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Continuous climate changes associated with the disorderly occupation of urban areas

have exposed Latin American populations to the emergence and reemergence of

arboviruses transmitted by Aedes aegypti. The magnitude of the financial and political

problems these epidemics may bring to the future of developing countries is still

ignored. Due to the lack of effective antiviral drugs and vaccines against arboviruses,

the primary measure for preventing or reducing the transmission of diseases depends

entirely on the control of vectors or the interruption of human-vector contact. In Brazil

the first attempt to control A. aegypti took place in 1902 by eliminating artificial sites

of eproduction. Other strategies, such as the use of oviposition traps and chemical

control with dichlorodiphenyltrichlorethane and pyrethroids, were successful, but only for

a limited time. More recently, biotechnical approaches, such as the release of transgenics

or sterile mosquitoes and the, development of transmission blocking vaccines, are

being applied to try to control the A. aegypti population and/or arbovirus transmission.

Endemic countries spend about twice as much to treat patients as they do on the

prevention of mosquito-transmitted diseases. The result of this strategy is an explosive

outbreak of arboviruses cases. This review summarizes the social impacts caused by

A. aegypti-transmitted diseases, mainly from a biotechnological perspective in vector

control aimed at protecting Latin American populations against arboviruses.
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INTRODUCTION

Mosquitoes of the Culicidae family are considered the most
dangerous animals on earth due to their capacity to transmit
diseases and their medical importance regarding viruses,
protozoa, and nematode transmission (1). According to the Pan
American Health Organization (PAHO) vector-borne diseases
are considered public health problems and have a major social
and economic impact causing high morbidity and mortality,
especially in developing countries (2). Approximately 75% of
the Latin American population lives in cities, which makes the
most urbanized continent in the world (3). The magnitude of
climate and ecosystem changes and disorderly occupation of
urban areas may increase the vulnerability of human populations
to infectious disease transmission (2). Moreover, these changes
have led several vectors to adapt to the urban environment
(4, 5). We list the top 15 pathogens transmitted by Culicidae
in the Americas and the prevalence of viruses is evident (80%),
all considered as arboviruses (Table 1). Aedes genus has drawn
the attention of the world health authorities due to the severity
of diseases transmitted in the last 10 years, especially Dengue,
Chikungunya, and Zika fevers.

The Aedes genus has more than 950 species of mosquitoes,
many of which transmit potentially deadly pathogens to humans
and other animals. Among the species, Aedes aegypti is
currently the main global arbovirus vector (20). Carvalho and
Moreira (21) reviewed the main reasons for A. aegypti having
both reproductive success and being so well-adapted to the
urban environment. This mosquito lives in urban habitats and
reproduces primarily in artificial containers (5, 6, 21, 22). A single
female makes several blood meals during each feeding period
and hematophagy occurs preferentially in humans (21). The
blood meal is essential for egg maturation. During oviposition,

TABLE 1 | Culicidae family includes vectors of major medical importance and the

main pathogens transmitted in the Americas.

Vector Pathogen References

Aedes Dengue vírus (6)

Yellow fever vírus* (7)

Chikungunya vírus (8)

Zika vírus (9)

La Crosse vírus (10)

Anopheles Plasmodium falciparum (11)

Plasmodium vivax (12)

Guaroa vírus (13)

Culex Wuchereria bancrofti (14)

West Nile vírus (15)

Saint Louis Encephalites virus (16)

Estern Equine Encephalites virus (17)

Wester Equine Encephalites virus (17)

Culicoides Oropouche virus (18)

Haemagogus Mayaro virus (19)

*The Yellow fever virus transmission in urban areas in Brazil has been interrupted

since 1942.

the female spreads the eggs in many breeding sites to ensure
reproductive success and can remain viable for over 1 year (20,
21). Beyond the vertical transmission, an infected female is able to
transmit the arbovirus for the rest of its life after virus incubation
(21). In this review, we demonstrate the impact caused by Aedes
aegypti-borne diseases based on current literature, highlighting
the history of vector control based on the major biotechnological
approaches for preventing new arboviral epidemics.

