pa-

tients with CL and controls and partial segregation between the CL subgroups with distinct clinical out-

comes (Figure 7B). Lastly, a discriminant analysis using ROC curves of such combination of genes resulted

in high accuracy in distinguishing Leishmania infection and clinical outcomes (Figure 7C).
DISCUSSION

Incidence of treatment failure among patients with CL has been increasing in recent decades (Ponte-Sucre

et al., 2017). The identification of markers that can predict treatment outcomes in CL is important not only
8 iScience 23, 101840, December 18, 2020
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Figure 6. Multi-Omics Factor Analysis Identified Latent Factors Able To Predict Treatment Outcomes in Patients

with Tegumentary Leishmaniasis

(A–C) (A) Samples with paired data on plasma cytokines and lipid mediators were analyzed using MOFA as described in

Methods. MOFA summarized the protein and lipid mediator data in 11 latent factors (LFs) with different associations

(evaluated using the proportion of total variance explained, R2) with the protein data set, the lipid mediator data set, or

both. Each latent factor was inputted as a principal component in a PCA algorithm. Loading scores of the most relevant

factor (LF1) in the data set of proteins (B) or lipid mediators (C) were plotted to quantify the contribution of each

parameters to the LF1 final score. The most relevant markers are illustrated by the ones with the highest loading score

values. PCA, principal component analysis.
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to identify patients at higher risk of failure but also to better understand the mechanisms underlying such

conditions. In the present study, we show that patients with CL who failed therapy exhibit a very distinct

expression profile of plasma proteins and lipid mediators in peripheral blood. Interestingly, the changes

are present even before the commencement of therapy, and our analyses reveal that these differences

may predict the patients who will experience treatment failure. Furthermore, the results indicate that phar-

macological intervention of the specific pathways identified here may serve as adjunct therapy to antileish-

manial treatment to optimize clinical management.

The inflammatory response during the CL is characterized by high levels of circulating Th1 lymphocytes,

cytokines, and chemokines (França-Costa et al., 2015; Ribeiro-de-Jesus et al., 1998) that significantly

reduce after treatment (Brito et al., 2014). Our results indicated that circulating levels of TNF-a and IP-

10 substantially reduced at day 60 of therapy compared to that detected at pre-treatment in the group

of patients that were successfully treated. Patients who failed therapy exhibited a significant reduction in

TNF-a, IP-10, and also in IL-2, IL-1a, and IL-6 at day 60. Interestingly, at day 60, low levels of GM-CSF,

IFN-a2, IL-6, and IL-3 were observed in patients who failed therapy, compared to those from patients

who cured. The observed profile in treatment failure made us hypothesize that significant reductions

on cytokine levels in blood after onset of antileishmanial therapy may be associated with impaired capac-

ity to eliminate the parasite. Indeed, levels of GM-CSF, which is a marker that has been shown to pro-

mote protection against Leishmania infection (Carvalho et al., 2019), were reduced in patients who failed

therapy.

Although several studies have demonstrated the role of cytokines in the pathogenesis of CL and its contri-

bution to treatment outcomes, the potential difference in lipid mediator expression profiles and their me-

tabolites that may contribute to treatment failure is still unknown. Lipid mediators are important modula-

tors of inflammation, being involved in both the initiation and resolution of the inflammatory response

(Serhan et al., 2015). While inflammatory lipids such prostaglandins , leukotrienes , and hydroxyeicosate-

traenoic acids are derived from arachidonic acid (AA), the specialized pro-resolving mediators (SPMs),

including resolvins and maresins, are derived mostly from the eicosapentaenoic acid (EPA) and the doco-

sahexaenoic acid (DHA) (Serhan et al., 2015). We have previously demonstrated important roles of different

lipid mediators produced by both AA and DHA pathways in determining the distinct clinical forms of leish-

maniasis (Araújo-Santos et al., 2017; França-Costa et al., 2016; Malta-Santos et al., 2017), highlighting the

importance of such mediators as biomarkers of cutaneous and visceral leishmaniasis.

