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Abstract
Acinetobacter baumannii has been associated with antimicrobial resistance and ability to form biofilms. Furthermore, its adher-
ence to host cells is an important factor to the colonization process. Therefore, this study intended to identify some virulence
factors that can explain the success of A. baumannii in causing nosocomial infections. We studied 92 A. baumannii isolates
collected from hospitals in Rio de Janeiro, Brazil. Isolates were identified and the susceptibility to antimicrobials was determined.
Oxacilinase type β-lactamase encoding genes were amplified by polymerase chain reaction, and genetic diversity was investi-
gated by pulsed-field gel electrophoresis (PFGE). In addition, biofilm formation on polystyrene plates using crystal violet
staining was quantified, and adherence to human cell lines was evaluated. Eighty-six isolates were multidrug-resistant, of which
93% were carbapenem-resistant. All isolates had the blaOXA-51 gene and 94% had the blaOXA-23 gene, other searched blaOXA
genes were not detected. PFGE typing showed two predominant clones, and biofilm production was observed in 79% of isolates.
A. baumannii isolates adhered better to HEp-2 cell compared with A-549 cell. Clones A, B, E, and F showed a significantly
increased adherence to HEp-2 compared with adherence to A-549 cell. Our findings revealed that A. baumannii isolates had high
frequencies of resistance to antimicrobial agents, ability to form biofilm, and capacity to adhere to HEp-2 cells.
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Introduction

Acinetobacter baumannii is an aerobic, non-fermentative
Gram-negative coccobacillus that can survive for long pe-
riods in the environment [1]. A. baumannii infections are
a major cause of hospital-acquired infections worldwide,
mainly due to A. baumannii’s ability to live under critical
situations in this environment [2, 3]. Resistance to desic-
cation and antibiotics [4, 5], high production of biofilm on

abiotic surfaces, and the adherence to human cells [6–9]
might justify the prevalence of this microorganism in hos-
pitals in outbreaks and endemic situations.

Extensive use of antibiotics in hospitals has contributed to
the rapid appearance of resistant A. baumannii isolates [10].
Carbapenems are widely used to treat infections caused by
MDR A. baumannii, but increasing resistance to carbapenems
inA. baumannii infections in the past decade has been creating
therapeutic challenges [11]. Carbapenem resistance in
A. baumannii is generally associated to the oxacillinase
(OXA) enzyme group. Among the phylogenetic subgroups
of OXA already identified, six were described in
A. baumannii: OXA-23-like, OXA-24-like, OXA-51-like,
OXA-58-like, OXA-143-like, and OXA-235-like [12–14].

In Brazil, the first report of carbapenem-resistant
A. baumannii isolates was in 2003 with the description of
OXA-23–producing A. baumannii belonging to a single clone
[15]. In 2009, Carvalho et al. (2009) described the spread of
two predominant clones of MDR OXA-23–producing
A. baumannii in the city of Rio de Janeiro [16]. However,
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another study done in the same city demonstrated no predom-
inant clones and distribution of the blaOXA-23 gene in several
clones analyzed [17].

There are few papers on the virulence-associated factors of
A. baumannii [18]. Biofilm formation plays a significant role
in the pathogenicity of this microorganism and is associated
with increased bacterial survival [19]. Bacteria in biofilms are
more resistant to antimicrobial agents when compared with
planktonic cells [20]. Moreover, biofilm allows bacteria to
persist on biotic and abiotic surfaces and helps them to evade
the host response. The ability of bacteria to adhere to eukary-
otic cells is critical for pathogenesis and generally considered
an essential early step in the colonization process, and the
biofilm formation and its adherence to cells are common fea-
tures in clinical A. baumannii isolates [21, 22].

The features that make A. baumannii able to induce out-
breaks and human diseases are not totally understood.
Therefore, this study intended to identify some virulence fac-
tors present in A. baumannii isolates obtained from patients
with nosocomial infections. To this purpose, we characterized
the antimicrobial resistance, clonal relationships, biofilm for-
mation, adherence, and invasion to eukaryotic cells ability of
92 Acinetobacter baumannii isolates from two public hospi-
tals in Rio de Janeiro, Brazil.

