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In HIV-infected individuals, a paradoxical clinical deterioration may occur in preexisting

leprosy when highly active antiretroviral therapy (HAART)-associated reversal reaction

(RR) develops. Leprosy–HIV co-infected patients during HAART may present a more

severe form of the disease (RR/HIV), but the immune mechanisms related to the

pathogenesis of leprosy–HIV co-infection remain unknown. Although the adaptive

immune responses have been extensively studied in leprosy–HIV co-infected individuals,

recent studies have described that innate immune cells may drive the overall immune

responses to mycobacterial antigens. Monocytes are critical to the innate immune

system and play an important role in several inflammatory conditions associated with

chronic infections. In leprosy, different tissue macrophage phenotypes have been

associated with the different clinical forms of the disease, but it is not clear how HIV

infection modulates the phenotype of innate immune cells (monocytes or macrophages)

during leprosy. In the present study, we investigated the phenotype of monocytes and

macrophages in leprosy–HIV co-infected individuals, with or without RR. We did not

observe differences between the monocyte profiles in the studied groups; however,

analysis of gene expression within the skin lesion cells revealed that the RR/HIV group

presents a higher expression of macrophage scavenger receptor 1 (MRS1), CD209

molecule (CD209), vascular endothelial growth factor (VEGF), arginase 2 (ARG2), and

peroxisome proliferator-activated receptor gamma (PPARG) when compared with the

RR group. Our data suggest that different phenotypes of tissue macrophages found in

the skin from RR and RR/HIV patients could differentially contribute to the progression

of leprosy.
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INTRODUCTION

Macrophages play a central role in the pathogenesis of leprosy, a chronic infectious disease
caused by the intracellular pathogen Mycobacterium leprae. The bacilli have tropism for Schwann
cells in peripheral nerves and skin macrophages (1, 2). Previous studies demonstrated that skin
macrophages from paucibacillary individuals present reduced phagocytic properties and higher
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antimicrobial activity, mediated by an interleukin (IL)-15-
dependent vitamin D activation and autophagy induction,
presenting characteristics of classical activated macrophages
(3, 4). In contrast, skin cells from multibacillary patients are
highly phagocytic and have a suppressive phenotype marked
by an increase of alternatively activated macrophage markers,
CD163 and macrophage scavenger receptor 1 (MRS1) (3, 5).
The macrophage phenotype that predominates in multibacillary
patients contributes to bacterial survival and persistence inside
cells by an IL-10-mediated pathway (2, 6).

During the clinical course of the disease, leprosy patients
may present acute inflammatory episodes known as a reversal
reaction (RR) or erythema nodosum leprosum (ENL) (7).
Clinically, RR is manifested by an increase of the inflammatory
process in the skin, nerve, or both, as well as by the
appearance of new lesions. Increased inflammation in the nerves
compromises their function and, if not treated promptly, leads to
a permanent loss of nerve function, causing peripheral sensory
and motor neuropathies (8). The immunopathology underlying
RR consists of an increased cell-mediated immune response
accompanied by CD4+ T cells and macrophage activation
in addition to increased expression of pro-inflammatory
mediators (9).

The presence of co-infection may have an impact on leprosy
outcome. Previous studies demonstrated that viral co-infection
is associated with higher rates of neuritis and nerve function
impairment as well as higher relapse rates when compared
with patients without co-infection (10, 11). Leprosy patients
with HIV-1 are rare, but it was demonstrated that patients
receiving highly active antiretroviral therapy (HAART) have
a greater chance to develop RR (12–14). Our previous study
has associated the increased activation of effector CD8+ T
cells with the advent of RR in co-infected patients (15).
Although the importance of T cells has been previously shown
during HIV infection, there is evidence that the outcome of
host–viral interaction depends on the stage of macrophage
differentiation (16). HIV-1-infected macrophages in tissues
have been reported to represent a crucial cell population,
contributing to the viral spreading particularly during the phase
of severe CD4T cell depletion (17). HIV-1 infection drives
monocyte-derived macrophages toward a pro-inflammatory
phenotype (18, 19), and the role of different phenotypes during
HIV-1 infection has been extensively studied. However, the
macrophage plasticity and phenotype during leprosy–HIV co-
infection have not been evaluated yet. In addition, previous
studies have demonstrated that CD14+CD16+ cells are the
predominant subset of monocytes in which HIV-1 infection
is hosted (20, 21), but the subset of monocytes associated
with RR outcome in HIV-1 patients is unknown. Considering
that HIV patients are more susceptible to the development
of RR, and monocytes and macrophages regulate the immune
response and participate in the development of these reactions,
being also two important reservoirs for the HIV virus, the
present study aimed to evaluate the profile of monocytes
and macrophages in leprosy–HIV co-infected patients, with
particular attention to innate immune markers associated with
RR in co-infected patients.

