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ABSTRACT
Introduction: Ticagrelor is an antiplatelet agent approved for the treatment of patients with an acute 
coronary syndrome or a history of myocardial infarction. Considering the evidence demonstrating that 
ticagrelor-mediated inhibition of platelet activation and aggregation have beneficial effects in the 
treatment of thrombotic conditions, clinical studies have been conducted to evaluate the use of this 
drug for the treatment of sickle cell disease (SCD), demonstrating satisfactory tolerability and safety.
Areas covered: Clinical investigation has characterized the pharmacokinetic and pharmacodynamical 
profile, as well as the efficacy and safety of ticagrelor to prevent painful vaso-occlusive crisis (painful 
episodes and acute chest syndrome) in SCD patients.
Expert opinion: While phase 1 and 2 clinical trials demonstrated satisfactory tolerability and safety, the 
conclusion of phase 3 clinical trials is crucial to prove the efficacy of ticagrelor as a therapeutic option 
for the treatment of SCD. Thus, it is expected that ticagrelor, especially in combination with other drugs, 
will improve the clinical profile and quality of life of patients with SCD.

ARTICLE HISTORY
Received 8 June 2020  
Accepted 28 August 2020  

KEYWORDS
Sickle cell anemia; ticagrelor; 
pharmacotherapy; 
antiplatelet agents; clinical 
trials

1. Introduction

Sickle cell anemia (SCA) is the most common form of a group of 
inherited diseases, collectively known as sickle cell disease (SCD), 
characterized by the presence of hemoglobin S (Hb S) that is due 
to a mutation in the gene encoding the β globin subunit of 
hemoglobin (HBB), where valine replaces glutamic acid in the 
sixth position of the β-globin chain [1]. SCA is an autosomal 
recessive disorder, resulting in erythrocyte sickling [2], as the Hb 
S polymerizes, especially under hypoxic conditions. Hb 
S polymerization causes changes in these corpuscles, which play 
an essential role in tissue oxygenation, as they contain hemoglo-
bin, the protein responsible for gas exchange. The presence of Hb 
S inside erythrocytes directly contributes to hemolysis and the 
release of intracellular products, which act as damage-associated 
molecular patterns (DAMPs). In addition, sickled erythrocytes 
express surface molecules that activate signaling pathways asso-
ciated with the pathophysiology of SCA [1,3].

SCA represents a public health concern in terms of its inci-
dence, prevalence, morbidity and mortality. While the life expec-
tancy of SCA patients has increased considerably in developed 
countries, cohort studies in countries such as the United States 
and the United Kingdom [4,5] have suggested that it still remains 
significantly lower than that of comparatively healthy 

populations [1]. However, in low-income countries, such as 
those on the African continent, it is estimated that infant mor-
tality due to SCA ranges between 50% and 90% [6]. The most 
recent epidemiological data suggest that approximately 176,000 
people die annually worldwide from disease-related complica-
tions [3,7]. In Brazil, it is estimated that around 30,000 individuals 
live with SCA, many of whom reside in the state of Bahia [8].

The pathophysiology of SCA is characterized by a sterile 
inflammatory response [9] triggered by both the release of 
intracellular products during hemolysis and the binding of 
sickled red blood cells to the endothelium [10]. These stimuli 
can activate signaling pathways in a wide variety of leukocytes 
and endothelial cells [11], leading to a chronic inflammatory 
state associated with increased inflammatory mediator pro-
duction, the expression of adhesion molecules, platelet activa-
tion, and the formation of extracellular neutrophil networks 
(NETs). Moreover, accumulating evidence has demonstrated 
that hypoxia-reperfusion episodes and oxidative stress lead 
to reduced nitric oxide concentrations, which contributes to 
endothelial cell activation and adhesion with leukocytes, ery-
throcytes, reticulocytes, and platelets, exacerbating the vaso- 
occlusion events. Under precipitating factors, these events 
lead to vaso-occlusion resulting in intense painful episodes 
[12], which are considered to be a major complication and 
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primary cause of hospitalization in SCA patients [13–15]. 
Clinical manifestations of SCD can be divided into acute and 
chronic. The former is represented by hiperhemolytic crises, 
splenic sequestration, infections, painful episodes, acute chest 
syndrome, aplastic crisis, and stroke that are responsible for 
hospital admissions of the patients. Chronic complications 
include retinopathy, pulmonary hypertension, skin ulceration, 
chronic hemolytic anemia, kidney failure, osteonecrosis, and 
cardiac disease [16,17].

