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A key requirement in studies of endemic vector-borne or zoonotic disease is
an estimate of the spatial variation in vector or reservoir host abundance.
For many vector species, multiple indices of abundance are available, but cur-
rent approaches to choosing between or combining these indices do not fully
exploit the potential inferential benefits that might accrue from modelling
their joint spatial distribution. Here, we develop a class of multivariate gener-
alized linear geostatistical models for multiple indices of abundance. We
illustrate this novel methodology with a case study on Norway rats in a
low-income urban Brazilian community, where rat abundance is a likely
risk factor for human leptospirosis. We combine three indices of rat abun-
dance to draw predictive inferences on a spatially continuous latent
process, rattiness, that acts as a proxy for abundance. We show how to explore
the association between rattiness and spatially varying environmental factors,
evaluate the relative importance of each of the three contributing indices and
assess the presence of residual, unexplained spatial variation, and identify
rattiness hotspots. The proposed methodology is applicable more generally
as a tool for understanding the role of vector or reservoir host abundance in
predicting spatial variation in the risk of human disease.
1. Introduction
In studies of endemic vector-borne and zoonotic diseases, estimates of vector
and reservoir host abundances, including spatial variation in abundance, are
often needed to inform predictive models of disease risk and to guide the
decision-making process for the implementation, monitoring and evaluation
of control programmes [1]. Detecting all members of a target population at a
sampled location is impossible for most disease vector or reservoir species.
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Consequently, indirect methods of determination are often
used in ecological studies to obtain indices that quantify rela-
tive abundance [2–4]. Here, as our focus is on the effect of
vector and reservoir host populations on human health, we
use the term ‘abundance’ loosely to denote all ecological pro-
cesses that are associated with animal abundance, for
example animal presence and activity, and that can be used
to quantify exposure, including spatial variation in exposure,
to a disease of interest.

In the absence of a gold-standard index of animal abun-
dance, many different indices are commonly used for a
single species, sometimes within the same study. For
example, in the case of rodents, indices derived from traps,
camera traps, counts (of animals, tracks, burrows and
faeces), track plates and gnawing pegs have all been used
to estimate rat abundance [2,5,6]. Similarly, for insects, a
wide range of entomological indices are used. For example,
occurrence, density (per unit time, surface area, person or
other sampling unit), human-biting rates and the human
blood index are used to estimate adult mosquito abundance
[7–10]. When data for multiple imperfect indices of abun-
dance have been collected within a study area, methods
that can jointly model these quantities may improve predic-
tion and inference. Such methods are also useful when
different traps (or protocols) with different detection prob-
abilities and biases are used to collect data for the same
index [11,12]. However, current approaches to combining
multiple indices of abundance do not exploit the inferential
benefits that might accrue from their joint modelling.

Many recent studies have attempted to model the spatial
distribution of disease vectors, for example in the context of
malaria [12], dengue [13], Chagas disease [14], human Afri-
can trypanosomiasis [15], schistosomiasis [16], leishmaniasis
[17], West Nile virus [18] and rodent-borne zoonoses such
as leptospirosis [19], plague [20], hantavirus [21] and Barto-
nella spp. [22]. In such cases, direct determination of vector
or reservoir host abundance throughout the study area is
often impractical because of the extensive sampling effort
required. A practical solution is to sample a finite set of
locations and use statistical modelling to make predictions
at unobserved locations by capturing spatial correlation and
associations with environmental drivers of abundance.
Here, we achieve this by the use of model-based geostatistics
[23,24], a branch of spatial statistics that provides a principled
likelihood-based approach for mapping of geo-referenced
outcomes. A geostatistical model is an extension of a general-
ized linearmixed model that accounts for covariate effects
and otherwise unexplained spatial variation in the outcome
of interest. Geostatistics has been used in a range of scientific
disciplines, including ecology [25,26] and epidemiology [24].

In this study, therefore, having described our motivating
application in §1.1, in §2.1, we set out statistical criteria for
combining multiple indices of vector and reservoir host abun-
dance and review the literature for existing and relevant
methodologies. Then, in §§2.2–2.4, we present a new class
of multivariate generalized linear geostatistical models for
combining multiple indices of abundance, which exploit the
spatial correlation both within and across indices. In §3, we
illustrate the development and application of the method-
ology in the context of a case study on the Norway rat, a
reservoir for infectious diseases in low-income urban commu-
nities in Salvador, Brazil. Mapping Norway rat abundance is
essential for investigating its role in disease transmission and
developing more targeted rodent control strategies. In §4,
we apply our novel methodology to the analysis of data
collected for three indices of rat abundance, which make
inferences about the association of environmental variables
with rattiness, our proxy for rat abundance, and map rattiness
for the entire study area. We then assess the relative
contribution of each index to the spatial predictions. Finally,
in §5, we discuss the strengths, limitations and wider
applicability of the developed methodology.
1.1. Motivating application: mapping the abundance of
Norway rats, a reservoir for Leptospira in urban
Brazil

Leptospirosis is a widespread and neglected zoonotic disease
caused by bacteria of the genus Leptospira. It is among the
leading zoonotic causes of morbidity and mortality globally,
with more than 1 million human cases and 58 000 deaths
reported each year [27,28]. Humans are infected via direct
contact with animal reservoirs or through contact with soil
or water contaminated by bacteria shed in the urine of
infected animals [29,30]. In tropical low- and middle-
income countries, including Brazil, low-income urban com-
munities (often referred to as ‘informal settlements’ or
‘slum communities’ in the literature) are at an increased
risk for leptospirosis owing to poor sanitary conditions,
flooding, intense environmental contact and abundant local
rat reservoir populations [31,32].