MATERIALS AND METHODS

Ethical Aspects
The Ethics Committee of the Oswaldo Cruz Foundation
with number 616/11 approved the study. All patients signed
an informed written consent form in accordance with the
guidelines established by the Brazilian National Health Council.
All experiments were performed following relevant guidelines
and regulations.

Study Population
The patients’ collection of skin biopsies and cells and clinical
data were carried out at Souza Araujo Out-Patient Unit at
Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil.
All patients followed a routine dermatological and neurological
evaluation. Leprosy was diagnosed and classified according
to Ridley–Jopling criteria. All co-infected patients received
an antiretroviral regimen following the Brazilian Ministry of
Health, Consensus Therapy guidelines. Exclusion criteria were
diabetes, autoimmune diseases, and tuberculosis. Biological
samples were collected from paucibacillary leprosy patients
(BT), co-infected BT/HIV-1 patients, RR patients, and RR/HIV-
1 patients. The clinical samples from the RR and RR/HIV-1
patients were obtained before the treatment with prednisone
(1 mg/kg). General characteristics of patients included in this
study are listed in Table 1. Alternatively, for the evaluation
of the monocyte phenotype in blood cells, buffy coats were
obtained from the Hemotherapy Service of the Clementino
Fraga Filho University Hospital of the Federal University of
Rio de Janeiro (UFRJ) through a technical-scientific partnership
approved by the Research Ethics Committee of the Oswaldo
Cruz Foundation (approval number: 1.538.467). Inclusion and
exclusion criteria were the same as those used for screening
in blood banks, and volunteers under 18 years of age whose
serological screening was positive for hepatitis B (HbsAg
and anti-HBc), hepatitis C (HCV), AIDS (HIV I/II-Ag +

Ac combined test), Chagas disease (anti-Trypanosoma cruzi),
syphilis [venereal disease research laboratory (VDRL)-non-
treponemal], human T-lymphotropic virus (HTLV)-I and HTLV-
II, malaria, and cytomegalovirus (CMV) were excluded. We
have also excluded patients with autoimmune diseases, pregnant
women, and patients with anemia.

Cell Surface Staining
Peripheral blood was collected via a median cubital venipuncture
into Vacutainer R© tubes (Becton Dickinson). Blood was diluted
1:1 with phosphate buffered saline (PBS), layered on to Ficoll-
Paque PREMIUM (GE Healthcare), and processed according
to manufacturer’s instructions. Isolated PBMCs were frozen
at 107 cells per mL in fetal bovine serum (FBS, Mediatech,
VA) with 10% dimethylsulfoxide. When needed, peripheral
blood mononuclear cells (PBMCs) were thawed, washed, and
resuspended in complete RPMI medium containing 10% fetal
bovine serum (FBS) and 2mM L-glutamine. Cells rested for
1 h at 37◦C with 5% CO2 before we proceeded with cell
count (trypan blue dye exclusion method). Cells were incubated
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TABLE 1 | Baseline demographic, clinical and laboratorial characteristics in HIV/Leprosy patients and Leprosy patient.