Studies have demonstrated that SCA patients present 
a hypercoagulative state mediated by the activation of coagula-
tion pathways, which contributes to thrombotic complications, 
as well as systemic and vascular inflammation [18,19]. Although 
the mechanisms underlying the activation of excessive coagula-
tion in SCA have yet to be fully characterized, increasing evi-
dence points to some potential causes: high levels of constitutive 
and inducible tissue factor (TF) expression [16]; exposure of 
anionic phospholipids, such as phosphatidylserine, on the sur-
face of sickled red blood cells, possibly leading to the activation 
of clotting cascade components; the release of microparticles by 
different cell sources, which contributes to coagulation, possibly 
due to a phosphatidylserine-dependent mechanism linked to 
the activation of the coagulation pathway [16,20]. Also, there 
are continuous activation and aggregation of platelets, due to 
some or potentially each of the following phenomena: 1) pre-
sence of metabolically active platelets, 2) increased plasma levels 
of platelet agonists in the blood of sickle cell patients, 3) 
increased receptor expression and activation on the surface of 
platelets in SCA patients [21–24].

Hydroxyurea (HU) is a disease-modifying therapy indicated for 
patients with SCA in the context of a severe clinical profile. Major 
beneficial effects obtained with HU treatment include reduced 
hospitalization rates and improved quality of life [25]. 
Nonetheless, its use has also been associated with several side 
effects, including erythema, alopecia, leukocytoclastic vasculitis, 
leg ulcers, male infertility, and teratogenesis [26,27], and some 
evidence has suggested that it could be potentially carcinogenic 
[28,29], although its long-term effects remain to be better under-
stood [30]. Moreover, the lack of adherence by some patients 
constitutes a limiting factor in HU therapy [31–33]. Despite all 
these effects, HU is a well-tolerated and safe drug, although 
periodically laboratory control of patients is required. The con-
tinuous search for drugs that could help to improve the treat-
ment of SCA patients providing more therapeutic options is 
particularly important to all clinicians. Accordingly, consistent 
evidence suggests that drugs capable of modulating the exces-
sive activation of coagulation process can contribute significantly 
to the treatment of SCA [34]. The present review analyzes the use 
of ticagrelor, an antiplatelet agent for the prevention of throm-
botic events [24], in the context of SCA.

2. Overview of the market

Despite the fact that SCD was first described over a century ago, its 
treatment remains challenging [25]. HU, the only treatment option 
available during the last 20 years, remains the current mainstay of 
therapy, despite its limitations and significant side effects. Recently, 
L-glutamine (Endari) was approved in the USA by the Food and 
Drug Alimentation (FDA) for the treatment of acute SCD complica-
tions in patients aged 5 years and older [35]. Nevertheless, like HU, 
this drug is not free from side effects, which include constipation, 
nausea, headache, cough, and abdominal pain. In 2019, the FDA 
approved two other drugs as therapeutic options for SCD 
(Crizanlizumab-tmca and Voxelotor). Crizanlizumab-tmca 
(Adakveo), indicated for patients aged 16 years and older, was 
found to reduce the number of vaso-occlusive crises (VOC), the 
main complication of SCD [36]. However, its intravenous adminis-
tration has been associated with side effects, such as nausea, 
arthralgia, pain, and pyrexia. Voxelotor (Oxbryta), the most recently 
approved drug for SCD [37], is available as an oral formulation and, 
like L-glutamine and crizanlizumab-tmca, can be administered as 
monotherapy or in association with HU. Unfortunately, none of 
these drugs alone enable the sufficient control of all the manifesta-
tions of SCD [38,39].

As the pathophysiology of SCD results from the activation 
of complex networks of interdependent pathophysiological 
processes, increasing evidence has suggested that a multi- 
agent approach could significantly affect SCD therapy. In this 
context, drug development research has identified key path-
ways for targeted SCD drug development. Accordingly, novel 
therapies for SCD should include pharmacological reactivators 
of fetal hemoglobin (HbF), anti-adhesion and anti-sickling 
agents, heme clearance and detoxification agents and anti- 
inflammatory and anti-thrombotic drugs. In addition, modula-
tors of ischemia–reperfusion injury and oxidative stress, as well 
as gene therapies and stem cell transplantation may represent 
promising alternatives [39].

Article highlights 

● Ticagrelor, a reversible P2Y12 receptor antagonist, is an oral antipla-
telet drug indicated for the treatment of patients with ACS or 
a history of MI. Despite the inconclusive results exhibited by other 
antiplatelet agents in pre-clinical tests, evidence has identified tica-
grelor as a drug with unique properties in SCD treatment.

● The pharmacokinetic parameters of ticagrelor (and its major active 
metabolite AR-C124910XX), including gastrointestinal absorption, 
bioavailability, distribution, metabolism meet expected drug devel-
opment requirements, although some of them can be significantly 
influenced by the clinical condition of the patient.

● Phase I, II, and III clinical trials conducted in SCD patients and healthy 
volunteers from different countries to investigate the efficacy and 
safety of ticagrelor as part of the ‘the sickle cell program with 
ticagrelor (HESTIA)’. The first phase (HESTIA 4) of the program eval-
uated the pharmacokinetics of ticagrelor formulations in SCA pedia-
tric patients and demonstrated that ticagrelor was rapidly absorbed 
and well tolerable.