ORIGIN OF THE MAIN ARBOVIRUSES
THAT CAUSE HUMAN DISEASES AND THE
ROLE OF Aedes aegypti IN THEIR
TRANSMISSION

Arbovirus (arthropod-borne virus) is the non-taxonomic term
used to define a group of viruses transmitted by hematophagous
arthropods (23). According to the International Catalog of
Arbovirus, there are 545 species andmost of the viruses registered
have non-human vertebrates as the main reservoir (6, 22, 24).
It is believed that approximately 150 arboviruses cause diseases
in humans, most of them zoonotic, and belonging to five
viral families, namely Bunyaviridae, Flaviviridae, Reoviridae,
Rhabdoviridae, and Togaviridae (6, 24). In humans, clinical
manifestations of arboviruses include moderate or severe febrile
illness with or without hemorrhage, headache, retro-orbital pain,
rash, myalgia, arthralgia, and several neurological syndromes
(24). Currently, international travel and the global distribution
of vectors have made arboviruses a constant threat to the
human population (2, 24). The reasons for the emergence or
reemergence of some diseases are not fully known, but the
following mechanisms have been identified as causes of change
or increases in the incidence of many diseases: altered habitat,
loss of biodiversity, niche invasion or host–shifting by pathogens,
human–induced genetic changes in disease vectors or pathogens,
environmental contamination, and diminishing global travel
times, when infected people carry pathogens before symptoms
occur (2, 25, 26).

A. aegypti was the main vector of some of the most important
arboviral epidemics of all time such as Yellow fever virus (YFV)
and dengue virus (DENV), which resulted in millions of fatalities
worldwide (6, 22, 27). In addition to the extensive history of
epidemics, chikungunya virus (CHIKV) and Zika virus (ZIKV)
caused serious outbreaks in the Americas continent in recent
years (9, 28–30). The major arboviruses causing human diseases
transmitted by Aedes mosquitoes in the Americas and their
possible places of origin are described in Figure 1.

The YFV came fromWest Africa and arrived in the Americas
during the slave trade in the sixteenth and seventeenth centuries
(30). It is believed that the DENV spread throughout the
world through transport routes in the eighteenth and nineteenth
centuries and that, after establishing itself, decreased between the
1950s and 1970s due to the aggressive vector control method of
the time (6, 29, 31). In the 1990s, DENV reemerged following
a decline in vector control efforts and increased insecticide
resistance, culminating in one of the worst global epidemics with
2,326,000 reported cases in the Americas in 2015 (24, 28). The
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FIGURE 1 | Origin of arboviral genotype of Dengue (DENV), Chikungunya (CHIKV), Zika (ZIKV), Yellow Fever (YFV), Mayaro (MAYV), Rocio (ROCV), and La Crosse

virus (LACV) causing human diseases transmitted by Aedes aegypti.