In this study, we show the characterization of the abundance profile of lipid mediators in blood of patients

with CL undergoing therapy and tested associations with treatment outcomes. We observed that the most

abundant lipid mediators were AA derived, such as LTB4, 5-HETE, 5-oxo-HETE, 12-HETE, 11-HETE, PGE2,

and 15-HETE. Strikingly, the analysis of lipid mediator abundance revealed that patients who failed treat-

ment exhibited a slight but distinct profile from those who were successfully treated even before the initi-

ation of therapy. Thus, the overall composition of lipid mediators in plasma of patients with CL is able to

characterize treatment failure. Of note, we and others have demonstrated the balance between PGE2

and LTB4, two of the most abundant mediators described here, as a critical factor determining clinical man-

ifestations and/or outcomes in leishmaniasis (França-Costa et al., 2016), as well as in other diseases such as

tuberculosis (Mayer-Barber et al., 2014; Shivakoti et al., 2019; Sorgi et al., 2020)and malaria (Abreu-Filho

et al., 2019). Interesting, with exception of PGE2 and 5-HETE, the most abundant inflammatory mediators

significantly reduced their levels in patients who were successfully treated (Figure 3B) Supplementary Infor-

mation, suggesting that the levels of such mediators may be reflecting the degree of immune activation

and infection control.
10 iScience 23, 101840, December 18, 2020



Figure 7. Patients with Cutaneous Leishmaniasis Display a Distinct Profile of Gene Expression from the Lipid Biosynthetic Pathway

(A) A hierarchical clustering analysis (Ward’s method) was employed to illustrate the overall profile of genes of the lipid biosynthetic pathway in patients with

CL who cured or failed therapy. Each column represents one patient.

(B) A principal component analysis (PCA) model was employed to test whether combination of the genes evaluated could cluster patients with CL separately

from controls and the clinical outcomes. A vector analysis was utilized to illustrate the influence of each gene in the distribution of the data of the PCAmodel.

(C) Lipid gene expression significantly discriminated patients with CL to HCs (area under the curve (AUC) receiving operating characteristic [ROC] curve, 1)

and the cure or failure (0.88 and 0.85, respectively).
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Our Spearman correlation network analyses of plasma proteins and lipid mediators revealed that there are

significant differences in the relationships between plasma levels of the biomarkers that can characterize

the distinct clinical outcomes and time points. In addition, the top highly connected markers also were

different between the groups and time points, indicating that there is a change in regulation of systemic

inflammation induced by treatment, which was distinct between patients who failed and those who were

successfully treated. Before treatment, patients who cured exhibited a relative balance hallmarked by a

similar number of positive and negative correlations, involving G-CSF and MIP-1b/TGF-b, respectively,

with AA-derived metabolites. In general, treatment implementation was associated with reduction in the

number of significant interactions, completely changing the network profiles. Thus, at day 60, the most

important markers were eotaxin, IFNa2, and TGF-b. AlthoughMIP-1b and eotaxin are chemokines released

by monocytes and eosinophil in response to Leishmania infection, their marked production is associated

with an intense inflammatory response (Matte andOlivier, 2002). TGF-b, another important marker involved

in the suppression of immune response favoring Leishmania infection (Barral-Netto et al., 1992), was down

modulated in patients who were cured throughout the follow-up. Taken together, these data suggest that

in patients who were successfully treated, there is a downmodulation of chemokines and mediators

involved in persistent inflammation, leading to diminished immune activation, favoring skin healing.

The correlation profile in patients who failed therapy was predominantly marked by positive interactions

and the only negative interactions involved IL-1b and IL-1RA. Interestingly, IL-1b is known to be involved

in the CL pathogenesis and has been shown to associate with treatment failure (Zamboni and Sacks,

2019). More recently, a transcriptional signature including IL1B has been reported to predict clinical out-

comes in CL (Amorim et al., 2019). In our study, we found that other cytokines could also characterize treat-

ment outcomes. Interestingly, after treatment implementation in individuals who further experienced treat-

ment failure, TGF-b and eotaxin remained themost relevant markers exhibiting negative connections in the

network, whereas TNF-b was the parameter exhibiting the highest number of positive correlations. Poly-

morphism in the TNF locus, which includes genes encoding TNF-a and TNF-b, is associated with increased

susceptibility to infection with either L. braziliensis (Cabrera et al., 1995) or L. infantum (Karplus et al., 2002).