● Phase II studies of ticagrelor were conducted in SCD patients 
included in the HESTIA 1 and HESTIA 2 programs, both confirming 
the safety and tolerability and assessing the efficacy of the drug. 
While HESTIA 1 demonstrated the existence of a relationship 
between the dose and exposure to ticagrelor and the inhibition of 
platelet aggregation in children with SCD, HESTIA 2 concluded that 
no significant effect on self-reported SCD-related pain could be 
attributed to ticagrelor treatment.

● Phase III studies are currently in progress as part of the HESTIA3 
program, an international, multicenter, double-blind, randomized, 
parallel group, placebo-control study designed to evaluate the effi-
cacy and safety of ticagrelor to prevent VOC. Thus, the conclusion of 
these trials is crucial to prove the efficacy of ticagrelor as 
a therapeutic option for the treatment of SCD alone, or as part of 
a protocol using combined therapy.
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Considering the relevance of thrombin generation in SCD 
pathophysiology, antithrombotic agents have attracted consid-
erable interest as potential therapeutic agents in SCD. Since the 
long-term use of anticoagulants has shown clinical benefits in 
attenuating chronic organ injury in mice, oral thrombin (such as 
dabigatran), and factor Xa inhibitors (such as apixaban and 
rivaroxaban) are currently undergoing clinical trials [40]. 
Despite the fact that preclinical studies involving antiplatelet 
agents, such as clopidogrel (a P2Y12 antagonist), suggested 
that the inhibition of platelet activation and aggregation 
should be useful in SCD management, clinical trials investigat-
ing another P2Y12 antagonist, prasugrel, did not yield promis-
ing results [39]. However, ticagrelor, a reversible P2Y12 receptor 
antagonist that, unlike prasugrel, does not require metabolic 
activation, has demonstrated efficacy as an antiplatelet agent 
with unique properties in SCD treatment [41].

2.1. Drug background

2.1.1. Chemical Properties 
An understanding of ticagrelor’s chemical properties is crucial 
for the comprehension of its molecular mechanism of action 
and active metabolites that function as antiplatelet agents. 
Ticagrelor, [(1S,2S,3 R,5S)-3-[7-{[(1 R,2S)-2-(3,4-difluorophenyl) 
cyclopropyl] amino}-5-(propylthio)-3 H- [1–3] triazolo [4,5-d] 
pyrimidin-3-yl]-5-(2-hydroxyethoxy) cyclopentane-1,2-diol], is 
an antiplatelet agent belonging to the class of cyclopentyl- 
triazolo-pyrimidines [42–44].

As shown in Figure 1, ticagrelor is a polycyclic aromatic 
compound containing a triazole ring fused to a pyrimidine 
ring and is therefore an adenosine triphosphate (ATP) analog. 

Like ATP, ticagrelor has a ribose-like cyclopentane ring pre-
senting its [1–3] triazole [4,5-d] pyrimidine portion, similar to 
the structure of adenine [45].

2.1.2. Pharmacodynamics 
Ticagrelor is the first of a new class of antiplatelet agents (cyclo-
pentyltriazolopyrimidines) approved by the FDA in 2010 to be 
used in the treatment of patients with acute coronary syndrome 
(ACS) or a history of myocardial infarction [46,47]. As platelet 
activation significantly contributes to thrombosis and inflamma-
tion, favoring the progression of atherosclerotic plaque, the use 
of antiplatelet agents has become a cornerstone therapeutic 
strategy in these patients [48]. Due to similarity with its naturally 
occurring agonist, ticagrelor acts as direct P2Y12 receptor 
antagonist, which reversibly binds to the platelet P2Y12 receptor 
[45]. Of note, this drug is the first reversible ADP receptor antago-
nist available for oral use [49].

The P2Y12 receptor is present on the surface of a variety of 
cell types. Due to elevated expression by platelets, it is con-
sidered one of the most important receptors in the orchestra-
tion of thrombotic events [45]. Ticagrelor binds reversibly and 
noncompetitively to the P2Y12 receptor [50], recruiting the αi 
subunit of the Gi protein that results in the inhibition of 
adenylyl cyclase, an enzyme that catalyzes the synthesis of 
cAMP from ATP, leading to the activation of cAMP-dependent 
kinase (PKA). Since PKA signaling is crucial for ADP-mediated 
platelet activation, inhibition of the P2Y12 receptor by tica-
grelor also results in the inhibition of platelet activation and 
aggregation [51]. In fact, studies have demonstrated that the 
significantly higher activation of platelets in SCA patients 
compared to healthy individuals [17] could justify the hyper-
coagulation state seen in these patients. Importantly, hyper-
coagulation has been described to contribute significantly to 
the development of painful vaso-occlusive events [16]. 
Together, these findings support the hypothesis that ticagrelor 
could have beneficial effects in the treatment of thrombotic 
conditions, such as SCD [51].