Globally, the Norway rat, Rattus norvegicus, is a major
reservoir host for Leptospira spp. and several other pathogens
and thrives in low-income peri-urban and urban environ-
ments where food and harbourage are plentiful [30,33–37].
Norway rat populations have been found to have high preva-
lence of leptospiral infection in Brazil, Argentina, Japan and
Canada [19,30,36,38], and high daily Leptospira shedding
rates have been recorded in Salvador, Brazil [30].

Association between the risk of leptospiral infection in
humans and peri-domiciliary rat infestation [31,32,34,35,39]
and rodent sightings [31,32,35] has been reported in multiple
studies in Brazil. However, the link between rat population
abundance and risk of spill-over infection to humans is
poorly understood [32], partly owing to the limited knowledge
about the distribution and the abundance of rats within urban
environments [6]. As a result, several ongoing eco-epidemiolo-
gical studies in Salvador, Brazil, aim to address this knowledge
gap and generate evidence about the impact of rat control
measures on disease transmission through the collection and
analysis of human seroprevalence and rat abundance data [40].

However, estimation of rat abundance in complex urban
settings is hindered by a lack of reliable measurement tools
[2,6]. In studies on the Norway rat in Salvador, a combination
of rat trapping, surveys for signs of rodent infestation and
track plates are routinely used as indices of relative abun-
dance [6,41]. Track plates are plastic plates that are coated
in ink and placed on the ground to detect rat paw and tail
markings. A recent study has shown that track plate measure-
ments are correlated with those of rodent infestation surveys
and rat trapping [6]. The use of alternative tools, such as track
plates, which are cheaper and can be deployed faster and
more easily, allows for a more cost-effective design of studies,
while reducing the impact of the loss of sampling days and
equipment owing to violence (associated with drug-
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trafficking groups operating within these communities) and
theft. However, different indices may have distinct biases,
and collecting data for multiple indices within a study site
can allow for a richer and more comprehensive measurement
of relative abundance. In this challenging context, statistical
modelling can be especially useful to use of all the infor-
mation collected from multiple measurement tools and
deliver optimized inferences about rat abundance.

Our research question is: how should we develop a joint
geostatistical model for multiple indices to map rat abun-
dance? Our ultimate goal is to develop a reliable modelling
approach that can be used to identify rat abundance hotspots
to guide future investigations of environmental contami-
nation and rodent control.
 R.Soc.Interface

17:20200398
2. Model and methods
2.1. Developing an approach for combining multiple

indices of abundance
To develop an objective and statistically principled approach
for combining multiple indices of abundance, we propose
that a statistical model should meet the following six criteria.

C1 It should account for the appropriate sampling distri-
bution of each index through the use of a suitable
conditional likelihood function.

C2 It should not require all indices to be taken at a common
set of locations.

C3 It should account for spatial correlation both within and
across indices.

C4 It should allow for the prediction of abundance at
all locations within the study area and quantify the
uncertainty associated with those predictions.

C5 It should allow for the quantification of the relative
contribution of each index to the spatial predictions.

C6 It should allow for the incorporation of spatially refer-
enced covariates.

We now review existing methodologies in the literature
and assess how well they meet these criteria.

One of the simplest and most commonly used approaches
is to directly combine data for multiple indices into a single
index by averaging their values and modelling this using a
standard linear regression model [42]; this approach violates
criteria C1–C3. A second approach is to model each index
separately and independently using linear regression
models and to combine the resulting predictions [42].
Although this approach respects C1, it does not take advan-
tage of the inferential benefits that would accrue from C3.

In a third approach, a composite index is created using a
weighted combination of multiple indices. The weighting is
often based on a subjective theoretical framework derived
from expert opinion [43]. Alternatively, summaries with
specific weightings can be used, such as the general index
[44] and the geoindex mean of multiple relative abundance
indices (often used to quantify biodiversity [45]). A fourth
approach is to obtain composite indices using principal com-
ponent analysis. This follows a more data-driven approach to
combine multiple indices into a single real-valued score.
These composite indices are commonly used for estimating
general indicators of ecological systems [46], such as ecologi-
cal integrity [47] and multispecies biodiversity indicators
[48], rather than abundance. These methods do not respect
any of the criteria C1–C4 and C6 [43].

