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INTRODUCTION

First described in late 2019, coronavirus disease (COVID)-19, caused by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), rapidly escalated into a global pandemic with a high
case fatality rate. COVID-19 patients with acute respiratory failure exhibit some distinctive
pathological characteristics, which to some extent resemble the acute respiratory distress syndrome
(ARDS), SARS, and Middle East respiratory syndrome (MERS); these include hypoxemia, diffuse
alveolar damage with cellular exudates, extensive pulmonary inflammation, lung edema, and
hyaline membrane formation (1). In addition to respiratory failure, these patients present with a
dysfunctional systemic host response that affects multiple organs, including the central nervous,
cardiovascular, renal, and gastrointestinal systems (2–4), as well as a wide range of coagulation
disturbances, such as thrombocytopenia, sustained systemic clotting activation, massive thrombin
and fibrin formation, and disseminated intravascular coagulation (5).

CURRENT AVAILABLE TREATMENTS AGAINST COVID-19

Few therapies are effective for COVID-19 patients, and to date there are still no vaccines available.
There are vaccine candidates in development and ongoing clinical trials, but they are expected to
be available, at best, in early 2021 (6). Thus, novel effective and safe therapies are urgently required
to treat COVID-19 patients (7). In this context, several clinical trials have begun pursuing new
therapies as well as repurposing existing ones, largely through drug repositioning, including of
antiviral, antimalarial, and anti-inflammatory agents. These therapies aim to target entry of the
virus into host cells, multiplication of the viral genetic material, and/or the immune response
and inflammatory process (6). Although some therapies shows promising results, they raise some
concerns, such as limited cohort sizes, non-randomized trials, lack of considerations for gender,
comorbidities, concurrent treatments, and route of drug delivery, among others (6). Early in
the COVID-19 pandemic, corticosteroids were not recommended because of the adverse effects
previously observed in influenza, SARS-CoV, andMERS-CoV infections (8). Nevertheless, a recent
controlled, open-label trial of dexamethasone for up to 10 days resulted in lower 28-day mortality
in mechanically ventilated patients (9).

Mesenchymal stromal cell (MSC)-based treatment has been proposed as a suitable therapeutic
approach for COVID-19 (10). As MSCs have the potential to interact directly with immune cells,
their transplantation may improve outcomes in COVID-19 patients through modulation of the
immune response, mitigation of the inflammatory cascade, and promotion of tissue repair and
regeneration (11, 12). In addition, CD147, the second entry receptor for SARS-CoV-2, can be
expressed by tissue-specific stem cells (13). Together with the loss of airway epithelial cells by

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.583017
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.583017&domain=pdf&date_stamp=2020-09-18
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:tati.maron@gmail.com
mailto:tatiana.maron@ioc.fiocruz.br
https://doi.org/10.3389/fimmu.2020.583017
https://www.frontiersin.org/articles/10.3389/fimmu.2020.583017/full


Maron-Gutierrez and Rocco Cell-Free Therapies: Novel Approaches for COVID-19

viral infection and replication, the additional loss of regenerating
stem cells may be responsible for diminished cellular and
lung regeneration (13). Cell-based therapies have been quite
extensively studied for potential applicability in COVID-19,
especially given the short time since the onset of the pandemic
(14, 15); however, due to the risk ofmacro- andmicrothrombosis,
cell-free therapies may be more appealing. Cell-free therapies
might decrease injury to different organs, such as lung, heart,
kidney, liver, and brain, as well as reduce thrombus formation
and endothelial inflammation (Figure 1).

CELL-FREE THERAPIES FOR COVID-19

Cell-free therapies, such as the MSC secretome (obtained
as conditioned medium) and extracellular vesicles (EVs)
from MSCs, have been studied in ARDS (16) and multiple
organ dysfunction syndrome (MODS) (17, 18) for their anti-
inflammatory and anti-fibrogenic effects, as well as their
epithelial and endothelial regenerative properties. However,

FIGURE 1 | Potential effects of pharmaceutical preparations of MSC secretome on different organs involved in COVID-19. The MSC secretome, in the form of

conditioned medium containing extracellular vesicles (EVs) and mitochondria, could be transformed into a stable product for the treatment of patients with COVID-19.

Secretome-based therapies might mitigate cardiac, kidney, liver, nervous system, and lung injury; decrease macro- and micro-thrombus formation and endothelial

inflammation; and repair lung epithelial and endothelial cells.

many researchers and international societies, including the
International Society for Extracellular Vesicles (ISEV) and the
International Society for Cellular and Gene Therapies (ISCT),
have expressed concern regarding the use of EVs—whether
derived from MSCs or from other cell sources—in the treatment
of COVID-19 (19). Clinical trials are encouraged; however, the
use of EVs for any purpose in COVID-19 is not endorsed
by ISEV and ISCT until proper regulation of manufacturing,
quality control protocols, and clinical trial design are in place, in
order to avoid the stem-cell industry trying to sell unregulated
MSC treatments (19). In this context, the implementation of
computer-controlled bioreactors (20) and the development of
standard operating procedures (SOPs) for obtaining a Good
Manufacturing Practice (GMP)-grade MSC secretome and its
components are necessary for clinical applications (21). These
must be reproducible, scalable, and well-controlled to limit
heterogeneity and enhance predictability in the composition and
function of secretome-derived products (22). Further studies are
still needed to better understand the best route of cell-free therapy