Material and methods

Bacterial isolates

Ninety-two clinical Acinetobacter baumannii isolates collect-
ed from two public hospitals in the city of Rio de Janeiro,
between 2010 and 2011, were included in this study. A.
baumannii isolates were identified by automated VITEK 2
System (bioMérieux Vitek Systems Inc., Hazelwood, MO,
CA) and by partial rpoB sequencing [23]. The sources of
isolates collected included urine, blood, catheter, tracheal se-
cretion, and wound and bronchoalveolar lavage. In an earlier
study, we described molecular identification, sources, and an-
timicrobial susceptibility for polymyxin B by minimum inhi-
bition concentration (MIC) of these isolates [24].

Antimicrobial susceptibility testing

To evaluate the antimicrobial susceptibility of the isolates, the
automated VITEK 2 System (bioMérieux Vitek Systems, Inc.,
Hazelwood, MO) was used with a Gram-negative identifica-
tion card (NG-105) following the manufacturer’s instructions.
The following antibiotics were tested: amikacin, gentamicin,
ampicillin-sulbactam, piperacillin-tazobactam, cefotaxime,
ceftazidime, cefepime, ciprofloxacin, imipenem, and
meropenem. Values were interpreted according to the guide-
lines of CLSI [25], and isolates were classified as non-

multidrug-resistant (n-MDR) and multidrug-resistant (MDR)
according to the criteria of Magiorakos et al. (2012) [26].

Oxacillinases detection

The genomic DNA was extracted using DNeasy Tissue Kit
(QIAGEN, Valencia, CA), according to manufacturer’s in-
structions. Multiplex-PCR reactions using specific primers
for amplifying blaOXA-23, blaOXA-24, blaOXA-51,blaOXA-58,
and blaOXA-143 genes were done as described previously by
Woodford et al. (2006) and Higgins et al.(2010) [27, 28]. For
the blaOXA-23 and blaOXA-51 positive isolates, new PCR reac-
tions were performed [29, 30]. The PCR products were puri-
fied using PureLink PCR purification Kit (Invitrogen) and
sequenced using BigDye Terminator Cycle Sequencing Kit
(Applied Biosystems). Sequences were analyzed using
DNASTAR software, and subsequently, the obtained se-
quences were submitted to BLAST (Basic Local Alignment
Search Tool) [2].

Pulsed-field gel electrophoresis (PFGE)

Isolates were typed by PFGE [31] following digestion of geno-
mic DNAwith Apa I (Invitrogen). DNA fragments were sepa-
rated on 1% (w/v) agarose gels in 0.5% TBE [Tris–borate–eth-
ylene diamine tetra-acetic acid (EDTA)] buffer using a CHEF-
DR III apparatus (Bio-Rad, Hercules, CA) with 6 V/cm, pulsed
from 5 to 15 s, for 18 h at 14 °C. Gels were stainedwith ethidium
bromide and photographed under ultraviolet light. The Apa I
restriction profiles were initially compared by visual inspection
according to the criteria of Tenover et al. (1995) [32]. Computer-
assisted analysis was also performed using BioNumerics v.4.0
(Applied Maths, Sint-Martens-Latem, Belgium). Comparison of
the banding patterns was accomplished by the unweighted pair
group method with arithmetic averages (UPGMA) using the
Dice similarity coefficient.

Quantification of biofilm formation

The biofilm formation was performed in 96-well microplates
of polystyrene assay (Nunclon ™ – Nalgene Nunc
International, Rochester, NY Catalog No. 269 787), using an
overnight culture, according to Moskowitz et al. (2004) [33].
Each strain was tested in triplicate. We used the A. baumannii
ATCC 19606 type strain as positive control. Wells with cul-
ture medium not inoculated were considered as negative con-
trol and Escherichia coli K-12 isolate weakly biofilm produc-
ing. All tests were performed in triplicate and the results were
averaged. The biofilm formation was graded as described by
Stepanovic et al. (2000) [34].
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Eukaryotic cell culture

Human alveolar epithelial tumor cells A-549 and human epi-
thelial laryngeal carcinoma cells (HEp-2) were obtained from
the American Type Culture Collection. The cells were cul-
tured in Dulbecco’s Modified Eagle Medium (DMEM,
Gibco) supplemented with 1% of penicillin, 1% of streptomy-
cin, and 10% fetal bovine serum at 37 °C in 5% CO2.
Confluent growth was obtained in 100 mm diameter in 24-
well plates (Nunclon™ – Nalgene Nunc International,
Rochester, NY).