BT RR BT/HIV RR/HIV

Total (n) 6 5 4 8

Age (Year) and median(IQR) 61 (47–65) 34 (30–41) 50 (38–64) 37 (34–43)

Gender, n (%)

Male 2 (33) 3 (60) 2 (50) 6 (75)

Female 4 (67) 2 (40) 2 (50) 2 (25)

Ethnicity, n (%)

Caucasian 4 (67) 2 (40) 1 (25) 4 (50)

Black 0 (-) 2 (40) 2 (50) 3 (37)

Mestizo 2 (33) 1 (20) 1 (25) 1 (13)

Mitsuda test (%)

Positive 40 60 100 70

Negative 60 40 - 30

CD4+ T cell, median (IQR) - - 201 (129–228) 364 (118–483)

Viral load median (IQR, copies/mL) - - 7,053(79–21,000) 1,653 (79–5,700)

N, number of cases; IQR, interquartile range.

with 10% fetal calf serum (FCS) at 4◦C for 10min prior
to staining with fluorescein isothiocyanate (FITC)-conjugated
anti-human CD14 (eBioscience, San Diego, CA, clone 61D3),
phycoerythrin (PE)-conjugated anti-human CD16 (eBioscience,
clone B73.1), andAlexaFluor 647-conjugated anti-human human
leukocyte antigen-DR isotype (HLA-DR) antibodies (BioLegend,
San Diego, CA, clone L243). Unbound antibodies were washed
off, and cells were resuspended in PBS prior to acquisition
of at least 20,000 live events on a BD Accuri C6. Analysis
was performed using FlowJo software (TreeStar, USA). The
gating strategy used to define monocyte subsets was considered
within the population of HLA-DR+ (heatmap in Figure 1). The
expression of monocyte subset surface markers is presented using
dot plots, where a log10 scale was used on both the X and Y axes.

PCR for Genes Associated With
Macrophage Polarization
RNA was extracted from skin lesion biopsies by the TRIzol
method according to the manufacturer’s instructions
(ThermoFisher). RNA samples were treated with DNAse
to avoid gDNA contamination (RTS DNase Kit, MO BIO
Laboratories), and RNA integrity was analyzed by 1.2% agarose
gel electrophoresis (UltraPureagarose, Life Technologies).
One microgram of RNA from leprosy lesions was reverse
transcribed using the SuperScript III First Strand Synthesis
System (Life Technologies). The TaqMan Fast Universal PCR
Master Mix and Human TaqMan MGB-probe assays (Applied
Biosystems) were used to determine mRNA expression of
interleukin (IL)-1 beta (IL1B, HS 01555410_M1), vascular
endothelial growth factor A (VEGFA, HS00173626_M1),
arginase 2 (ARG2, HS 00982833_M1), peroxisome proliferator-
activated receptor gamma (PPARG, HS01115513_M1),
MSR1 (HS 00234007_M1), platelet-derived growth factor
subunit A (PDGFA, HS 00964426_M1), CD163 molecule
(CD163, HS 00174705_M1), heme oxygenase 1 (HMOX1,
HS 01110250_M1), indoleamine 2,3-dioxygenase 1 (IDO, HS

00984148_M1), C-X-C motif chemokine ligand 10 (CXCL10,
HS 00171042_M1), IL-12B (IL12B (HS 99999037_M1), IL-
23 subunit alpha (IL23A, HS 00372324_M1), and CD209
molecule (CD209, HS 01588349_M1). PCR reactions were
performed in a StepOne Plus Real-Time PCR System
(Applied Biosystems, MA, USA). Gene expression data
were analyzed by the 2−1CT method and normalized using the
housekeeping gene glyceraldehyde-3-phosphate dehydrogenase
(GAPDH, Hs02758991_g1) (ThermoFisher Scientific) for
TaqMan assays.

Immunohistochemistry
Skin lesion frozen-section biopsies of BT, BT/HIV, RR,
and RR/HIV patients were performed in a Leica LM3000
cryostat (Leica, Wetzlar, Germany). The cryostat sections
(5-µm thick) were fixed in acetone, hydrated in 0.01M
Ca2+Mg2+-free PBS, both by 10min. Endogenous peroxidase
was blocked in 0.3% hydrogen peroxide solution in 0.01M
PBS for 15min and then washed three times in 0.01M
PBS. Unspecific binding sites were blocked with 0.01M PBS,
10% normal goat serum (NGS), and 0.1% bovine serum
albumin (BSA) for 1 h at room temperature. The antibodies
used were diluted in PBS with 1% NGS and incubated
overnight at 4◦C [IDO (Santa Cruz, SC137012–1:50), CXCL-
10/IP-10 (Santa Cruz, SC101500, 1:50), arginase 2 (Santa
Cruz, SC271443, 1:50), CD163 (R&D Systems, Mab1607, 1:50),
SRA-1 (MRS1, Santa Cruz, SC56777, 1:100), HO-1 (Abcam,
Ab13243, 1:500), and PPAR-γ (Abcam, Ab209350, 1:50)]. The
sections were washed three times with PBS and incubated
with the solution HiDef signal amplifier for 20min, washed
three times in 0.01M PBS. The revelation was performed
in aminoethylcarbazole solution (AEC, VECTOR LABS), and
the results were analyzed under optical microscope Nikon
Eclipse E400 microscope with a plan-apochromatic 40×/0.65
objective (Nikon Instruments Inc., New York, USA). The
quantification analysis was performed using ImageJ Software 1.52
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FIGURE 1 | Profile Monocytes in reversal reaction (RR) patients with and without HIV. (A) Dot plot representing the gate strategy used for analysis. (B) The