Frontiers in Immunology | www.frontiersin.org 2 September 2020 | Volume 11 | Article 583017

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Maron-Gutierrez and Rocco Cell-Free Therapies: Novel Approaches for COVID-19

delivery, dose, and timing of administration (23). Moreover,
important factors should be taken into consideration such as the
culture medium, cell and tissue source, donor variability, and
culture conditions (cell priming with hypoxia, biochemical or
mechanical stimuli, three-dimensional spheroid culture, among
others), as well as the timing and method of MSC-secretome
harvesting (20, 22). In short, cell-free therapies could be a more
suitable treatment for COVID-19 than MSCs, but additional
investigations are required (2).

THERAPEUTIC STRATEGIES INVOLVING
THE MSC SECRETOME IN COVID-19

The MSC secretome is a complex mixture of soluble components
(growth factors and cytokines), a vesicular portion that
comprises EVs, and cell organelles (e.g., mitochondria) (24–
26). Considering that SARS-CoV-2 infection is being associated
with an increased inflammatory process (27), we believe that
MSC secretome products might help reverse COVID-19–
related immune dysregulation, due to their anti-inflammatory,
immunomodulatory, and regenerative effects (14). The MSC
secretome has properties similar to those of its parent MSCs
(28). Moreover, the secretome is generally considered safer than
parent cells, since it (1) lacks the potential for endogenous
tumor formation, as it cannot self-replicate; (2) can be classified
as non-immunogenic, due to the limited number of antigenic
components; and (3) may lead to less formation of emboli
when injected intravenously (14, 29). As recently reported
elsewhere, the MSC secretome (in the form of conditioned
medium) can be stored more easily than MSCs (14), which
is an important consideration given the lack of adequate
facilities in developing countries. Transforming MSC-secretome
components into a freeze-dried, stable powder product which can
be reconstituted for intravenous injection or inhalation might be
a suitable approach for the treatment of patients with COVID-19
(Figure 1) (17).

MITOCHONDRIA FOR RESTORING
BIOENERGETICS AND MITIGATING
INFLAMMATION

Mitochondria are intracellular organelles that play a vital role
in cellular homeostasis and enable stress adaptation (30). Most
cellular energy generation takes place in the mitochondria (31),
and excessive mitochondrial dysfunction leading to defects in
energy flow leads to unsustainable maintenance of life and
adaptation to stress (30). One of the main mechanisms associated
with the pathophysiology of sepsis is mitochondrial dysfunction
(32, 33). In 2012, the first evidence that MSCs restore alveolar
bioenergetics through Cx43-dependent alveolar attachment and
mitochondrial transfer was observed in experimental ARDS
(25). In 2015, Phinney et al. observed mitochondrial transfer
from MSCs to macrophages in response to oxidative stress
(34). Recently, Court et al. investigated the effect of MSC-
mediated transfer of mitochondria on lymphoid cells. They
observed mitochondria-labeled MSCs mainly in CD4+T cells,

paving the way for exploration of organelle-based therapies in
immune diseases (26). Interestingly, MSCs are not the only cell
type able to transfer mitochondria. Lipopolysaccharide (LPS)-
stimulated monocytes release free and microvesicle-associated
mitochondria as part of their secretome (35). These studies
demonstrate the complexity of cell-to-cell communication by
identifying mitochondria as a source for target cells to restore
their bioenergetics, enable immunomodulatory effects, and
suppress inflammation. Clinical trials failed to show efficacy
of immunomodulatory therapies in sepsis (36, 37). Since
bacterial sepsis shares some similarities with COVID-19, we
may consider a new route for therapeutic intervention focused
on mitochondrial cell transfer. Another option is therapy with
engineered EVs containing mitochondria.