In addition to acting as a P2Y12 receptor antagonist, tica-
grelor inhibits adenosine uptake by inhibiting equilibrative 
nucleoside transporter 1 (ENT1) [46,52,53]. Additionally, stu-
dies have shown that this drug contributes to vasodilation by 
increasing the plasma half-life of adenosine [54], which leads 
to a reduced risk of thrombus formation in SCA patients [55].

2.2. Pharmacokinetics and metabolism

Ticagrelor is rapidly absorbed by the gastrointestinal tract via 
oral administration [56]. Studies have demonstrated that tica-
grelor is a direct-acting drug, i.e. metabolic activation is not 
required for its action as a P2Y12 receptor antagonist. The 
metabolism of ticagrelor, which occurs in the liver, is mainly 
mediated by isoenzymes of the cytochrome P450 3A family 
(CYP3A) such as CY3A4 and CYP3A5. Among the 10 different 
ticagrelor’s metabolites characterized in plasma, urine, and 
fecal samples, only the major metabolite AR-C124910XX, 
detectable at a rate of approximately 30–40% of the adminis-
tered dose of ticagrelor, exhibits a potent antiplatelet activity 
[57–60]. Ticagrelor is predominantly eliminated via hepatic Figure 1. Molecular structure of ticagrelor.
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metabolism, while its major metabolite AR-C124910XX is elimi-
nated mainly via biliary excretion [61,62].

Zhu and colleagues observed, in healthy volunteers, peak con-
centrations (Cmax) of ticagrelor ranging from 494.3 to 1,929 ng/mL, 
which was reached between 30 min and 4 h. Contrarily, they 
observed the slow absorption of AR-C124910XX, with Cmax ran-
ging from 75.3 to 427 ng/mL, reached between 1 and 6 h [56]. 
Moreover, they estimated that the mean half-life time (t1/2) of 
ticagrelor and AR-C124910XX were 8.5 and 21.9, respectively, 
varying significantly among the subjects. However, a recent 
study estimated that the t1/2 of AR-C124910XX was 8.5 h [63].

Evidence has demonstrated that the pharmacokinetic of 
ticagrelor, including absorption, distribution, metabolism, 
and excretion, could be significantly influenced by the 
patient's condition, which may impact not only therapeutic 
response but also toxicity and drug interactions [57,64]. It has 
been reported that patients with acute myocardial infarction 
may present a significant reduction in AR-C124910XX bioavail-
ability, compared to healthy volunteers [57,65]. A study per-
formed by Adamski and colleagues demonstrated that 
patients with ACS who had ST-elevation myocardial infarction 
or diabetes mellitus had reduced ticagrelor biotransformation 
[57]. They also observed that the concomitant administration 
of morphine during ACS was associated with a reduction in 
ticagrelor metabolism, while smoking was associated with 
increased ticagrelor metabolism in patients with ACS. 
A recent study found that hemodialysis has a minor impact 
on ticagrelor pharmacokinetic and no influence on its effect, 
which is consistent with its elimination pathway reported 
above [62].

2.3. Clinical efficacy

Phase 1, 2, and 3 clinical trials were conducted in SCD patients 
and healthy volunteers from different countries to investigate 
the efficacy and safety of ticagrelor (Table 1).

2.4. Phase I studies

2.4.1. The Sickle cell program with ticagrelor (HESTIA) 4 
The HESTIA 4 program consisted of an interventional, multi- 
center, phase I, open-label clinical study that started in 
March 2018 and finished in May 2019. This study evaluated 
the pharmacokinetics (PK) of ticagrelor in SCD pediatric 
patients aged from birth to 2 years old. The study was carried 
out in six different countries (Belgium, Italy, Kenya, Lebanon, 
Spain, and UK) and involved eight different research centers.

The following inclusion criteria were used in the study: 
patients diagnosed with SCA (HbSS) or sickle beta-zero- 
thalassemia (HbS/β0) with body weight above 5 Kg and 
weight-adjusted dose of the anti-sickling agent must be for 
3 months. Patients with a history of transient ischemic stroke 
or cerebrovascular (ischemic or hemorrhagic) accident, severe 
head trauma, intracranial hemorrhage, intracranial neoplasm, 
arteriovenous malformation, aneurysm, proliferative retinopa-
thy, hepatic impairment, renal failure, increased risk of bleed-
ing complications, active untreated malaria or at risk of 
bradycardic events were excluded. The study also excluded 
patients with hemoglobin concentration below 6 g/dL and Ta

bl
e 

1.
 C

lin
ic

al
 s

tu
di

es
 in

ve
st

ig
at

in
g 

th
e 

ef
fic

ac
y 

sa
fe

ty
 o

f 
tic

ag
re

lo
r 

in
 t

he
 t

re
at

m
en

t 
of

 p
at

ie
nt

s 
w

ith
 S

CD
, l

is
te

d 
by

 C
lin

ic
al

Tr
ia

ls
.g

ov
 r

ef
er

en
ce

 n
um

be
r.