percentages of HLA-DR+CD14+CD16− and (C) HLA-DR+CD14+CD16+ monocytes were demonstrated. Healthy controls (HC; n = 5), RR (n = 5), RR/HIV (n = 8).

version (NIH, Bethesda, Maryland) as described and validated
by (22). The image was inserted into the software, and the
immunohistochemical (IHC) profiler plugin was used, where
only the markings were selected corresponding to the 3,3’-
diaminobenzidine (DAB). A threshold was performed after
converting the image to RGB-stack to measure the percentage of
the positive area.

Data Analysis
Network

We analyzed thirteen gene expression databases from the PCR
array, that is, BT/HIV (n = 4), RR/HIV (n = 8), RR (n = 5),
and BT (n = 6). R software (specifically the qgraph package)
was used to analyze gene expression profiles, and we constructed
networks in which each of the genes was represented as a “node,”
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and an “edge” between two nodes indicates a partial correlation
between the two variables after conditioning on all other variables
in the dataset. Green edges illustrate positive partial correlations;
red edges, negative partial correlations. The wider and more
saturated the edge, the stronger the correlation. Therefore, to
compute the network was used R package qgraph and the main
function of qgraph which automatically creates an appropriate
network and sends it to the plotting method (23).

Statistical Analysis
For the conventional statistics, initially, we tested whether the
data followed a normal distribution. Considering the nature
of the non-parametric set of data, we performed a Kruskal–
Wallis test followed byDunn’smultiple comparison test. Software
GraphPad Prism 8.0 (San Diego, CA, USA) was used to calculate
the statistical analysis, and differences were considered significant
when p < 0.05.

RESULTS

Clinical Characteristics of the Population
Twelve (eight male and four female) leprosy–HIV co-infected
individuals were evaluated at the time of leprosy diagnosis. The
diagnosis of leprosy was determined subsequent to detection of
HIV in these individuals. Only one patient was diagnosed with
leprosy prior to undergoing HAART. Eleven were diagnosed
as leprosy patients after HAART. HIV–leprosy patients under
HAART (11 of 12 leprosy–HIV) were administered the three-
drug regimen including zidovudine, lamivudine, and efavirenz,
following the Brazilian Ministry of Health guidelines. According
to Ridley and Jopling Classification, four of the 12 leprosy–
HIV co-infected individuals (33.3%) presented the borderline
form of the disease without reaction (BT/HIV), and eight
(66.7%) presented the BT form with the presence of an acute
inflammatory reaction known as reversal reaction (RR/HIV).
Among the 11 leprosy non-HIV patients, six (54.5%) presented
the BT form without RR and five (45.5%) presented the BT
form with RR (BT/RR). Cellular immune response to M. leprae
antigens was analyzed using the Mitsuda test (24, 25). All non-
RR, co-infected patients were positive for the Mitsuda test.
In RR, co-infected patients, 70% of recruited patients were
positive for the Mitsuda test. In order to evaluate T cell counts,
leprosy–HIV co-infected individuals were evaluated to quantify
their CD3+/CD4+T cell populations. The demographic and
disease classifications of patients included in this study, including
median absolute counts and viral load, are presented in Table 1.