first case of CHIKV on the Caribbean island of Saint Martin was
confirmed in October 2013. Subsequently, CHIKV spread to the
Caribbean, Central America, and some regions of South America,
totaling about 1.6 million cases (28). Chikungunya fever is a
debilitating disease characterized by high fever associated with
chronic polyarthralgia and generalized rash (23, 28, 32). Some
complications have been reported, including hemorrhaging and
cardiac, neurological, and gastrointestinal injury (22, 32). The
social damage caused by CHIKV infection is inestimable because
the virus can remain in the tissues of the joints, causing persistent
arthralgia for months or even years (23). Kantor (23) suggested
the virus was imported from Asia since it was shown that
the isolates had the Asian genotype. Oliveira Melo et al. (33)
suggested that ZIKV introduced in the Americas also came from
Asia. This study evaluated two pregnant women from the state of
Pernambuco, in northeast region of Brazil, who were diagnosed
with fetal microcephaly and had symptoms of ZIKV infection.
The patients were submitted to an amniocentesis test, blood test,
and qPCR to detect the presence of the virus. Although the blood
test was negative, amniocenteses and qPCR showed a positive
result for ZIKV. The virus was isolated and sequenced, and the
result showed Asian genotype in both cases (33). Studies based
on the sequence of a large number of virus isolates indicated
that a cryptic ZIKV circulation occurred in the Northeast of
Brazil as early as February 2014, and from the region the virus
disseminated nationally and internationally (34). In February
2016, the World Health Organization declared the situation “a
public health emergency of international importance” due to the
increasing number of cases of ZIKV infection in Brazil, and its
possible association with neurological disorders and congenital
anomalies, such as microcephaly (22, 29, 33). In 2016, the
situation worsened and at the end of the year, the World Health
Organization estimated that ∼4 million people were infected

with ZIKV. The impact of this number of cases in Brazil had
deeper social and emotional consequences, since 1,434 cases of
microcephaly were confirmed (2). The extent of the financial and
political problems that the epidemic may cause in the future is
still unknown, but efforts need to be concentrated on supporting
and monitoring affected families. Lately, the first clinical case
of infection with Mayaro (MAYV), a virus of the Togaviridae
family recently arrived in Haiti, has been described. This virus
was discovered in 1954 in Trinidad and Tobago, but so far only
isolated cases are known in the Amazon and other regions of
South America. According to epidemiological data available to
the Ministry of Health, there were 197 notifications distributed
in nine Brazilian states between December 2014 and June 2015,
mainly in the north and center-west regions. There are still
no records of deaths from the disease, but as is the case with
CHIKV, those infected can continue to experience joint pain
for weeks or months. Although Haemagogus sp. is the main
vector of MAYV, A. aegypti is also capable of transmitting this
arbovirus (35). The constant transit of arboviruses represents a
challenge in the diagnosis and treatment of patients because, in
addition to causing similar clinical manifestations (36), they can
be transmitted simultaneously.

Along with the five arboviruses listed above, it is worth
highlighting the presence of La Crosse and Rocio viruses,
which can be transmitted by mosquitoes of the genus Aedes.
The first cases of Rocio virus (ROCV) were recorded in the
southeastern region of Brazil during a viral encephalitis epidemic
that lasted for about 2 years in the 1970s. Although subsequent
outbreaks did not occur, there was serological evidence of
ROCV circulation, which serves as a warning signal for possible
new epidemics (37). La crosse virus (LACV) is present in
Latin America and in some regions of North America and is
transmitted by mosquitoes of the genus Aedes. Although A.
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aegypti is not a very efficient vector, A. albopictus is able to
transmit this virus. The cases of encephalitis due to LACV
infection have low mortality, but there are reports of patients
with neurological complications, whichmaymake the differential
diagnosis difficult with other arboviruses (10).

IMPORTANCE OF Aedes aegypti AND
BIOTECHNOLOGICAL APPROACHES
APPLIED FOR MOSQUITO CONTROL AS A
STRATEGY TO PREVENT THE
EMERGENCE OF ARBOVIRUSES

Physical and Chemical Control Approaches
The physical and chemical control methods are based on the
elimination of breeding sites and in the use of insecticides to
reduce population density, thus decreasing the transmission of
pathogens and, consequently, preventing epidemics. In 1902,
Oswaldo Cruz led the first Brazilian public campaign to control
A. aegypti, which was based on the elimination of artificial
breeding sites. At the time, this campaign aimed to reduce the
transmission of yellow fever. However, the vector was eradicated
only in the middle of 1955. Afterwards, the mosquito was
reintroduced over time and became endemic in much of the
country. In the following years, control strategies were guided
by the “Programa Nacional de Controle da Dengue” (PNCD),
which recommended using physical strategies based on the
identification of regions according to infestation rates. To date,
WHO has promoted integrated vector control, in addition to
conventional tools such as mosquito nets treated with materials,
nets, oviposition traps (ovitraps), among others. Numerous
studies have shown that ovitraps are an effective strategy that
contributes to the monitoring of A. aegypti populations hence
the areas at risk of transmission of arboviruses (38–43). Mackay
et al. (44) developed the autocidal gravid ovitrap (AGO-A), a
lethal ovitrap based on the gravid ovitrap (GO). It has already
been shown that the use of AGO has significantly reduced the
prevalence of mosquitoes infected with CHIKV (39). The main
limitation to using an ovitrap is that it contains insecticides,
which may not be effective in regions where the mosquito
population is resistant.