Our results argue that in patients who failed the conventional treatment, there is a potential persistent
iScience 23, 101840, December 18, 2020 11
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interaction between plasma markers. Additional studies are needed to test if polymorphisms in genes of

the cytokines reported here could result in increased risk of treatment failure.

Finally, the integrative analysis of protein with lipidomic profiles revealed that the lipid mediators are a ma-

jor component able to discriminate treatment outcomes. A recently published study used the similar me-

tabolomic approach to identify predictive biomarkers of the treatment outcome in patients with CL caused

by L. viannia (Vargas et al., 2019). As noted in present study, drug exposure was able to modulate the meta-

bolic products, and this change was associated with immune response and outcome of treatment (Vargas

et al., 2019). Here, we demonstrated that among the lipids, the 12-oxo-HETE, 5-oxo-HETE, and LTB4 stood

out as the most robust biomarkers in the predictive model employed. To the best of our knowledge, there

are no previously reported studies on describing concentration of oxo-HETEs lipids in CL. Future studies

using in vitro systems and animal models are warranted to directly elucidate and describe the role to HETEs

and oxo-HETEs in CL pathogenesis.

Many of the relevant findings on the present study were based on correlation profiles between biomarker

concentrations in plasma. Such an approach is widely used, but it has limited application in clinical practice.

In order to come up with a strategy that could be eventually employed in a clinical setting, we built a step-

wise approach to predict treatment failure, which was based on assessment of concentration values rather

in correlation profiles. This analysis used machine learning to build a decision tree. The results indicate that

eotaxin, 11-HETE, and TGF-b levels measured at pre-treatment could be used in sequence to identify in-

dividuals who will fail treatment, in case of development of an easily assessable point of care.

The analysis of a publicly available transcriptome data set was an important contribution to the study, due

to the fact that reinforced the idea that links expression of genes related to the lipid biosynthesis and odds

of antileishmanial treatment failure in an independent cohort (Amorim et al., 2019). Such lipid-related

signature was not influenced by lesion size or parasite load. In addition, results presented here are the first

formal demonstration that gene expression of targets from the lipid mediator pathway can accurately iden-

tify patients with CL. The transcriptional data from normal skin biopsies compared to patients with CL re-

vealed that the gene expression values of targets from the lipid biosynthetic pathway are able to identify

samples from Leishmania-infected patients, as well as to reliably predict treatment outcomes. Interesting,

genes involved in the synthesis of LTs and HETEs (alox5), as well PGs (ptgs2) and their inflammatory recep-

tors (ptger2, ptger4, and ptgir), presented upregulated values in all patients with CL. These observations

are consistent with our findings from plasma lipidomics, where the most abundant lipid mediators were

products of the enzymatic activity of the proteins encoded by those genes found to be upregulated in

skin lesions from patients with CL. Regardless, our data reveal that a biosignature enriched in lipid medi-

ators is able to reliably predict treatment outcomes in CL, and the markers contributing to such signature

may serve as targets in a potential host-directed therapy.
Limitations of the Study

Our study has some limitations. The number of patients was relatively low, although it was similar to other

previously published investigations. In addition, patients from only one clinical site, from a single endemic

area, were investigated, and thus, larger studies recruiting patients from more diverse clinical and epide-

miologic settings are necessary to validate our findings. We performed validation analyses of the hypoth-

esis associating lipid mediator pathways and treatment outcomes, and a more stringent approach

measuring the biomarkers in a distinct cohort will be necessary to ultimately confirm the results.
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Figure S1. Number of lesions in cutaneous leishmaniasis patients, related to table 1. 

Number of active lesions per each study participant at study enrollment was plotted in 

histograms stratified by treatment outcomes. Distribution of values were analyzed using the 

Mann Whitney U test. 
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Figure S2. Outline of the analysis plan, related to all figures.  Cryopreserved EDTA plasma 

samples were used for the omics assays. Cytokines and growth factors were measured using a 

Luminex assay whereas oxylipids were quantified using lipidomics as described in Methods. 