Monocyte Phenotype in Co-infected
RR/HIV Patients
To determine if the more intense inflammation associated
with increased neural damage observed in leprosy–HIV co-
infected patients with reversal reaction was associated with an
altered monocyte phenotype, monocytes were identified in HLA-
DR+-gated cells according the expression of CD14 and CD16.
They were classified as classical (CD14+CD16−), intermediate
(CD14+CD16+), and non-classical (CD14−CD16+) monocytes
(Figure 1A) (26). In addition, we have also found small

percentages of CD14−CD16+ cells in the HLA-DR-gated
population that could be a specific natural killer (NK) population
HLA-DR+ or dendritic cells (DCs). As observed in Figures 1B,C,
no significant changes were observed when comparing the
percentages of classical or intermediate monocytes between RR
and RR/HIV individuals.

Different Macrophage Markers in Skin Cell
Lesions From Reactional and
Non-reactional Co-infected Patients
Previous work from our group has demonstrated the presence
of different tissue macrophage phenotypes in skin from
paucibacillary and multibacillary leprosy patients. Whereas, pro-
inflammatory markers were more expressed in paucibacillary,
anti-inflammatory and scavenger receptor expressions were
higher in samples from the multibacillary patients (6). In order
to investigate the cell phenotypes present in lesions from leprosy–
HIV co-infected patients, with or without RR, we evaluated pro-,
and anti-inflammatory macrophage markers (pro-inflammatory:
IL12B, IL23A, IL1B, CXCL10; and anti-inflammatory: VEGF,
ARG2, PPARG, PDGFA, CD163, MRS1) as well as markers that
could be present in both macrophage phenotypes, depending
on the environment (IDO, HMOX1, CD209). Statistical analysis
showed that in the RR/HIV group, there is an increase of MRS1
(RR/HIV vs. RR, p= 0.003), CD209 (RR/HIV vs. RR, p= 0.015),
ARG2 (RR/HIV vs. RR, p = 0.020), VEGF (RR/HIV vs. RR, p =

0.032), and PPARG (RR/HIV vs. RR, p = 0.01; RR/HIV vs. BT, p
= 0.013) (Figure 2).

Since there are some genes that could be differentially
modulated depending on the balance between pro- and anti-
inflammatory mediators, we performed a network analysis
in order to verify the correlation between the different
available genes (Figure 3). The analyses used into account
the line patterns, where the thicker indicated the strong
correlation, positive (green) or negative (red). As observed
in Supplementary Tables 1, 2, IDO presents a negative
correlation with IL1B in skin lesions from BT patients, but
in BT/HIV, there is a positive correlation between these
genes. In addition, IDO has a positive correlation with
CXCL10 in the BT/HIV group, suggesting that in lesions
from non-reactional co-infected patients, IDO is induced
and is involved in pro-inflammatory pathways. HMOX1 is
positively correlated with CD209 and VEGFA in skin lesions
from BT patients, but in BT/HIV patients, it correlates
negatively with the alternatively activated macrophage marker
PPARG (Supplementary Tables 1, 2). In the RR group,
HMOX1 correlates positively with PDGFA but negatively with
MRS1 (Supplementary Table 3). Although IDO and HMOX1
have been described as associated with immunosuppression
in leprosy multibacilary patients, we did not observe a
significant correlation between these two markers when
comparing leprosy non-co-infected patients (BT and RR
groups). However, in RR/HIV, there was a significant negative
correlation between IDO and HMOX1 (r = −0.738, p = 0.023)
(Supplementary Table 4).
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FIGURE 2 | The gene profile of skin macrophages. Real-time PCR was performed in order to evaluate the macrophage phenotype in the skin from paucibacillary

leprosy (BT; n = 6), reversal reaction (RR; n = 5), BT/HIV (n = 4), and RR/HIV (n = 8) patients. Data are presented as mean ± SD, *p ≤ 0.05; **p ≤ 0.01.

Macrophage Profile by
Immunohistochemistry
The immunohistochemistry data revealed that CD163, PPAR-
γ, and MRS1/SRA-1, classical markers of alternatively activated
macrophages, were increased in RR/HIV skin lesions when
compared with the other groups evaluated (Figure 4). Arginase
2 expression was higher in both RR and RR/HIV groups, and
CXCL-10 was decreased in BT when compared with the other
studied groups (Figure 4; Supplementary Figure 1).