Geostatistical methods have been developed for model-
ling multiple indices of animal abundance for a single
species. However, these methods were found to either use
one index as a predictor for another index [49], thus violating
C1 and C2, or to use multivariate kriging for all indices [50],
violating C1 and C6.

There are several examples of geostatistical approaches
that jointly model indices for multiple species in the field of
ecological community modelling [42,51,52]. However, the
structure of these models does not enable predictions to be
made for the abundance of a single species measured by mul-
tiple indices, as is required for C4. They were also found to
require all indices to be measured at a common set of
locations, hence violating C2. While integrated species distri-
bution models offer a means to model multiple indices, they
have been developed to combine multiple presence-only and
presence–absence data sources [42,53], rather than abundance
indices. These models also provide no way to explore the
relative contributions of each data source. Consequently,
they do not meet C4 and C5.

2.2. Model formulation and inference
Let R(x) denote a spatially continuous stochastic process,
representing rattiness, our proxy for rat abundance. The
data consist of a set of outcomes Yi = (Yi,j : j = 1,…, J ), for
i = 1,…, N, collected at a discrete set of locations X = {xi : i =
1,…, N}. The outcome variables Yj : j = 1,…, J are a set of
indices that provide information about R(x).

Let ‘[ · ]’ be a shorthand notation for ‘the probability dis-
tribution of · .’ Define Y = (Y1,…, YN) and R = (R(x1),…,
R(xN)). We assume that Yi,j : j = 1,…, J are conditionally
independent given R(xi), as formally expressed by

[YjR] ¼
YN
i¼1

YJ
j¼1

[Yi,jjR(xi)]: (2:1)

Let gj( · ) and ηj(xi) denote the link function and linear
predictor for the outcome variables Yi,j : i = 1,…, N. Hence,

g j{mj(xi)} ¼ h j(xi) ¼ a j þ s jR(xi)

R(xi) ¼ dT(xi)bþ
ffiffiffi
c

p
S(xi)þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� c

p
Ui

, (2:2)

where d(xi) is a vector of explanatory variables with associ-
ated regression coefficients β; Ui is a set of independently
and identically distributed zero-mean Gaussian variables
with unit variance; S(xi) is a stationary and isotropic spatial
Gaussian process; σj > 0 : j = 1,…, J are scale parameters that
account for the different scales of variation of the linear pre-
dictors of each outcome Yi,j; ψ∈ (0, 1) regulates the relative
contributions of spatially structured variation, S(xi), and
unstructured random variation, Ui, to R(xi).

For the analysis of §3, we specify an exponential spatial
correlation function:

Corr{S(x), S(x0)} ¼ e�u=f,

where u = ||x− x0|| is the Euclidean distance between x and
x0, and ϕ regulates how fast the spatial correlation decays to
zero with the increasing distance u.

To fit the model in equation (2.2), we use the Monte Carlo
maximum likelihood method [54] and proceed as follows. Let
θ = (α1,…, αJ, σ1,…, σJ) and ω = (β, ϕ, ψ) be the vector of



Y1 Yj

R(x)

D

Figure 1. Directed acyclic graph of the geostatistical model of §2.2. R(x) is
the value of a spatially continuous stochastic process at location x. The out-
come variables Yj : j = 1,…, J are a set of indices that provide information
about R(x). The term D represents a set of explanatory variables that contrib-
ute to the spatial variation in R(x). Square objects correspond to observable
variables and circles to latent random variables.
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unknown parameters associated with [R] and [Y|R]. The
likelihood function is then given by

L(u, v) ¼ [Y; u, v] ¼
ð
RN

[R; v][YjR; u] dR: (2:3)

Because the integral in equation (2.3) cannot be solved
analytically, we approximate it using Monte Carlo methods.
Specifically, let θ0 and ω0 be our initial best guesses for θ
and ω, respectively. Because [R; ω][Y|R; θ]∝ [R|Y; ω], we
re-write the integral in (2.3) using an importance sampling
distribution [R; ω0][Y|R; θ0] to give

L(u, v) /
ð
RN

[R; v][YjR; u]
[R; v0][YjR; u0] [RjY; u0, v0] dR

¼ E
[R; v][YjR; u]
[R; v0][YjR; u0]

� �
,

(2:4)

where the expectation is taken with respect to the distribution
of [R|Y; ω0].

On the basis of equation (2.4), we then approximate
equation (2.3) with

L(v, u) � 1
B

XB
b¼1

[r(b); v][Yjr(b); u]
[r(b); v0][Yjr(b); u0] , (2:5)

where r(b) is the bth sample from [R|Y; ω0, θ0]. To obtain the
maximum likelihood estimate for θ and ω, we maximize
equation (2.5) using numerical optimization. To simulate
from [R|Y; θ0, ω0], we use the Laplace sampling algorithm
described in detail in [54,55].