The larval period is the only immature stage during which
feeding and growth occur in the life cycle of A. aegypti. The
chemical control measures employed preferentially focus on
this stage due to three striking attributes. First, the larvae
are aquatic and feed on suspended organic matter adhering
to the walls or sediment at the bottom of the reservoirs. As
larval eating habits are not selective, they can easily ingest
chemical or biological insecticides (45). Second, the larvae
breathe atmospheric air through the siphon, located in the
eighth abdominal segment. The moment they rise to the surface
to breathe, they become more susceptible to control agents
(21). Third, they are restricted to the oviposition site, which
restricts their ability to migrate (21, 45). The main insecticides
used act on the insects’central nervous system and belong to
the groups of organochlorines, carbamates, organophosphates,

and pyrethroids (46, 47). The indiscriminate use of Dichloro-
diphenyltrichlorethane (DDT) and pyrethroids induced the
development of resistance, which negatively impacted the
effectiveness of vector control interventions in endemic countries
(48–52). Macoris et al. (53) described that, after 10 years without
usage of pyrethroids in São Paulo state, Brazil, A. aegypti showed
persistent resistance. A bioassay with papers impregnated with
a deltamethrin diagnostic dose (DD) was conducted yearly,
from 2004 to 2015, with A. aegypti adults from 7 different
sites, showing resistance in most cases. These results were
a direct effect of pyrethroids being extensively used by São
Paulo state governments between 1989 and 2000, and being
the preferred insecticide for domestic use (53). This scenario
is not limited only to Brazil or South America. Moyes et al.
(54) described that resistance to pyrethroids are widespread
throughout the world. Temephos was the preferred larvicide
used in Brazil from 2003 to 2014. As a result of continuous
usage, cases of resistance were detected in most of studies in
all Brazilian geographic regions as compiled by Valle et al.
(55). Corte et al. (56) conducted a study from October 2010
to August 2011 to evaluate A. aegypti resistance to Temephos
from 7 municipalities in Sergipe state, Brazil. All mosquitoes
were found to be resistant, varying between cities, even with
an increased dose of Temephos. In recent years, interest has
grown in the identification of plants with insecticidal properties
(57). The use of plant extracts in the control of A. aegypti
demonstrated low production cost, high biodegradability, and
different active elements that delay the development of resistance
in insects (57–62). However, phytochemicals can also have toxic
effects that vary according to the species of the plant, with
the part used, age of the plant, and extraction with selected
solvent (57, 58, 63).