Bacterial adherence assays

The adherence assays of A. baumannii isolates to eukaryotic
cells were determined as described previously with some
modifications [7]. Strains of A. baumannii were cultured in
10mL of nutrient agar at 37 °C for 24 h. Bacterial suspensions
were washed and adjusted to match the turbidity standard of 2
McFarland units (approximately 6.0 × 108 CFU/mL) in
DMEM. The adherence assays were conducted by exposing
eukaryotic cells at a multiplicity of infection (MOI, bacterium:
eukaryotic cell ration) ~ 50:4 of A. baumannii isolates. The
infected plates were centrifuged for 10 min at 700 ×g prior to
the incubation to promote adherence of bacteria to cells and to
synchronize infections. Each strain was tested in triplicate and
experiments were performed in duplicate. After 2 h of incu-
bation at 37 °C, the coverslips were washed, and the cells
fixed and stained with Giemsa solution for 30 min. The cov-
erslips were placed on glass slides. Bacterial adherence to the
cells was determined by optical microscopy. In each field
displayed on the optical microscope, bacteria that have ad-
hered to human epithelial cells were counted. For each cover-
slip, 300 ± 45 cells were inspected to determine the number of
adhered bacteria [9, 35]. Two independent experiments were
performed with two coverslips each. A. baumannii ATCC
19606 was included in each test series as a reference strain.

Bacterial invasion assay

For quantification of adherent bacteria, the cells were plated in
24-well plates (Nunclon™ – Nalgene Nunc International,
Rochester, NY) without glass coverslips. The cells grown in
plates were infected with A. baumannii isolates under the
same conditions as those described for bacterial adherence
assays. After the period of 2 h incubation, we added
250μg/ml of polymyxin B to the wells to kill any extracellular
bacteria. After this time, the wells were washed with PBS, and
the cells were lysed with Triton X-100 in 0.1X PBS 1X for
20 min at 37 °C in 5% CO2. The CFU was determined by
successive dilution in 0.85% saline and plated onMacConkey
agar. The Yersinia enterocolitica O:3 isolate was used as

positive control for bacterial invasion [8]. Two independent
experiments were performed.

Cell viability by the tetrazolium reduction assay

In addition to the bacterial invasion assay, we evaluated the cell
viability of HEp-2 cell following exposure to A. baumannii iso-
lates by the tetrazolium reduction assay [36], which was per-
formed in a 96-well microtiter plate (Corning Costar® Sigma-
Aldrich, catalog No. 32190102). After incubation of the conflu-
entmonolayers of cells HEp-2 previously infectedwith 10μL (~
106 CFU) of A. baumannii isolates for 2 h, 20 μl of the complete
DMEM medium were removed and 20 μl of MTT (0.2 mg/ml)
were added to each well. Then the cells were incubated for 4 h at
37 °C in 5% CO2, and after which, 20 μl of sodium dodecyl
sulfate 10% (SDS,GEHealthcare, Uppsala, Sweden)was added.
The absorbance was read in spectrophotometer at 590 nm [37].
Cell viability in infected cultures was calculated considering the
absorbance values of negative control as 100%. Two indepen-
dent experiments were carried out in duplicate.

Statistical analysis

Data obtained in quantification of biofilm formation and
cell viability by MTT were analyzed for statistical sig-
nificance using Grubb’s test. The p value < 0.05 was
considered significant.

Student’s t test was used to determine the differences in the
percentage of cell viability infected with A. baumannii ATCC
19606 type strain and the selected isolates. Mann–Whitney
test was used to determine the differences in the number of
bacteria that adhered to A-549 or HEp-2 cells.

Results

Distribution of isolates and antimicrobial resistance

A total of 92 isolates of A. baumanniiwere collected from two
hospitals in Rio de Janeiro (Brazil). Resistance and interme-
diate resistance to cefotaxime was the most common (87,
94.6%), followed by piperacillin/tazobactam (85, 92.4%), ce-
fepime and ciprofloxacin (83, 90.2%), carbapenems (80,
87%), ceftazidime (77, 83.7%), ampicillin/sulbactam (76,
82.6%), and gentamicin (53, 57.6%). High percentage suscep-
tibility was observed for amikacin (19, 20.7%). Thirteen iso-
lates were resistant to all of the 10 antibiotics. Only 6 isolates
were classified as n-MDR, and all of them were suscep-
tible to carbapenems. Most of the isolates that showed
resistance to carbapenems were collected from tracheal
aspirates (23%, n = 18).
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Oxacillinases encoding genes

Using multiplex-PCR, all isolates were positive for the
blaOXA-51 gene, and 85 isolates (92%) were positive for
blaOXA-23.The sequences were submitted to BLAST and sim-
ilarity values > 99% were found among all. No isolate was
positive for blaOXA-24, blaOXA-58, or blaOXA-143 genes.