To improve the approximation of the likelihood function,
we also update our guesses ω0 and θ0 by plugging in the
maximum likelihood estimate and re-iterate the maximiza-
tion of equation (2.5) until convergence.

2.3. Exploratory analysis
In this section, we outline several key steps in an explora-
tory analysis of the data to guide the model-building
process.

The exploratory analysis serves three purposes: (i) to
explore the relationship between the latent rattiness process,
R(x), and the covariates d(x); (ii) to test for the presence of
residual spatial variation in R(x) unexplained by the covari-
ates d(x); and (iii) to assess if the data support the assumed
stochastic dependence structure as represented by the
causal arrows of figure 1.

To pursue (i), we first analyse the data using a simplified
version of the model in equation (2.2) that does not assume
spatial correlation and does not make use of any of the avail-
able covariates by setting ψ = 0 and β = 0. Rattiness is
consequently modelled purely as unstructured random vari-
ation; hence, R(xi) =Ui. Note that the likelihood associated
with θ = (α1,…, αJ, σ1,…, σJ) and ω = (ϕ) is now given by
the product of N one-dimensional integrals:

L(v, u) ¼ [Y; v, u] ¼
YN
i¼1

ð
R

[Ui; u][YijUi; u] dUi: (2:6)

To maximize the likelihood, each of the factors in the afore-
mentioned product can then be approximated using
numerical quadrature; we use a quasi Monte Carlo
method, whereby the integrals in equation (2.2) are
drawn deterministically based on the Halton sequence of
support points [56].
After fitting the model in equation (2.6), we then estimate
Ui using its predictive expectation:

Ûi ¼ E[UijYi] ¼
Ð
R
Ui[Ui; v][UijR; u] dUiÐ
R
[Ui; v][UijR; u] dUi

:

To compute the Ûi, we plug in the maximum likelihood esti-
mates for θ and ω. To explore the functional form of the
relationship between R(xi) and the explanatory variables
d(xi), we plot the Ûi against the values of d(xi). On the
basis of the empirical relationship observed in the scatter-
plots, we then introduce d(xi) into the linear predictor for
R(xi), leading to a first extension of the simplified model to

R(xi) ¼ b`d(xi)þUi: (2:7)

We can now use the model in equation (2.7) to pursue the
second objective, i.e. testing for residual spatial correlation.
We then re-fit the likelihood (equation (2.6)), without setting
β to zero, and re-compute Ûi, which now represent our provi-
sional estimate for the residual variation in R(xi) that is
unexplained by d(xi). To check if the Ûi show evidence of
spatial correlation, we then randomly permute locations xi
in the data while holding the Ui fixed and repeat this
10 000 times. For each of the permuted datasets, we compute
the empirical variogram based on the Ûi and use the resulting
10 000 variograms to compute 95% confidence intervals (CIs)
under the assumption that the Ûi are not spatially correlated.
If the variogram computed from the original Ûi falls fully
within the 95% band, we conclude that the Ûi do not show
evidence of residual spatial correlation. If the variogram
partly falls outside the 95% band, we conclude that there is
evidence of spatial correlation and fit the geostatistical
model defined in §2.2.

Finally, for the third objective, we test the null hypotheses
H0 : σj = 0, for j = 1,…, J using likelihood ratio tests. Note that,
in this case, the conditions that give an asymptotic distri-
bution of the likelihood ratio test based on a χ2 distribution
are not met because the value 0 is on the boundary of the
parametric space of σj; following [57], we correct the nominal
resulting p-values by multiplying them by 1/2.
2.4. Spatial prediction and assessment of the
contribution of each index of abundance

Our predictive target is T(x) ¼ d(x)`bþ ffiffiffi
c

p
S(x) at a set of

prediction locations, X� ¼ {x�1, . . . , x
�
H}. To predict
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Figure 2. Map of the three valleys within the study site, Pau da Lima, with sampled locations for track plates and traps shown. Surveys for signs of rat infestation
were conducted at all locations.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20200398

5

T� ¼ (T(x�1), . . . , T(x
�
H)), we sample from its predictive distri-

bution [T*|Y ] as follows. We first simulate from [R|Y; θ, ω]
using the same sampling algorithm as for maximizing the
likelihood in §2.2, with the parameters θ and ω fixed at
their maximum likelihood estimates. After obtaining samples
r(b), b = 1,…, B, we then simulate from [T*|r(b)], which follow
a multivariate Gaussian distribution with mean and covari-
ance matrix easily obtained from their joint Gaussian
distribution [R, T*]. From this, we obtain t(b)(x�h), for
h ¼ 1, . . . , H and b = 1,…, B, which are now samples
drawn from [T*|Y ]. These can be used to compute any
desired summary of the predictive distribution [T*|Y ], such
that the expectation

t̂(x�h) ¼ E[T(x�h)jY] �
1
B

XB
b¼1

t(b)(x�h), h ¼ 1, . . . , H,

and the standard deviation

s(x�h) ¼ sd[T(x�h)jY] �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
B

XB
b¼1

(t(b)(x�h)� t̂(x�h))
2

vuut , h ¼ 1, . . . , H:

To assess the contribution of each index to the prediction
target T*, we then compare t̂(x�h) and s(x�h) from the geostatis-
tical model fitted using all indices with those obtained from J
models, each of which excludes a single index.