RATIONALE FOR USING EXTRACELLULAR
VESICLES IN COVID-19

The immunomodulatory and regenerative potential of MSCs
may be independent of direct cellular cross-talk (21, 38).
MSCs act through a paracrine mechanism based primarily on
EVs, which interact with neighboring target cells or can reach
distant organs (39). Distinctions between the subtypes of EVs
were previously based on subcellular origin, with exosomes
being of endosomal origin and microvesicles derived from the
cell membrane. However, given the historically contradictory
definitions and inaccurate expectations of biogenesis associated
with these terms, in 2018, ISEV recommended the use of new
terms for EV subtypes that refer to their physical characteristics,
such as size (small and medium/large EVs) or density; their
biochemical composition (CD63+/CD81+- EVs, annexin A5-
stained EVs, etc.); or their cell of origin (MSC EVs, podocyte
EVs, etc.) (40). EV biochemistry varies according to composition
and cell source (41). EVs can carry membrane and cytosolic
proteins, transcription factors, DNA, coding and non-coding
RNAs and various signal transduction molecules (5, 21, 38,
42), acting on both physiological and pathological events, e.g.,
modulating the inflammatory response (2, 14). EVs also carry
different cytokines and growth factors, such as interleukin
(IL)-6 and IL-10, transforming growth factor (TGF)-β, and
hepatocyte growth factor (HGF) (43). In addition, EVs contain
matrix-remodeling enzymes, such as matrix metalloproteinases
(MMPs), heparanases, hyaluronidases, and tissue inhibitors of
metalloproteinases (TIMPs); EV-mediated proteolytic activities
have also been described, which might modulate the remodeling
process and contribute to tissue repair (39). In this context, our
group demonstrated that MSCs increased MMP-8 expression
and decreased TIMP-1 expression in an experimental model
of ARDS, suggesting an effect on the extracellular matrix (44).
Rather than suppressing immune responses, EVs appear to act as
true modulators, inducing regulatory responses and tolerance in
order to restore homeostasis (45).

Administration of EVs has proven safe and effective in
preclinical studies of lung injury and sepsis models (16, 18,
19, 46–48). In preclinical studies, EV therapy ameliorated acute
lung injury (49, 50) and was equally or even more effective
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than MSCs in mitigating lung inflammation and pathological
damage (41, 51). EVs have also been shown to attenuate E.
coli and influenza infections (47, 48, 52), including a mixed
swine (H3N2, H1N1) and avian (H9N5, H7N2) influenza-
induced lung injury model (48). The beneficial effects of EVs
have further been observed in an ischemic stroke model (53,
54). Since COVID-19 may be associated with damage to other
organs in addition to the lungs and has been associated with
ischemic stroke, EVs could be a particularly promising therapy
in this context (19). However, only one prospective study has
evaluated the effects of EVs (specifically, exosomes from bone
marrow-derivedMSCs) in COVID-19 patients (55). Even though
the inflammatory response was reduced significantly, and no
adverse events were observed, this study encountered limitations
regarding EV characterization and biological properties, the
actual dose of EV administered, and how the injection of EVs
was monitored. At the time of writing, there are three ongoing
clinical trials of MSC-derived EVs for COVID-19 treatment,
to be administered intravenously (ChiCTR2000030484) or
by inhalation (NCT04276987, ChiCTR2000030261); however,
recruitment has not yet begun.

It is important to consider both the source of MSCs from
which EVs are derived, which can be obtained from different
tissues and donors, and their preparation. Depending on these
factors, MSCs and their EVs can have different therapeutic
properties. Compared to bone marrow-derived MSCs, for
instance, adipose tissue-derived MSCs express more tissue factor
(an important initiator of coagulation in sepsis) and reduce
hemocompatibility, which has been shown to vary according
to donor and culture handling conditions (56, 57). Therefore,
EVs obtained from adipose tissue-derived MSCs may have
greater thrombogenic activity than those from bone marrow-
derived MSCs (58, 59), and thus should not be considered
for use in COVID-19 patients (5, 19). Furthermore, the
therapeutic effects of EVs are known to vary according to
their preparation method, even when obtained from the same
MSC source (53). Moreover, differences in donor parameters,
including age, have been associated with significant variations
in cytokine content, thus resulting in different effects on injury
mitigation (60, 61).

In addition to their natural cargo, EVs can be loaded with
biochemical compounds or genetically engineered to target
infected cells, thus providing additional perspective for COVID-
19 treatment beyond MSC-derived EVs, including EV-based
drug delivery, inhibition of EV biogenesis and uptake, and EV-
based vaccines (41). The latter might be a particularly promising
cell-free approach to COVID-19 treatment. Exosome vaccines
may contain membrane-anchored ectodomains of SARS-CoV-2

components on their surface, facilitating cross-linking of the B-
cell receptor (2). Exosome-based vaccines containing the spike
(S) proteins of SARS-CoV-2, one of the structural proteins
that mediate viral entry into the host cells (62), could induce
high levels of neutralizing antibodies (63). In addition, the
cargo of EV-based vaccines can be modified to include proteins
and miRNAs to help modulate the immune response (62).
However, further research is needed to assess the safety and
clinical pharmacology of EV-based therapies in order to provide
guidance for manufacturing, storage, dosing, and administration
(19) before these potential treatments can be made more
accessible worldwide (14, 17).

CONCLUSION

In the specific setting of COVID-19, administration of MSC-EVs
may have several advantages over MSCs: (i) there is no risk of
emboli formation in the injured microcirculation; (ii) no risk of
mutagenicity or oncogenicity is observed; (iii) nebulized delivery
can be used (despite several controversies regarding this route
of administration); and (iv) tolerance of longer storage periods
allow for later therapeutic use, reducing the stringency of storage
and transportation requirements. In short, cell-free therapies
should be considered a promising alternative for COVID-19
treatment. Clinical trials of EV-based therapies for COVID-
19 should clearly describe the dose, route of administration,
characteristics of the administered EVs, timing of administration,
any monitoring performed during administration, and detailed
primary and secondary outcomes.
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