Analyses were divided in two main portions. In the first batch of analyses, classical analytical 

approach, which included calculations of fold-differences, design of heatmaps and abundance 

color maps, estimation of accuracy in predicting treatment outcomes by using Receiver 

Operator Characteristics (ROC) curves and dynamic changes using paired analysis. In addition, 
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Correlation matrices were calculated and used to build networks with the objective of 

describing the overall profile of relationships between plasma lipids and proteins in each 

clinical group and study timepoint. Data from Luminex and lipidomics were also integrated in 

a Multi-Omic Factor Analysis (MOFA) to identify major contributor of the regulatory networks 

driving the distinctions between the clinical groups that could predict treatment outcomes. 

Furthermore, a machine learning strategy using decision trees was designed to identify 

combination of markers with their respective cut-off values which were able to predict 

treatment failure. Finally, Transcriptome data from a publicly available dataset was used to 

validate the hypothesis that gene expression values of targets from the lipid biosynthesis 

pathway could be used to identify characterize patients with leishmaniasis who developed 

different treatment outcomes.  
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Figure S3. Inflammatory proteins in plasma of cutaneous leishmaniasis patients 

according to timepoint and treatment outcome, related to Figure 1. Parameters that 

displayed statistically significant differences between the study groups at each timepoint were 

tested using the Mann-Whitney U test. *P ≤ 0.01; **P ≤ 0.001. 
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Figure S4. Machine learning decision tree model to predict treatment failure using pre-

treatment levels of plasma biomarkers, related to Figure 3. All markers from both the 

Luminex and the lipidomic assays were included in the model. Measurements from study 

baseline (day 0) were considered. The p-value of the combined performance was 0.001. The 

area under the curve (AUC) of the receiver operator characteristics (ROC) curve was 0.7 (95% 

confidence interval: 0.6-0.8).  
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Transparent Methods  

Ethics statement 

This study was conducted according to the principles expressed in the Declaration of Helsinki 

and approved by the Ethics Committee of the Hospital Universitário Prof. Edgard Santos of the 

University Federal da Bahia (number 2.471.184). Written informed consent was obtained from 

all participants or legal guardians, and all data analyzed were anonymized. 

Clinical study design 

A prospective case control study was performed in eligible patients that spontaneously sought 

medical treatment at a referral center in Corte de Pedra, Brazil, an endemic area for CL caused 

by L. braziliensis. The present study was nested with a clinical investigation in which all 

patients were evaluated at days 0, 15, 30, 60, 90 and 210 after recruitment, however blood 

specimens were available only at day 0 (pre-treatment) and day 60 (for monitoring of 

biochemical parameters). All patients were treated with intravenous 20 mg SbV/kg for 20 days. 

Patients were followed up for 210 days to define the main outcomes, cure and treatment failure. 

EDTA plasma samples were cryopreserved at -80oC for the laboratory assessments. Clinical, 

epidemiological and therapeutic outcome data were captured in standardized clinical report 

forms by trained physicians who are also part of the research team (the authors P.R.L.M. and 

E.M.C.). The major aim of the study was to describe biomarkers able to predict treatment 

failure. To estimate the total sample size for a study power greater than 90% with a Type 1 

error of less than 5% and considering the incidence of treatment failure of 40% (Machado et 

al., 2010) and loss to follow up of 30% (for whatever reason), the sample calculation revealed 

that we would need to recruit a total of 60 treatment-naïve CL patients. We recruited a total of 

63 patients, with individuals 32 developing treatment failure. 

 

Patients 

Inclusion criteria were: (i) to present with one to five ulcerated lesions with sizes varying 

between 1 and 5 cm in diameter; (ii) to be anti-Leishmania treatment naïve; (iii) to refer 1 to 3 

months of active disease; and (iv) to have a confirmed diagnosis by positive identification of 

amastigotes in histopathological examination, positive L. braziliensis culture or positive 

polymerase chain reaction for L. braziliensis, as previously described (Machado et al., 2010). 