Let t̂�j(x�h) and s�j(x�h) denote the predictive mean and
standard deviation obtained from the excluding data for the
jth index; to summarize the discrepancy between this and
the full model, we average the squared differences across
all locations X*, i.e.:

SQM ¼ 1
H

XH
h¼1

(̂t�j(x�h)� t̂(x�h))
2

and

SQSD ¼ 1
H

XH
h¼1

(s�j(x�h)� s(x�h))
2:

3. Case study: Norway rats in Pau da Lima
community

3.1. Study site and data collection
Pau da Lima (13° 32’53.47” S; 38° 43’51.10” W) is a low-income
urban community with a high annual leptospiral infection rate
of 35.4 (95% CI, 30.7–40.6) infection events per 1000 annual
follow-up events in the period 2003 to 2007 [32,58]. It is located
on the periphery of the city of Salvador in northeast Brazil and
has been a focus for leptospirosis research for over 15 years
[30,32,41]. The study site at Pau da Lima is characterized by
three valleys (see figure 2) with large elevation gradients,
high population density, poverty, low levels of education and
poor provision of sanitation and refuse collection services.

To describe the spatial variation in rat abundance within
Pau da Lima, a cross-sectional study was conducted from
October to December 2014. Rat trapping was carried out at
159 locations across the study area with two traps deployed
for four consecutive 24 h trapping periods at each point
(see Panti-May et al. [41]). After each 24 h period, trapping
success and closure of the trap without a rat caught inside
were recorded. Track plates were used for two consecutive
24 h periods at 415 locations [59] following the standardized
protocol for placement and a survey developed and validated
previously [6]. Five plates placed at each location in the shape
of a ‘five’ on a die with 1 m spacing between each plate. After
each 24 h period, plates were repainted and lost plates were
recorded and replaced. A map of the study area and
sampling locations for rat trapping and track plates is
shown in figure 2. A survey for signs of rat infestation (pres-
ence of trails, faecal droppings and active burrows), adapted
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from the Centers for Disease Control and Prevention [60] and
validated in the study area [34], was also conducted at all
locations at which traps or track plates were deployed. In
our analysis, we consider the following environmental
variables: elevation, distance to public refuse dumps and
the proportion of land cover classified as vegetation within
a 30m radius. Land cover data were created by the classifi-
cation of Digital Globe’s WorldView-2 satellite imagery
(eight bands with resolution 0.5m by 0.5m taken on 17 Febru-
ary 2013) [61] using a maximum likelihood supervised
algorithm. This was validated with ground truthing data
collected from 20 randomly selected sites of size 5m by 5m.
3.2. Applying the model to Pau da Lima data
In this analysis, we shall also refer to R(x) as the rattiness pro-
cess. To make inference on R(x), we shall use data collected
on three indices: rat signs ( j = 1), live traps ( j = 2) and track
plates ( j = 3).

Owing to theft, violence and heavy rainfall, 993 of 4150
(23.9%) plates were lost, with all five plates lost at 126 out
of 830 (15.2%) track plate days. For the traps, 85 of 1272
(6.7%) trapping-days were lost, of which 458 (38.6%) were
found closed and empty after a 24 h period. This is a
common issue and is owing to traps malfunctioning or
being tampered with by animals or people. Of the remaining
track plate days, 263 (37.4%) had at least one plate with rat
markings. Similarly, 200 (34.8%) of surveys found at least
one sign of rat infestation. Of the trapping-days that were
not lost, the trapping success rate was low, with only 112
(9.4%) trapping-days found to have caught a rat.

Let the variable Yi,1 be a binary indicator taking value 1, if
at least one sign of rat infestation was found at location xi and
0 otherwise. We model the probability of finding a sign of rat
infestation, μ1(xi), using a logit-linear regression log{μ1(xi)/
(1− μ1(xi))} = α1 + σ1R(xi).

The variable Yi,2, conditionally on R(xi), is a binomial
variable representing the number of traps, out of ni,1, in
which rats were captured. We assume that the times of rat
captures from a trap follow a time-varying inhomogeneous
Poisson process with intensity tiμ2(xi), where ti is the time
(in days) for which a trap is operative and log{μ2(xi)} = α2 +
σ2 R(xi). It follows that the probability of capturing a rat is

1� exp {� tim2(xi)}:

If a trap is found closed without a rat, we assume that the
trap was disturbed and set t = 0.5. In all other cases, we set
t = 1.