PFGE typing

According to Tenover’s criteria [32], the PFGE analysis re-
vealed 22 clones among the 92 isolates, with a similarity >
85% [38]. Clone A (30% of isolates; n = 28) was the predom-
inant, followed by clone B (19% of isolates; n = 17). Forty-
seven of the total 92 A. baumannii isolates were classified in
20 sporadic clones named fromC to U, which included at least
one isolate of each profile (Fig. 1). Clones A, B, and C were
present in both hospitals, whereas others were present in only
one of them. The isolates belonged to the predominant clones
A and B were mainly collected from tracheal aspirates (24%
and 41%, respectively). The majority of n-MDR isolates was
grouped only in sporadic clones (S, Q, R, F, V), only one n-
MDR A. baumannii isolate belonged to the predominant clone
A.

Biofilm formation

The quantification of biofilm formation assay showed that 39
isolates were considered strongly adherent (42%), 26 isolates
were moderately adherent (28%), and 8 isolates were weakly
adherent (9%). Nineteen isolates were considered non-biofilm

producers. Most isolates that were considered strongly adher-
ent were collected fromwound (58%, n = 7), tracheal aspirates
(58%, n = 11), and catheter (53%, n = 15).

Cell adherence assay

Two distinct eukaryotic cells were used to examine adherence
of six A. baumannii isolates (Figs. 2 and 3). All isolates were
selected as MDR, carbapenem resistant and biofilm pro-
ducers. Four isolates were considered strongly adherent, and
the other two were considered moderately adherent (30,654,
clone F) and weakly adherent (33,677, clone A). Verification
of the ability of differing clones to adhere to the eukaryotic
cells revealed no clonal specific trends. Clones A, B, E, and F
showed a significantly increased (p > 0.05) adherence to HEp-
2 when compared with A-549 cells. For the other isolates
(clones C and D), there was no statistical significance.

All A. baumannii isolates studied and the A. baumannii
ATCC 19606 type strain were not able to invade HEp-2 cells.
Y. enterocolitica O:3, used as positive control for bacterial
invasion, was able to grow after plating in MacConkey agar
(0.5 × 103 CFU/mL).

HEp-2 cells were examined byMTT-assay to determine the
viability after infection with A. baumannii isolates. Cells in-
fected by the A. baumannii ATCC 19606 type strain showed
45% cell viability and by clones A, B, C, D, E, and F exhibited
22%, 19%, 38%, 80%, 36%, and 20% cell viability, respec-
tively. After infection, all isolates, except clone C and D, in-
duced a significant decrease in HEp-2 cell viability (p < 0.05)
compared with the HEp-2 cell viability after infection by the
type strain.
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Discussion

Antibiotic resistance and persistence in hospital environments
are the two factors that most contribute to the success of
A. baumannii as an opportunistic pathogen. However, it is
possible that the emergence of isolates over others is the result
of their different individual characteristics that allow coloni-
zation and disease. Biofilm formation and its adherence to
eukaryotic cells were studied as potential virulence-related
characteristics among A. baumannii isolates.

Our data showhigh predominance ofMDRA. baumannii and
high susceptibility to amikacin, as observed previously [37].
Carbapenems were used to be one of the last resorts when
treating resistant Acinetobacter infections, but today high resis-
tance to them is reported. While in 2001 isolates collected in
Brazil exhibited only 10% of resistance [39], recently this resis-
tance has increased dramatically [8, 10, 40]. In general, the
A. baumannii carbapenem-resistant isolates evaluated here were
also resistant to other antimicrobial agents, except to polymyxin
B. However, the intensive use of polymyxins has selected resis-
tant isolates, and this has already been shown in Spain, Korea,
Iran, USA, and Brazil [24, 40–44].