Immunoprophylactic and Biological
Control Approaches
Several research groups around the world have focused on
the search for arbovirus vaccines, primarily against DENV
(64–69). Generally, this type of approach is species-specific and
considering the huge variety of known arboviruses, vaccine
strategies that seek to prevent transmission seem difficult and
remote. This is a long process that requires active participation
of public policies and a significant financial investment, which
does not occur in most endemic regions (70–72). Several DENV
vaccine candidates have been developed over the years, some
of which are in the testing phase. The composition of the
formulations varies between DNA (monovalent or tetravalent),
recombinant adenoviruses, Alfavirus replicons, and chimeric
E protein subunits, among others (64–69, 73, 74). However,
only the CYD-TDV vaccine has reached the final stages
of testing in humans in different parts of the world (75).
CYD-TDV (Sanofi-Pasteur) is an attenuated chimeric vaccine
containing recombinant fractions from the four serotypes of
DENV (tetravalent). The tetravalent attenuated component
(TDV) was developed by the Reed Army Research Institute
(WRAIR), in collaboration with GlaxoSmithKline Vaccines
(68). Sanofi Pasteur then developed the vaccine including
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the viral strains PUO-359 (DENV-1), PUO-218 (DENV-2),
PaH881/88 (DENV-3), and 1228 (DENV-4) (75). After going
through the clinical study phases, the vaccine was made
commercially available under the name DengVaxia R© (CYD-
TDV, Sanofi-Pasteur). According to da Costa et al. (76), the
effectiveness of this vaccine varies around 59%, but more
studies are needed to confirm its long-term effectiveness.
However, on December 13, 2017, WHO issued a statement
warning that DengVaxia R© should not be administered to people
who have not been previously exposed to DENV due to an
increased incidence of childhood cases of severe dengue in
vaccinated individuals who had never been infected with the
virus. Still, it remains the only arbovirus vaccine available at
the moment.

While efforts in the search for vaccine targets are being
made, vector control strategies need to be developed that can
prevent the emergence of new epidemics and the simultaneously
control circulating arboviruses. Due to the lack of antiviral
drugs against arboviruses, the main measure for preventing
or reducing the transmission of diseases depends entirely on
the control of vectors or the interruption of human-vector
contact (27). In this context, the use of sterile insect technique
(SIT) and Release of Insects carrying a Dominant Lethal
(RIDL) developed by genetic engineering was proposed as a
control strategy (77). Alphey and Andreasen (78) reviewed
these techniques, which are largely based on the RIDL.
After copulation, this dominant gene causes the death of its
progeny. These approaches show a great potential for disease
control (79, 80) and have been tested in different endemic
countries for A. aegypti control (81–84). In Brazil, the use
of OX513A self-limiting strain reduced the local A. aegypti
population by up to 95% in a suburb of Juazeiro, Bahia (85).
This transgenically modified A. aegypti mosquito containing
a dominant lethal gene transgenic strain (OX513A), was
incorporated into the target field population (86). Furthermore,
the impacts of introgression from a A. aegypti transgenic
strain remain unclear for arbovirus control and transmission
purposes (86).

A number of natural predators (fish and crustaceans)
and pathogenic organisms (fungi and bacteria) have already
been employed in an attempt to control A. aegypti. The
entomopathogenic bacteria Bacillus thuringiensis var. Israelensis
(Bti) is commonly found in nature and carries toxins with strong
insecticidal activity through the formation of spores and crystals.
The Bti has high specificity for A. aegypti and is practically
innocuous to humans (21, 87). In addition, the combined action
of different toxins reduces the risk of resistance (88). The use
of this bacteria enabled the development of larvicides such
as DengTech R© (Fiocruz/BR3) and VectoBac WG. However,
it has been reported that environmental factors such as high
temperatures and a high annual rainfall interfere with VectoBac’s
efficacy (89).

An interesting approach is the use of Wolbachia gram-
negative bacteria (Order Rickettisiales) discovered by Hertig and
Wolbach (90) in the reproductive tissues of Culex pipiens. It is
known that the different strains establish symbiotic relationships
with more than 60% of the world’s insect species and that they