Table 1. Regression coefficients of the environmental covariates used to
model rattiness.

term variable

β1 elevation (m)

β2 refuse distance (0–90 m)

β3 refuse distance (>90 m)

β4 proportion of land cover vegetation (%)

β5 valley 2 (relative to valley 1)

β6 valley 3 (relative to valley 1)
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Finally, Yi,3 is the number of trackplates, out of ni,3, that
show the presence of rats. We model this as a binomial vari-
able with ni,3 trials and probability μ3(xi) where log{μ3(xi)/
(1− μ3(xi)(xi)} = α3 + σ3R(xi).
 e

17:20200398
4. Results
4.1. Exploratory analysis
Following the steps outlined in §2.3, we first fit the simplified
non-spatial model (R(xi) =Ui) to explore the relationship
between rattiness and each of the environmental variables
considered. The results are reported in the scatter-plots of
figure 3. In figure 3a, we observe a negative linear relation-
ship between elevation and rattiness. In figure 3b, we notice
that, on average, higher values of rattiness are observed for
distances from dumps less than 90 m. Finally, figure 3c
shows that the mean proportion of land cover classified as
vegetation (within a 30 m radius of a given sampling point)
is approximately linearly and positively associated with
rattiness.

On the basis of results of this exploratory analysis, we
then extend the non-spatial model to include the covariate
effects on rattiness. Hence, our model for R(xi) becomes

R(xi) ¼
X6
l¼1

bldl(xi)þUi, (4:1)

where each of the terms βl corresponds to covariate effects as
defined in table 1, dl are the explanatory variables and Ui are
the unstructured random effects.

We then carry out the likelihood ratio tests for testing the
three hypothesis H0 : σj = 0 for j = 1, 2, 3. All three yield
p-values less than 0.0001, supporting the use of a joint
model for all three indices.

Figure 3d shows the variogram for the Ûi obtained from the
spatially uncorrelated model (equation (4.1)). Most of the
points of the empirical variogram lie inside the 95% tolerance
band, but the variogram point at around 10 m is a highly unli-
kely value under the assumption of spatial independence.
Because the variogram diagnostic does not provide an unequi-
vocal answer to the question of whether a spatially correlated
term is needed, we fit a geostatistical model to assess this.

4.2. Geostatistical model
The parameter estimates based on the Monte Carlo maximum
likelihood method are reported in table 2 under the ‘full
model’ column. The estimate for the scale of spatial
correlation, ϕ, of about 13m indicates that the data exhibit
spatial correlation after controlling for the explanatory vari-
ables. The estimate for ψ of about 0.9 implies a greater
contribution to rattiness from the Gaussian process, S(xi),
than from the unstructured random variation, Ui, suggesting
that most of the unexplained variation in rattiness is spatially
structured. All the point estimates of the regression coeffi-
cients βl are consistent with the scatter-plots of figure 3.
Both valleys 2 and 3 had lower mean levels of rattiness rela-
tive to valley 1, controlling for all other covariates. While
the association with valley was significant at p < 0.05,
elevation, distance to refuse dumps or land cover covariates
were not significant.

4.3. Spatial prediction
Our predictive target for rattiness is

T(x) ¼
X6
l¼1

bldl(x)þ
ffiffiffi
c

p
S(x),

for prediction locations x forming a 5m by 5m regular grid
covering the whole of the study area.

Maps for the mean and standard deviation of the predic-
tive distribution of T(x) are shown in figure 4. These show a
highly heterogeneous spatial pattern with localized hotspots
in valley 1 (figure 4a) and in the low elevation central regions
of the two other valleys. Areas with low values of predicted
rattiness in valleys 2 and 3 are characterized by a high pro-
portion of soil land cover and higher elevations. The
Gaussian process, S(x), contributed more than the covariates
to the prediction of the rattiness surface shown in figure 4b.
This is evidenced by the clear geographical overlap of
hotspots in both S(x) and mean predicted rattiness. As
expected, in areas with fewer or no observations, standard
errors are larger than elsewhere.

4.4. Relative contributions of indices
To assess the impact of each index on parameter estimation,
we fitted three models, each discarding one of the three indi-
ces; the parameter estimates are presented in table 2 and are
similar to those estimated for the full model. Across all four
models, the signs of covariate estimates were consistent
except for the valley indicator variables, which vary in both
sign and magnitude. The estimates for the scale of the spatial
correlation, ϕ, from the ‘traps and plates’ and ‘signs and
plates’ models are close to that of the full model, but the
‘signs and traps’ model had a substantially larger estimate
of about 46m with a much wider CI. The increased uncer-
tainty in the estimation of the spatial correlation after
excluding plates suggests that this index may be one of the
main factors driving our predictions for rattiness. Further-
more, when the plates are included in the model, the
spatial variation entirely dominates the rattiness process
with estimates for ψ very close to 1. We therefore fixed
ψ = 1 for the ‘traps and plates’ and ‘signs and plates’ models.