Re
fe

re
nc

e 
nu

m
be

r
St

ud
y 

lo
ca

tio
ns

Co
nd

iti
on

Pa
rt

ic
ip

an
ts

Ag
e

Ph
as

e
In

te
rv

en
tio

ns
St

at
us

N
CT

02
48

22
98

 
(H

ES
TI

A2
)

U
SA

, E
gy

pt
, F

ra
nc

e,
 It

al
y,

 K
en

ya
, L

eb
an

on
, T

ur
ke

y,
 U

K
SC

D
87

18
–3

0y
2¥

D
ru

g:
 T

ic
ag

re
lo

r 
D

ru
g:

 P
la

ce
bo

Co
m

pl
et

ed

N
CT

03
61

59
24

 
(H

ES
TI

A3
)

U
SA

, B
el

gi
um

, B
ra

zi
l, 

Eg
yp

t, 
G

ha
na

, G
re

ec
e,

 In
di

a,
 It

al
y,

 K
en

ya
, L

eb
an

on
, S

ou
th

 A
fr

ic
a,

 
Sp

ai
n,

 T
an

za
ni

a,
 T

ur
ke

y,
 U

ga
nd

a,
 U

K
SC

D
19

3
2–

17
y

3
D

ru
g:

 T
ic

ag
re

lo
r 

D
ru

g:
 P

la
ce

bo
Ac

tiv
e,

 n
ot

 
re

cr
ui

tin
g

N
CT

03
49

29
31

 
(H

ES
TI

A4
)

Be
lg

iu
m

, I
ta

ly
, K

en
ya

, L
eb

an
on

, S
pa

in
, U

K
SC

D
21

<
24

 m
1

D
ru

g:
 T

ic
ag

re
lo

r
Co

m
pl

et
ed

N
CT

04
29

31
72

 
(H

ES
TI

A5
)

N
/A

SC
D

18
2*

6 
m

-1
7y

3
D

ru
g:

 B
ril

in
ta

 
D

ru
g:

 P
la

ce
bo

N
ot

 y
et

 
re

cr
ui

tin
g

N
CT

02
21

41
21

 
(H

ES
TI

A1
)

U
SA

, C
an

ad
a,

 K
en

ya
, L

eb
an

on
, S

ou
th

 A
fr

ic
a,

 U
K

SC
D

46
2–

17
y

2¥
D

ru
g:

 T
ic

ag
re

lo
r 

D
os

e 
1a

 +
 D

os
e 

2a
 

D
ru

g:
 T

ic
ag

re
lo

r 
D

os
e 

1b
 +

 D
os

e 
2b

Co
m

pl
et

ed

N
CT

03
12

66
95

G
er

m
an

y
SC

D
 a

nd
 h

ea
lth

y 
vo

lu
nt

ee
rs

44
18

y-
55

y
1

D
ru

g:
 T

ic
ag

re
lo

r 
gr

an
ul

e 
D

ru
g:

 T
ic

ag
re

lo
r 

pe
di

at
ric

 t
ab

le
ts

 
D

ru
g:

 T
ic

ag
re

lo
r 

pe
di

at
ric

 t
ab

le
ts

 s
us

pe
nd

ed
 

in
 w

at
er

 
D

ru
g:

 T
ic

ag
re

lo
r 

im
m

ed
ia

te
 r

el
ea

se
 (

IR
) 

ta
bl

et
s 

(C
om

m
er

ci
al

 t
ab

le
t)

Co
m

pl
et

ed

SC
D

: s
ic

kl
e 

ce
ll 

di
se

as
e,

 U
SA

: U
ni

te
d 

St
at

e 
of

 A
m

er
ic

a,
 U

K:
 U

ni
te

d 
Ki

ng
do

m
, N

/A
: n

ot
 a

va
ila

bl
e,

 *
es

tim
at

ed
, m

: m
on

th
, y

: y
ea

r, 
¥ 

re
su

lts
 o

bt
ai

ne
d.

 

4 J. RIBEIRO-FILHO ET AL.



platelets counts under 100 × 109/L, in addition to those under 
continuous treatment with non-steroidal anti-inflammatory 
drugs (NSAIDs), anticoagulants, antiplatelet and drugs that 
interfere with CYP3A4, as well as those patients breastfed by 
mother under treatment with CYP3A4 inhibitors.