Exclusion criteria were: (i) pregnant or breastfeeding women; childbearing-age women 

unwilling to adhere to contraceptive measures during treatment and until 2 months after the 

https://paperpile.com/c/Ei2lUz/Yu0A
https://paperpile.com/c/Ei2lUz/Yu0A
https://paperpile.com/c/Ei2lUz/Yu0A
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end of treatment; (ii) previous history of leishmaniasis treatment; (iii) malnutrition; (iv) 

referred or confirmed concomitant diseases such as cardiac, pulmonary, hepatic, cancer, 

tuberculosis, Hansen disease, malaria, HIV/AIDS or any other infectious disease; (v) 

laboratory evidence of chronic liver or kidney disease (Machado et al., 2018). 

Outcome definition 

Treatment outcomes were reported as the following: cure was defined by complete re-

epithelization of lesion(s) and absence of infiltration whereas treatment failure denoted 

persistence of ulceration at up to 60 days after the end of treatment. Patients who failed 

treatment received an additional cycle of Sbv or Amphotericin B. 

Cytokines, chemokines and growth factors measurement 

Plasma levels of EGF (epidermal growth factor), Eotaxin, granulocyte colony-stimulating 

factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon 

(IFN)-α2, IFN-γ, interleukin (IL)-1β, IL-1RA, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, 

IL-12p40, IL-12p70, IL-13, IL-15, IL-17A, interferon inducible protein (IP)-10, monocyte 

chemoattractant protein (MCP)-1, macrophage inflammatory protein (MIP)-1α, MIP-1β, tumor 

necrosis factor (TNF)-α, TNF-β and vascular endothelial growth factor (VEGF) were measured 

in cryopreserved EDTA plasma samples using a commercially available Luminex kit (Merck, 

Darmstadt, Germany) according to the manufacturer instructions. Levels of transforming 

growth factor β (TGF-β) and heme oxygenase-1 (HO-1) were measured using enzyme-linked 

immunosorbent assays (ELISA) (R&D Systems, Minneapolis, Minnesota). 

Oxylipids extraction 

Oxylipids extraction was performed from plasma samples using the SPE (Solid Phase 

Extraction) method according to a previously described protocol (Machado et al., 2010; Sorgi 

et al., 2018). In brief, each plasma sample (150 μL) was spiked with internal deuterated 

standard (IS) solution (Cayman Chemical, Ann Arbor, Michigan) before being extracted. The 

samples were then submitted to protein precipitation with 1.5 mL of methanol/acetonitrile (1:1, 

v/v) at 4 °C, which was left to denature overnight. Furthermore, plasma samples were 

centrifuged for at 800x g for 10 min at 4 °C. The denatured proteins were quantified using the 

Bradford protein assay (Sigma-Aldrich, St. Louis, MO) to normalize the lipid concentration 

for each sample, and the resulting supernatants were diluted with Milli-Q water to decrease the 

organic solvent to a maximum concentration of 10-15 %. For the SPE extraction protocol, the 

cartridge (Hypersep C18-500 mg, 3 mL, Thermo Scientific, Bellefonte, Pennsylvania) was 

https://paperpile.com/c/Ei2lUz/AVjjH
https://paperpile.com/c/Ei2lUz/Yu0A+X4FQg
https://paperpile.com/c/Ei2lUz/Yu0A+X4FQg
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washed with 4 mL of MeOH and equilibrated with 4 mL of H2O using an extraction manifold 

(Waters, Milford, Connecticut). After loading the diluted samples, the cartridges were again 

flushed with 4 mL of Milli-Q water to remove hydrophilic impurities. The analytes were eluted 

with 1 mL of MeOH. The solvent was removed in vacuum (Concentrator Plus, Eppendorf, 

Hamburg, Germany) at room temperature and re-dissolved in 50 μL of MeOH/H2O (7:3, v/v) 

for LC-MS/MS analysis. 