DISCUSSION

Recently, it was demonstrated that HIV-1 infection might have
implications for the development of immunodiagnostic tools for
leprosy (27). The understanding of immune pathways associated
with the pathogenesis of leprosy–HIV co-infection may clarify
the complex immune network that is associated with different
clinical manifestations in leprosy.

Analysis of T cells from co-infected patients demonstrated
that granuloma formation in leprosy might occur independent
of the impaired CD4T cell response of the HIV infection
(28). Granulomatous response seems to be morphologically
identical in patients with leprosy with or without HIV (29).
The current hypothesis is that the effect of HIV infection on
immune cells may be compartmentalized and that other cells
may be recruited and activated to maintain the granuloma
structure (30).

The impact of HIV-1 on leprosy pathogenesis is not well-
understood, but several reports suggest that initiation of
antiretroviral treatment has been associated with the outcome
of reversal reaction, and immune reconstitution inflammatory
syndrome (IRIS)-associated reversal reaction has been described
in countries like Brazil, where both leprosy and HIV epidemics
overlap and HAART has been broadly administered (13). The
mechanisms related to the outcome of reversal reaction in
HIV/leprosy patients seem to involve the participation of effector
memory CD8+ T cells, together with greater perforin/granzyme
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FIGURE 3 | Association networks between pro- and anti-inflammatory macrophage genes in skin cells of leprosy patients with or without HIV. Association networks in

paucibacillary leprosy (BT), reversal reaction (RR), BT/HIV, and RR/HIV patients. The intensity of the line represents the degree of association between the macrophage

genes. Mean association is represented by slim lines, and a strong association is represented by a strong line.

B production (15). IRIS is mainly observed during infections that
involve an efficient macrophage clearance of bacteria (31).

The treatment of leprosy–HIV co-infected patients involves
the use of corticoids, and some studies have reported that
these patients have a satisfactory improvement in prognosis
(12, 13). However, previous studies have suggested that
chronic administration of glucocorticoids might render
individuals highly susceptible to mycobacterial infection.
Recently, it was described that glucocorticoids impair innate
antimicrobial autophagy and promote mycobacterial survival in
macrophages (32).

Since innate immune events are targets of corticoids in
HIV–leprosy co-infection, in the present study, we evaluated
the phenotype of monocytes and skin macrophages in co-
infected patients, mainly individuals who present a reversal
reaction, which present a higher risk of neural damage.
Besides supplying peripheral tissues with macrophage and
DC precursors, monocytes contribute directly to immune
defense against microbial pathogens, and a previous study also
demonstrated that tissue macrophages may contribute to the
establishment of viral reservoirs as a consequence of their long
half-life, relative insensitivity to the cytopathic effects of virus
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FIGURE 4 | Pro- and anti-inflammatory markers in skin cells from leprosy patients co-infected or not with HIV. Skin lesion biopsies were obtained from leprosy

patients, co-infected or not, as indicated. Immunohistochemical (IHC) analysis of CD163 (CD163), PPAR-γ (PPARG), arginase 2 (ARG2), SRA-1 (MRS1), HO-1

(HMOX1), IDO1 (IDO), and CXCL-10 (CXCL10) was demonstrated. Representative micrographs from paucibacillary leprosy (BT; n = 6), reversal reaction (RR; n = 5),

BT/HIV (n = 4), and RR/HIV (n = 8) patients are shown. Scale bar: 100 µm.

replication, and peculiar capacity of producing and storing
mature HIV virions in intracellular compartments (33).

CD14+CD16+ cells were described as a subset of monocytes
that is more susceptible to HIV-1 infection than CD16− cells (20,
34), and they are an important source of the pro-inflammatory
cytokine tumor necrosis factor (TNF) (35). Although our
preliminary hypothesis was the involvement of intermediate
CD14+CD16+ monocytes in the pathogenesis of reversal
reaction in leprosy–HIV co-infected patients, analysis of HLA-
DR-gated cells did not demonstrate significant differences

between the percentages of classical or intermediate monocytes
in the groups studied.