In addition to evaluating the properties of ticagrelor and its 
active metabolite (AR-C124910XX) after a single oral dose, the 
HESTIA 4 study aimed to evaluate the acceptability and the 
palatability of the drug. The peak concentration (Cmax) and 
systemic exposure were measured at 1, 2, 4, and 6 h after the 
administration of ticagrelor. The study was concluded with 21 
participants. However, no data has been published to the 
date.

2.4.2. Evaluation of the relative bioavailability of different 
ticagrelor formulations 
A randomized crossover study evaluating the relative bioavail-
ability of different ticagrelor formulations in adult patients was 
carried out in 2017, using the following inclusion criteria: patients 
aged between 18 and 55 years old, body weight range: 50 to 
100 Kg and a body mass index (BMI) between 18 and 30 Kg/m2. 
The following exclusion criteria were used: history or presence of 
gastrointestinal, hepatic, or renal disease or any clinically relevant 
illness, surgical procedure, or trauma in the last 4 weeks preced-
ing the study; any clinically significant abnormality on a 12-lead 
electrocardiogram; significantly altered hematological, biochem-
ical, coagulation, and renal function parameters, as well as 
patients under the use of drugs such as antacids, analgesics, 
herbs, high-dose vitamins/minerals, alcohol (excessive consump-
tion), and other toxic substances. The participants were also 
investigated for pregnancy and the use of concomitant medica-
tion to minimize inter-subject variability.

The study was designed as follows: the eligible subjects 
were admitted to a clinical unit 24 h before the administration 
of ticagrelor (day 1), where they remained for a minimum 
period of 3 days. These patients were followed-up daily from 
days 5 to 10 and the plasma concentrations of both ticagrelor 
and its major metabolite AR-C124910XX were determined 
before and after 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10, 12, 16, 24, 36, 
and 48 h after the administration of ticagrelor in the following 
formulations: granules, pediatric tablets, water-suspended 
tablets, and immediate-release (IR) tablets.

The study was conducted at a research center in Germany 
with 44 healthy volunteers randomly assigned for one of the 
four treatment formulation (n = 11 subjects per group). The 
authors concluded that the administration of each of the four 
formulations resulted in rapid absorption, as well as in com-
parable bioavailability and plasma concentration profiles of 
both ticagrelor and AR-C124910XX. In addition, all formula-
tions were well tolerated. Importantly, pediatric tablets and 
water-suspended tablets were shown to be bioequivalent [66].

2.4.3. Phase II studies 
The phase II study of ticagrelor was conducted in SCD patients 
included in the HESTIA 1 and HESTIA 2 programs. The HESTIA 
1 program consisted of a multicenter, randomized, open-label, 
double-blind, and placebo-controlled study carried out in 18 
centers located in countries such as the United States, Canada, 
Kenya, Lebanon, South Africa, and United Kingdom, from 

February 2014 to December 2017. The inclusion criteria 
included HbSS or HbS/β0 patients aged between 2 and 
18 years. The study excluded patients at risk of hemorrhagic 
or bradycardic events, significant hepatic or renal alterations, 
as well as patients under intravenous therapy with potent 
CYP3A4 (cytochrome) inhibitors, CYP3A4 substrates with nar-
row therapeutic indices, potent CYP3A4 inducers, as well as 
other drugs with similar adverse reactions.

The study was divided into two parts: A and B. The part A of 
this clinical trial consisted of a randomized study conducted with 
46 patients who received at least one of the following treatment 
regimens: 1) patients received a single oral administration of 
ticagrelor (0.125 mg/Kg) followed by administration of 
a second single dose (0.375 or 0.563 mg/Kg) 7 days later. After 
receiving the second dose treatment, patients were treated daily 
with a dose of 0.125 mg/Kg for 7 days; 2) patients were treated 
with a single dose of 0.75 mg/Kg followed by administration of 
a second single dose (1.125 or 2.25 mg/Kg) 7 days later. After 
receiving the second dose treatment, patients were treated daily 
with a dose of open-label ticagrelor (0.563 or 0.75 mg/Kg) for 
1 week. In this phase, pharmacokinetic and pharmacodynamics 
parameters (such as platelet activation) were monitored daily, for 
assessment of drug tolerability.

The part B consisted of a double-blind, placebo-controlled 
randomized study, conducted with 23 patients who com-
pleted the treatment in the part A. These patients were trea-
ted with ticagrelor (0.125, 0.563, or 0.75 mg/Kg or placebo for 
4 weeks). Throughout the study, the children were monitored 
daily for the occurrence of bleeding events, VOC or pain, and 
followed for 35 days after the last administration of ticagrelor. 
Twenty-one (21) patients concluded this phase. None of them 
showed significant bleeding and only one subject reported an 
isolated episode of spontaneous epistaxis, 29 days after the 
end of treatment.

The authors concluded the existence of a relationship 
between the dose and exposure to ticagrelor and the inhibi-
tion of platelet aggregation in children with SCD, which were 
comparable to those observed in clinical trials performed with 
adult subjects with ACS/coronary artery disease. However, 
limitations such as the reduced number of patients and the 
short period of treatment should be considered [22].