Oxylipids identification and quantification 

After lipid extraction, specimens were transferred to autosampler vials and 10 μL of each 

sample were injected on the TripleTOF® 5600+ Target Liquid Chromatography Tandem Mass 

Spectrometry (LC-MS/MS) system (Sciex, Foster City, California), as previously described 

(Sorgi et al., 2018). The method employed a High-Performance Liquid Chromatography 

(HPLC) system (Nexera X2, Shimadzu, Kyoto, Japan) using an Ascentis Express C18 column 

(Supelco, St. Louis, Missouri) with the following specifications: 100 × 4.6 mm and particle 

size of 2.7 μm. Elution was conducted under a binary gradient system with Phase A constituted 

by H2O/ACN/acetic acid (69.98:30:0.02, v/v/v) at pH 5.8, and Phase B composed by  

ACN/isopropanol (70:30, v/v). Gradient elution was carried out for 25 min at a flow rate of 

0.6 mL.min−1. An electrospray ionization (ESI) source in the negative ion mode was used for 

high-resolution multiple-reaction monitoring (MRMHR) scanning. The mass range of the 

product ion from the experiments varied from 50 to 700 m/z; the dwell time was 10 ms at a 

mass resolution of 35,000. Additional instrumental parameters were: nebulizer gas (GS1), 50 

psi; turbo-gas (GS2), 50 psi; curtain gas (CUR), 25 psi; electrospray voltage (ISVF), −4.0 kV; 

and turbo ion spray source temperature, 550°C. Data acquisitions were performed using 

AnalystTM Software (Sciex, Foster, California). Data processing proceeded through multiple 

steps, including filtering, feature detection, alignment, and normalization. The PeakView 2.1 

(Sciex, Foster, California) software was used for identification of the lipid species and 

MultiQuant™ (Sciex, Foster, California) software was utilized for quantitative analysis. The 

final oxylipids concentration in plasma samples was normalized by protein concentration. 

Statistical analysis 

Median and interquartile ranges (IQR) were used as measured of central tendency and 

dispersion, respectively. Percentage was used to describe categorical variables such as sex and 

number of active lesions. Continuous variables were compared using the Mann–Whitney U test 

(between cure and failure groups at each time point) or the Wilcoxon matched pairs test (the 

https://paperpile.com/c/Ei2lUz/X4FQg
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same patient group between two different timepoints). The Fisher’s exact test was used to 

compare frequencies. In some analyses, data on each biomarker was log-transformed and z-

score normalized to build heatmaps to illustrate overall trends of data variation between the 

study groups. A hierarchical cluster analyses (Ward’s method) were used to group the 

biomarkers with similar distribution between clinical groups and time points. In such analyses, 

dendrograms represent Euclidean distance. In addition, abundance of each lipid mediator was 

calculated as the following: the concentrations of all lipid mediators detected were summed 

and considered 100% abundance of lipid mediators in plasma, as previously described 

(Shivakoti et al., 2019). Then, abundance of the total lipid mediators was calculated for each 

individual marker relative to the total value considered 100% abundance (Shivakoti et al., 

2019). Moreover, a second hierarchical clustering analysis was performed to test whether the 

overall profile of lipid mediator abundance could group the patients who failed treatment from 

those who were cured at indicated timepoints. In further analyses, a machine-learning based 

conditional tree including the values of all the biomarkers measured at study baseline (day 0) 

was designed to identify the best biomarker or combination of markers that were able to 

discriminate treatment outcomes. All analyses were pre-specified. To account for multiple 

measurements, the p-values were adjusted using the Holm-Bonferroni’s method. Differences 

with adjusted p-values < 0.05 were considered statistically significant. All data is available in 

supplementary data.  

Network analysis 

Profiles of correlations between inflammatory proteins and lipid mediators at different 

timepoints in the groups of patients with distinct clinical outcomes were examined using 

network analysis of the Spearman correlation matrices (with 100X bootstrap). Only statistically 

significant correlations (adjusted p values < 0.05) were included in the network visualization 

(lines represent statistically significant correlations). This model is based in quality of 

correlations (whether a correlation is positive or negative). Circos plots were used to illustrate 

the networks as previously reported (Vinhaes et al., 2019). In additional analysis, number of 

correlations were quantified per each node (marker) in patients stratified based on timepoint 

and treatment outcome. 