Previous studies have demonstrated that HIV-1 infection of
macrophages prime or induce their polarization toward a pro-
inflammatory phenotype that contributes to the establishment
and maintenance of a state of chronic activation that is credited
to represent a major determinant of HIV disease progression
(36–38). In the present study, we selected a group of genes
previously described as involved in leprosy pathogenesis (3, 5,
6, 39–45). Analysis of cell phenotype revealed an increase of

Frontiers in Immunology | www.frontiersin.org 8 July 2020 | Volume 11 | Article 1493

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


da Silva et al. Macrophage Polarization in Leprosy-HIV Patients

anti-inflammatory cell markers in RR/HIV when compared with
RR cells. Anti-inflammatory phenotype is characterized by less
potent but more durable inhibition of HIV-1 replication, with no
detectable impairment of HIV-1 DNA synthesis (46).

A network analysis was performed in order to understand
the possible different connections between macrophage markers
in the different groups studied. In the RR group, a positive
correlation was observed between IDO and PPARG, suggesting
that IDO may exert tolerogenic effects in the non-co-infected
group. In the RR/HIV group, IDO correlated negatively with
HMOX1. Network analysis demonstrated that in skin lesions,
the macrophage-related gene markers selected might interact
differentially depending on the host immune status and the
environment, and that in the same clinical situation, several
macrophage phenotypes may coexist, contributing to the
immunopathogenesis of the disease. This finding is in accordance
to Ganor et al. who reported an intermediate polarization state
(Mi), which expresses both pro-(IL-1R) and anti-inflammatory
(CD206) markers (47).

RR occurs in approximately 30% of leprosy patients (48),
but paucibacillary leprosy–HIV co-infected patients present a
higher incidence of RR, associated with clinically ulcerated
lesions (12). CXCL-10/IP-10 has been classically demonstrated
as a serological marker for RR (44, 49, 50). Here, an increased
expression of CXCL10 was not observed in the RR groups
when compared with non-reactional paucibacillary individuals;
however, positive correlations between CXCL10 and IL12B and
between CXCL10 and IL1B were observed in the RR non-co-
infected group. In the RR/HIV group, CXCL10 is negatively
correlated with the IL-12 family member IL-23, suggesting
that co-infection may induce different pathways and different
inflammatory mechanisms could be modulated.

To the best of our knowledge, this is the first study
that demonstrates the phenotype of monocytes/macrophages
in leprosy–HIV co-infected patients. Herbein and Varin have
proposed a model to explain the plasticity of macrophages during
HIV-1 infection (51). They proposed that classically activated cell
phenotypes predominate during the early phase of the disease,
and an alternatively activated profile emerges during the chronic
phase of the disease, leading to macrophage deactivation in its
later stage. The fact is that in vitro macrophage polarization is
a useful strategy to investigate how macrophage heterogeneity
and plasticity may influence the infection, but ex vivo analyses
are pivotal for the understanding of the impact of these different
macrophage phenotypes in the course of the leprosy disease.

During infection, macrophages induce inflammation to
promote pathogen killing. However, macrophage polarization is
tightly linked to the process of resolving inflammation, where
the tissue is repaired after infection, but also to non-resolving
inflammation, where the pathogen prolongs the inflammation.
In the RR/HIV group, we observed a coexistence of pro-
and anti-inflammatory markers, with a predominance of cell
markers related to the suppression/resolution of inflammation
like CD163, SRA-I/MSR1, PPAR-γ, and arginase 2. We could
speculate that the predominance of alternatively activated
macrophages could be associated with the resolution of the
inflammation and tissue remodeling with the release of growth
factors in the RR/HIV group. However, analysis of the clinical

pattern of patients during the biopsy procedure, together with
the evaluation of histopathology (not shown) as well as gene
and protein expressions of pro- and anti-inflammatory markers,
suggests that both pro- and anti-inflammatory macrophages may
coexist in the RR/HIV skin, leading to persistent inflammation
and fibrosis.

Nevertheless, it is relevant to note that some limitations
of the current study should be noted, mainly concerning the
limited sample size and the low frequency of BT/HIV cases.
Although we have used macrophage-related markers to evaluate
the pro- and anti-inflammatory profiles, we cannot exclude the
presence of other cell types in skin lesions of leprosy patients that
could influence the analysis of gene expression since we did not
evaluate cell phenotype or performed a cell separation protocol.
Therefore, to obtain more reliable results, additional studies with
larger populations are needed, and suitable power analyses might
be helpful in order to obtain a better understanding of the
role of different tissue macrophage phenotypes in the context
of RR/HIV.
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