On the other hand, the HESTIA 2 program consisted of rando-
mized and placebo-controlled study was carried out in 26 centers 
of 08 different countries from 2015 to 2016. This double-blind, 
double-dummy, and parallel-group study, designed to evaluate 
the efficacy of ticagrelor in reducing self-reported pain in SCD 
patients, was conducted with young male and non-pregnant 
female adults aged 18–30 years with confirmed diagnosis of 
HbSS or HbS/β0. The exclusion criteria included patients with 
stroke, head trauma, intracranial hemorrhage, intracranial neo-
plasm, arteriovenous malformation, or aneurysm. Patients receiv-
ing blood transfusion or under treatment with anticoagulants or 
antiplatelet drugs, as well as with increased bleeding risk, hepatic 
impairment, and hemoglobin concentration lower than 40 g/L or 
platelet counts below 100 x 109/L, were also excluded from the 
study.

Eighty seven patients were randomly assigned into the follow-
ing therapeutic protocols over a period of 18 weeks: 1) a 4-week 
duration single-blind placebo run was conducted for 
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determination of the baseline pain-associated variables; 2) 
the second phase consisted of double-blind treatment trial with 
duration of 12 weeks in which the patients were treated with 
ticagrelor (10 mg or 45 mg) or placebo; 3) in this last phase, 
patients were followed up by a period of after treatment by 
phone call. To evaluate the treatment efficacy, patients were 
questioned about the pain intensity, as well as analgesic effects. 
The safety of the treatment was assessed by monitoring the 
occurrence of bleeding events. Pharmacokinetic analyses of tica-
grelor and its active metabolite in the plasma were performed at 
randomization and during the follow-up period.

The study concluded that no significant effect on self- 
reported SCD-related pain could be attributed to ticagrelor 
treatment. However, the drug was well tolerated and no 
bleeding event was observed [67].

2.4.4. Phase III studies 
As phase I and II clinical trials demonstrated that ticagrelor 
was well tolerated and associated with low bleeding risk, 
phase III studies are currently in progress as part of the 
HESTIA3 program, an international, multicenter, double-blind, 
randomized, parallel group, placebo-control study designed to 
evaluate the efficacy and safety of ticagrelor to prevent VOC 
(painful and acute chest syndrome) in pediatric patients (age 
range: 2–18) with SCD (HbSS and HbS/β0).

The study will be carried out in 85 centers of 18 different 
countries, including Brazil. For inclusion in the study, patients 
should weigh at least 12 Kg and have experienced more than 
two VOC in the previous year in addition to other criteria. Patients 
with a history of stroke, proliferative retinopathy, risk or history of 
hemorrhagic complications, liver and kidney failure, hemoglobin 
levels below 6 g/dL, platelet counts under 100 × 109/L and tran-
scranial Doppler speed higher than 170 cm/s will also be excluded, 
as well as those under continuous treatment with non-steroidal 
anti-inflammatory drugs (NSAIDs), anticoagulants, antiplatelet, 
and drugs that interfere with CYP3A4.

A screening period ranging from seven (07) to 28 days will 
precede the randomization of patients into placebo or tica-
grelor treatments for a period of 12–24 months. Ticagrelor will 
be administered twice a day at doses adjusted according to 
body weight ranges as follows: 15 mg (12 kg to 24 Kg), 30 mg 
(25 to 48 kg), and 45 mg (above 48 kg).

Considering the urgent need for effective and well- 
tolerated therapies to prevent complications of SCD, it is 
expected that the HESTIA3 program will characterize the clin-
ical profile of ticagrelor administration among these patients. 
This study, which is in progress with a total number of 193 
participants, was initiated in September 2018 and is expected 
to be concluded by December 2020 [68].

3. Regulatory affairs

Ticagrelor has been approved in over 100 countries [69], such as 
the United States [70], Canada [71], European Union [72], 
Australia [73], and Brazil [74]. It is indicated to reduce the rates 
of cardiovascular diseases, myocardial infarction (MI), and stroke 
in patients with ACS or a history of MI. The drug was also found to 

inhibit stent-associated thrombosis in patients who underwent 
stent implantation for the treatment of ACS [75].

4. Conclusion

Ticagrelor, an antiplatelet agent, is in the latest phase of drug 
development for SCD. Given the importance of platelet activa-
tion and aggregation in the complex and multifactorial patho-
physiology of SCD, as well as the evidences raised from phase 
I and II clinical trials, ticagrelor treatment is expected to be useful 
in the control of the clinical manifestations of SCD, especially if 
used as part of a combined therapy protocol. Nevertheless, the 
conclusion of phase III clinical trials is crucial to prove its efficacy 
as a therapeutic option for the treatment of SCD.