Different mechanisms are involved in the A. baumannii re-
sistance to carbapenems, but the β-lactamase production is the

most important factor [29]. Our study found that the blaOXA-51
gene was the sole carbapenemase gene detected in all the iso-
lates, as expected [45]. The blaOXA-23 gene appeared in most
A. baumannii isolates. These data may indicate that carbapen-
em resistance of isolates most often mediate by oxacillinases
like blaOXA-23 gene [46]. Moreover, we also observed the
blaOXA-23 gene in carbapenem-susceptible isolates. These re-
sults suggest the importance of the occurrence of the silent
carriage blaOXA-23 gene in hospital environments and the de-
tection of isolates as reservoir oxacillinase genes [46].
Previously, Carvalho et al. (2011) described that this suscepti-
bility occurs due to different associations between the blaOXA-23
and ISAba1 genes [46]. With regard to blaOXA-24, blaOXA-58,
and blaOXA-143 genes, in this study, no Acinetobacter isolate
was positive, although international epidemiologic studies have
indicated that these oxacillinases are spread among
A. baumannii clinical isolates [47].

Various genotyping methods have been used to facilitate the
understanding of the epidemiology of an A. baumannii infection
[26]. PFGE typing showed two main clones, indicating clonal
dissemination. A high prevalence of clones A and B in the stud-
ied hospitals showed that health professionals should be very
careful to prevent the spread of these clones. Isolates positive
for the blaOXA-23 gene were associated with predominant and

Fig. 2 A-549 cells infected for
2 h with A. baumannii stained and
photographed in an optical
microscope at a 40x
magnification. a Clone A.
b Clone B. c Clone C. d Clone D.
e Clone E. f Clone F
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sporadic clones, unlike a previous study that found the presence
of this gene only in few distinct clones [17, 48]. These findings
show the diversity of clinical A. baumannii isolates circulating in
Rio de Janeiro.

The ability of A. baumannii to persist in hospital environ-
ments could be attributed to its ability to form biofilm on abiotic
surfaces. Our data show that A. baumannii isolates have different
abilities to attach to polystyrene microplates. Previously,
Rodríguez-Baño et al. (2008) showed that the ability to form
biofilms on abiotic surfaces is common in A. baumannii isolates
and that one of the most frequent sites of collection of these
isolates is related to the catheter [22]. But in this same study, a
higher biofilm formation was also observed in isolates collected
from bloodstream infection; these data differ from our study
[22].We observed that the MDR isolates were not significantly
strong biofilm-forming, since carbapenem-susceptible isolates
produced more biofilm than resistant isolates, as observed before
[19, 20, 47]. No difference has been verified regarding biofilm-
forming capacity between predominant and sporadic clones.
Previous reports also did not describe a significant relationship
between biofilm formation and PFGE clones [48–50]. Multiple
factors contribute to A. baumannii virulence and pathogenicity.
The diversity of virulence characteristics among A. baumannii
isolates has been previously shown [49, 50], but little information

exists about A. baumannii adhesion to eukaryotic cells. The bac-
terial adhesion assay demonstrated that A. baumannii clones dif-
fer in their abilities to adhere to A-549 and HEp-2 cells [7, 9, 51].
Moreover, the isolate belonging to clone F was not able to form
strong biofilm in polystyrene microplates, but was able to adhere
better to the HEp-2 cells. The non-correlation of biofilm forma-
tion on abiotic and biotic surfaces indicates that different mech-
anisms are involved in these colonization processes, such as the
participation of structures such as pili, associated only with bio-
film formation on abiotic surfaces [52]. In addition, the isolates
belonging to the major PFGE clones (A and B) did not adhere to
eukaryotic cells more than others [7]. The optical microscopy
analyses also suggest that bacteria can adhere but not invade
eukaryotic cells, and this was consistent with the invasiveness
experiment performed. Reports indicate that A. baumannii infec-
tion leads to apoptotic death without invasion of the pathogen [8,
53]. Cell viability by theMTT reduction assay showed consistent
data with that observed in optical microscopy. However, the
isolates belonging toA andB clones induced significant decrease
in the viability of HEp-2 cells, which was not observed in optical
microscopy.

In summary, the results presented in this study showed the
ability of the A. baumannii clinical isolates to form biofilm
and attach to eukaryotic cells. Furthermore, we indicated

Fig. 3 HEp-2 cells infected for
2 h with A. baumannii stained and
photographed in an optical
microscope at a × 40
magnification. a Clone A.
b Clone B. c Clone C. d Clone D.
e Clone E. f Clone F
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individual differences among the isolates, irrespective of their
belonging to the predominant or sporadic clones, mainly in
relation to biofilm formation and adherence to epithelial cells.
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