To visualize the differences in the spatial predictions for
rattiness and S(x), we compute the relative difference between
the predictions obtained from each of the models excluding
one of the three indices and the full model. Figure 5 shows
the maps of the relative differences for rattiness and figure 6
shows S(x). The spatial predictions from the ‘traps and
plates’ and ‘signs and plates’ models were more similar to



Table 2. Parameter estimates for the full model and the three two-indices models where α1, α2 and α3 (and σ1, σ2 and σ3) denote the coefficients for
signs, traps and plates, respectively.

estimate (95%CI)

parameter full model signs and traps traps and plates signs and plates

α1 −0.642 (−0.891,−0.425) −0.508 (−0.997,−0.115) — −0.630 (−0.853,−0.419)
α2 −2.684 (−3.078,−2.361) −2.607 (−3.021,−2.099) −2.456 (−2.849,−2.127) —

α3 −2.503 (−2.925,−2.144) — −2.567 (−3.066,−2.119) −2.672 (−3.090,−2.305)
σ1 0.747 (0.455, 1.045) 1.040 (0.615, 1.356) — 0.641 (0.372, 0.906)

σ2 0.920 (0.613, 1.183) 1.068 (0.546, 1.182) 0.863 (0.436, 1.133) —

σ3 1.896 (1.557, 2.179) — 1.795 (1.348, 2.174) 1.877 (1.542, 2.163)

ϕ 13.432 (6.833, 21.172) 46.413 (7.692, 162.455) 11.306 (4.978, 17.325) 12.270 (6.920, 16.099)

ψ 0.878 (0.529, 1.000) 0.492 (0.161, 0.878) — —

β1 −0.131 (−0.333, 0.058) −0.337 (−0.795,−0.050) −0.103 (−0.396, 0.158) −0.164 (−0.370, 0.024)
β2 −0.234 (−0.582, 0.101) −0.173 (−0.819, 0.407) −0.299 (−0.795, 0.175) −0.055 (−0.401, 0.295)
β3 −0.074 (−0.399, 0.260) 0.016 (−0.343, 0.354) −0.129 (−0.493, 0.077) −0.011 (−0.125, 0.248)
β4 0.114 (−0.075, 0.310) 0.158 (−0.170, 0.527) 0.086 (−0.194, 0.376) 0.115 (−0.070, 0.308)
β5 −0.229 (−0.358,−0.108) 0.116 (−0.170, 0.354) −0.269 (−0.485,−0.085) −0.361 (−0.503,−0.241)
β6 −0.159 (−0.289,−0.034) 0.195 (−0.064, 0.459) −0.220 (−0.401,−0.040) −0.182 (−0.307,−0.059)
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Figure 4. Rattiness model predictions (positive rattiness values indicate areas of high relative abundance). (a) Mean predicted values of rattiness, (b) mean predicted
values of S(x), and (c) standard deviation of predictions.
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those obtained from the full model as indicated by relative
differences close to zero throughout the study area in both
figures. By contrast, the predictions for the ‘signs and traps’
model were different to those made by the three other
models in most parts of the study area, with relative
differences ranging from about −2 to +1.
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Figure 5. Model predictions for rattiness for each two-indices model relative to the full model (a value of zero indicates that there is no difference in the models’
predicted values). (a) Signs and traps model, (b) traps and plates model, and (c) signs and plates model.

Table 3. The squared differences of the point predictions (SQM) and
standard deviations (SQSD) between the full model and each of the three
two-indices models, averaged over all the prediction locations. (For a formal
definition of SQM and SQSD, see §2.4.)

model SQM SQSD
traps and plates 0.018 0.007

signs and plates 0.032 0.003

signs and traps 0.249 0.096
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Table 3 presents the SQM and SQSD summaries used to
quantify the changes in point predictions and standard devi-
ations for rattiness; see §2.4 for a formal definition of these
two summaries. The results clearly highlight the model
excluding plates as yielding substantially different predic-
tions for rattiness, as well as larger standard errors. These
results are consistent with our findings from table 2, provid-
ing further evidence on the importance of plates to our
predictive inferences on rattiness.
5. Discussion
In this article, we have developed a flexible geostatistical fra-
mework that borrows information across multiple indices of
vector and reservoir host abundance to carry out spatial pre-
diction for a shared latent variable that acts as a proxy for
animal abundance. To our knowledge, this is the first study
that proposes a multivariate geostatistical framework to
jointly model multiple indices of abundance for a single
species using a statistically principled likelihood-based
approach.

We have applied the method to mapping rattiness, a proxy
for Norway rat abundance, in a low-income urban commu-
nity in Salvador, Brazil. We found that rattiness is lower at
higher elevations and longer distances from large refuse
piles, and higher in more densely vegetated areas. In our
study site, elevation was used as a proxy for socioeconomic
status within the community, with improved housing quality,
sanitary conditions and road surfacing found at higher
elevations. The point estimates for the regression coefficients
associated with each of these variables are consistent with the
previous studies [37,62] and can be explained by Norway
rats’ preference for habitats with greater access to food and
harbourage. However, the inherently high sampling variation
in the data recorded by each of the three indices results in
wide CIs for these estimates. A separate analysis that
included elevation as the only covariate for rattiness (elec-
tronic supplementary material, S1) supports the conclusion
that this was a key source of uncertainty; the effect of
elevation was statistically significant at the conventional 5%
level. Measurement error in covariates is also a likely contri-
butor to these wide CIs. This is a common issue when
prediction is the priority, as was the case in our application,
and covariates are constrained to those for which values are
available at all prediction locations.