Canonical correlation discriminant analysis 

The discriminant analysis model using sparse canonical correlations (canonical correlation 

analysis, CCA) was employed to test if different combinations of plasma and/or lipid mediators 

https://paperpile.com/c/Ei2lUz/wED6Y
https://paperpile.com/c/Ei2lUz/wED6Y
https://paperpile.com/c/Ei2lUz/wED6Y
https://paperpile.com/c/Ei2lUz/s267X
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measured at pre-treatment could distinguish patients who failed anti-Leishmania treatment 

from those who were cured. The CCA algorithm was chosen because many variables were 

studied. This approach reduces dimensionality for two co-dependent data sets (biomarker 

profile and baseline characteristics profile, which were sex and age) simultaneously so that the 

discrimination of the clinical endpoints (treatment failure or cure) represents a combination of 

variables that are maximally correlated. Thus, trends of correlations between parameters in 

different clinical groups rather than their respective distribution within each group are the key 

components driving the discrimination outcome. In our CCA algorithm, simplified and adapted 

from previously reported investigations of biomarkers for diagnosis of infectious diseases 

(Mayer-Barber et al., 2014), linear regression graphs represent coefficients from different 

combinations of plasma factors and baseline characteristics. In addition, investigating 

statistical relationships between the markers rather than just concentrations allow us to infer 

about regulatory immune networks (Mayer-Barber et al., 2014). The overall accuracy of each 

canonical model was tested using C-statistics, with Receiver Operator Characteristics (ROC) 

curves resulting in calculation of area under the curves (AUC), sensitivity and specificity using 

the pROC package of the R software as previously described (Manabe et al., 2019; Robin et 

al., 2011). 

Multi-Omics factor analysis 

Multi-omics factor analysis (MOFA) enables to analyze biological multidimensional data, 

ranging from genome, transcriptome, proteome, lipidome and metabolome, integrating all 

these layers across a more comprehensive result (Argelaguet et al., 2018). The MOFA model 

used here integrated data from plasma inflammatory proteins and lipidomic analysis,  defined 

by several parameters: (i) the logical scale and paired samples were selected by the functions 

#scaleViews set as “FALSE” and #removeIncompleteSamples set as “TRUE”; (ii) the number 

of factors was selected by default with #likelihood = “gaussian” (log2 transformed) and 

#sparsity set as “TRUE”; (iii) the #tolerance was selected as recommend = 0.01. After selecting 

all the parameters and preparing the datasets, we used as an input the corrected bath effect 

count table of the plasma proteins and lipid mediators obtained as the formal analytical merged 

dataset. All the data were paired by study, individual and platform. Two models of principal 

component analyses (PCA) were used to identify which plasma proteins and lipid mediators 

were contributing to separation of the different study groups based on treatment outcomes. In 

all analyses, a p-value < 0.05 after the 5% FDR adjustment was considered statistically 

significant. 

https://paperpile.com/c/Ei2lUz/DcXyx
https://paperpile.com/c/Ei2lUz/DcXyx
https://paperpile.com/c/Ei2lUz/TO74c+8EG7E
https://paperpile.com/c/Ei2lUz/TO74c+8EG7E
https://paperpile.com/c/Ei2lUz/5xAyY
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Decision tree analysis 

 

The metabolite abundance values were used as input to perform a supervised machine-learning 

approach, based on the outcome definition. Thus, a decision tree algorithm was applied to 

identify the minimal variable (metabolite) set which exhibit the higher classification power to 

describe the groups using the rpart package. 

 

Transcriptomic analyses of skin lesions from publicly available datasets 

Data samples were downloaded from NCBI GEO: GSE127831 (Amorim et al., 2019) and 

labeled according to the informed metadata (21 samples infected to L. braziliensis before 

treatment sequenced with Illumina NexSeq 500, and 7 uninfected endemic controls). Changes 

in gene expression levels were considered significant when statistical test values (FDR adjusted 

p-value) were lower than 0.05 and the fold-difference higher than ±1.5. A heatmap of including 

expression values of genes  identified by our group as being part of lipid biosynthetic pathways 

was plotted using the Complexheatmap package (Gu et al., 2016). A PCA algorithm was 

performed using cpm log-transformed data of the indicated genes using the plotPCA function 

from Deseq2 package from R software (Gu et al., 2016; Love et al., 2014).    
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