5. Expert opinion

The treatment of SCD is quite challenging, since it deals with 
a systemic disease with varied clinical manifestations, distributed 
heterogeneously among the different age groups. Furthermore, 
despite the prevalence and high incidence of SCD, there is 
a deficiency in the options of medication for patients since the 
biological mechanisms involved are extremely complex. The 
results of the phase 3 studies including the ticagrelor, as well as 
many other clinical trials on new drugs that are in progress, may 
increase the therapeutic options to control SCD’s clinical manifes-
tations (e.g. VOC) and further, provide therapeutic alternatives for 
patients that do not respond to strategies so scarce and available 
currently.

Associated with these premises of having new therapeutic 
modalities available, it will also be of equal importance that par-
allels to studies of new drugs, some studies identify new biomar-
kers related to the therapeutic response of patients with SCD, as 
well as to the genetic profile and aspects associated with epige-
netics, so that we can establish clearer and more controlled criteria 
in the follow-up of these patients’ group, providing a survival with 
the minimum possible of serious clinical occurrences. Another 
aspect that we consider of vital importance is the fact that treat-
ments can be made available to populations with a high number 
of patients, allowing them to have a dignified and productive life.

Under a pharmacological and therapeutic point of view, the 
potential use of antiplatelet agents in the treatment of SCD has 
been supported by evidence, which demonstrates the role of 
platelet activation and aggregation in the pathophysiology of 
this condition. However, the characterization of the biochemical, 
cellular, and molecular mechanisms underlying the clinical mani-
festations of SCD has revealed that this disease results from 
a complex inflammatory response triggered both by the release 
of intracellular products (DAMPs) and by the signaling of altered 
red cell surface molecules (PAMPs), indicating that platelet activa-
tion is part of a complex network of interdependent pathophysio-
logical processes leading clinical manifestations of variable severity 
and, as such, results in different clinical profiles. Therefore, in our 
opinion, ticagrelor should be used in combination with other 
approved drugs, such as HU, as well as with drugs interfering 
with key inflammatory pathways with a significant impact on the 
pathophysiology of SCD, which are now under development. 
Consistent evidence suggests that a combination of therapy asso-
ciating drugs that have the potential to inhibit the chronic 
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inflammatory and hypercoagulability state observed in SCD 
patients could reduce critical clinical events, including VOC and 
ACS, improving the clinical profile and reducing hospitalization 
rates of the patients. On the other hand, considering that the 
metabolism of ticagrelor is performed mainly by enzymes of the 
CYP 450 system, the use of the drug in combined therapies should 
be carefully evaluated to avoid drug interactions. Additionally, 
since the metabolism of this drug can vary significantly according 
to the patient’s condition, the clinical profile of each patient must 
be considered, and occurrence of toxicity monitored, especially in 
patients with hepatic and renal impairment, to ensure that the 
administration of this drug will achieve both effectiveness and 
safety.

An overall analysis of clinical trials evaluating the use of tica-
grelor in patients with SCD reveals promising but inconclusive 
results concerning its safety and efficacy, respectively. In this con-
text, the phase I studies indicate that the drug can be orally 
administered in different formulations with no loss for absorption, 
metabolism, and bioavailability, which could contribute to the 
therapeutic adhesion. Therefore, the results of the HESTIA 4 
study with 21 participants are expected to be conclusive with 
regard to the pharmacokinetic profile of ticagrelor and its active 
metabolite. Phase 2 studies brought relevant data concerning 
both pharmacodynamical and pharmacokinetic profiles of 
patients of different populations subjected to variable therapeutic 
protocols. Importantly, these studies revealed that ticagrelor 
administration is associated with low bleeding risk, which is 
a positive therapeutic aspect for an antiplatelet agent since this 
is a significant side effect in this therapeutic class. Nevertheless, 
these studies have significant limitations, such as the reduced 
number of patients and a short period of evaluation. In addition, 
the effectiveness of ticagrelor in improving key clinical manifesta-
tions of SCD, such as VOC-associated pain, remains to be demon-
strated. Therefore, the conclusion of phase 3 clinical trials is crucial 
to prove the efficacy of this drug as a therapeutic option treatment 
of SCD, which precludes its approval by regulatory agencies. 
Importantly, post-marketing surveillance will confirm the benefi-
cial effects in the management of SCD patient’s manifestations, as 
well as the occurrence of undetected adverse events in the long 
term.

In summary, the studies with ticagrelor open new perspec-
tives for the investigation of antiplatelet agents in the treat-
ment of SCD. Nevertheless, we encourage the development of 
both pre-clinical and clinical studies with a multi-targeted 
approach since combined therapy is likely to be crucial for 
the management of SCD and other systemic diseases. Thus, it 
is expected that ticagrelor, especially in combination with 
other drugs, will improve the clinical profile and quality of 
life of patients with SCD.
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