A strength of our model is its ability to borrow infor-
mation across space without requiring data from multiple
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indices to be co-located. This is especially useful when com-
bining data for multiple indices from separate studies, or
when there is a non-negligible loss or malfunctioning of
measurement tools [63]. This arose in our analysis of the
Norway rat owing to track-plate loss and empty closing of
traps and is commonly encountered when measuring
rodent abundance [2]. The framework also provides flexi-
bility for modelling indices of abundance that are measured
on a wide range of different scales with different sampling
distributions. This was useful in our application as we were
able to use a non-standard approach to more accurately
model the trapping process and account for trap failure.

The estimate for the spatial correlation parameter,
f̂ � 13m, corresponds to a spatial correlation range (the
distance at which the correlation reduces to 0.05) of approxi-
mately 40 m. This is consistent with studies investigating the
size of the main activity area of Norway rats, which has been
estimated to have a radius of 25–150m in urban areas [64,65].
In environmentally heterogeneous and resource-rich areas,
such as Pau da Lima, the size of a rat’s activity space has
been found to be smaller, as shown by estimates of popu-
lation density varying significantly within a city block [66]
or along the length of an alley [67]. This is because of
strong spatial heterogeneity in the presence of food and
harbourage, availability of access routes and the presence of
barriers to movement. All of these can result in high site fide-
lity (a measure of how concentrated an animal’s movements
are around a specific site) [66] and significant variations in
the abundance and activity of rats over small distances. The
estimated value of ψ indicates that the spatially structured
random effects are more important than the non-structured
random effects in predicting rattiness. This follows from the
fact that they account for unmeasured variables of habitat
suitability, which can be expected to be spatially structured.

The finding that track plates were an important contribu-
tor for rattiness estimation indicates the greater information
content provided by this tool relative to traps and signs.
Nevertheless, the other two indices also contributed to
rattiness, enabling more precise predictive inferences to be
made than could be obtained using only the track-plates
data. Owing to the scarcity of resources available for monitor-
ing programmes of vector and animal reservoir populations,
efficient data collection is critical, making the choice of which
indices, or how many should be used, an important consider-
ation. A key strength of our methodology is that it provides
the user with the tools to explore the contributions of each
index to rattiness (or the spatial latent process for any other
application). The likelihood-ratio tests described in §2.3 can
be used to check which indices contribute to the model for
prediction of rattiness. Any two such indices must both be
associated with the latent rattiness variable, R(x), in figure 1,
and therefore necessarily with each other. However, if two
indices are near-collinear, the likelihood-ratio test will indi-
cate that one of the two is redundant. The SQM and SQSD

summaries then enable the user to evaluate the extent to
which each included index contributes to the predictions.

The interpretation of the rattiness process is an important,
context-dependent issue. For example, if all the indices used
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in the analysis are reliable indicators of abundance, then
rattiness has a clear interpretation as an overall measure of
abundance. However, tools used to estimate abundance
often provide measures that are a mixture of both animal
abundance and behaviour [3]. In our application, the rat
signs are an index of rat presence, while both track plates
and traps measure abundance and activity, with track
plates more strongly representative of activity. The resulting
measure of rattiness obtained by combining the three indices
therefore represents a data-determined synthesis of these
three processes. In our motivating example concerning the
role of rats in determining the risk of human leptospirosis,
the mechanism though which the vector confers disease
risk is driven by both the size of the rat population and its be-
haviour, of which activity is one aspect [68,69]. For this
reason, we argue that joint modelling of multiple indices
can be especially relevant to understanding geographical
variation in disease risk.

The proposed modelling framework can also be applied
to the problems of environmental management and conser-
vation, where indices of abundance are widely used to
monitor wild animal populations and their impact on biodi-
versity, agriculture or another species’ ability to survive and
to guide management decisions [3,63,70]. Examples of
recent studies that have used multiple indices of abundance
include invasive roof rat and deer mouse populations in orch-
ards [71]; the threatened survival of native species owing to
invasive small mammals on islands [72]; the impact of rats
and possums in New Zealand [73]; and the effect of elephants
on woody vegetation in sub-Saharan Africa [74].

One limitation of our approach is that it does not account
for detection bias. Methods that account for this bias require
absolute abundance data, which is difficult to collect, or data
collected using double-sampling techniques that require an
often unattainable trapping success rate, for rodents, of at
least 20% [2,75]. For this reason, index data are still widely
collected for monitoring purposes without the requirement
for these additional data sources.
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