have a great potential to reduce the life span of mosquitoes and
block infection by pathogens (27, 91–96). This strategy can be
used as a population suppression or as a population replacement
approach. The latter uses strains of Wolbachia that can block
arboviruses, especially Flaviviruses (27, 97) and Alphaviruses
(98). Several studies on this approach have shown promising
results, especially in Australia (27, 92, 94–100). McMeniman
et al. (101) showed that the introduction of the wMelPop-CLA,
a Wolbachia strain, reduced a population of A. aegypti kept in
the laboratory by up to 50%. Moreira et al. (27) demonstrated
that the introduction of this strain inhibits the infection of
DENV-2 and CHIKV in A. aegypti and suggested that the
blocking strategy, in synergy with the reduction in life span,
could be a promising approach to controlling the transmission
of arbovirus. Walker et al. (96) transfected mosquitoes with
the avirulent wMel, another Wolbachia strain, and showed
a more accelerated invasion of A. aegypti populations when
compared to the wMelPop-CLA strain in semi-field conditions.
The authors also showed a blockage of DENV-2 transmission by
both strains. The use of Wolbachia as a vector control method
provided subsidies for the creation of the “Eliminate Dengue:
Our challenge” Project (World Mosquito Program—WMP). The
release of mosquitoes in northern Australia (2011) showed
that Wolbachia had already spread throughout the population
of A. aegypti 10 weeks later. The WMP originally aimed to
control the transmission of DENV, but today it contributes
significantly to the control of other arboviruses in 12 countries,
including Brazil. Currently, it is being used in Brazil by the
World Mosquito Program (formerly “Eliminate Dengue: Brazil
Challenge”) and has shown results worth of attention (102).
Moreover, the use of this bacteria has also proved to be a
promising method of controlling other viruses. Ekwudu et al.
(103) evaluated the ability of the wAlbB strain to reduce or
block the replication of Flavivirus and Alphavirus species in
cell cultures and showed that this control strategy is effective
against a wide variety of RNA viruses. The cultures in the
presence of WNV, ZIKV, Ross River (RRV), Barmah Forest
(BFV), and Sindbis virus (SINV) infected with wAlbB showed
significantly reduced in viruse load compared to Wolbachia-
free controls.

Despite abundant evidence of success, the use of Wolbachia
presents limitations in countries with wide temperature
fluctuations. Ross et al. (104) showed a drastic reduction in the
frequency of wMel infection after a heatwave of a 43.6◦C, an
effect that is stage specific. Another limitation of this strategy is
that the establishment of Wolbachia in the mosquito population
depends on resistance to insecticides. Garcia et al. (105) released
A. aegypti strains infected with Wolbachia using susceptible
(wMelBr) and resistant (wMelRio) mosquito-infectedWolbachia
strains to pyrethroids in an isolated region of Rio de Janeiro,
Brazil. Only the A. aegypti strain infected with the resistant
strain (wMelRio) allowed the establishment of Wolbachia. The
use of Wolbachia, when combined with other strategies such
as a transmission blocking vaccine (TBVs), could help reduce
arbovirus transmission; yet endemic countries spend about
twice as much on treating patients as they do on preventing
mosquito-transmitted diseases (106). The cost of dengue in the
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FIGURE 2 | Survival rates in mice immunized or not with a subunit

anti-Dengue vaccine and challenged with a virulent DENV3 strain. Briefly, the

recombinant Dengue serotype 3 Envelope protein was produced in E. coli,

purified by affinity chromatography, and quantified. Purified recombinant

proteins were covalently linked to multi-walled carbon nanotubes though a

diimide-activated amidation protocol (115). Evaluation of the nanotubes

functionalization was verified by transmission electronic microscopy and

Raman spectroscopy. Ten-weeks old BALB/c mice were divided into 4

groups: non-immunized control (PBS), vaccine-immunized group

(MWNT-rDENV3E), animals immunized with the recombinant protein alone

(rDENV3E), and animals inoculated only with pristine nanotubes (MWNT). All

groups were either immunized or mock-immunized three times every 7 days,

through the intramuscular route. After 7 days of the last inoculation, animals

were challenged with 103 PFUs of DENV3. Animals were evaluated daily until

the appearance of neuropathology and were then humanely euthanized when

a 25% weight loss was confirmed. In total, surviving mice were evaluated for

21 days. The study was approved by the Committee on the Ethics of Animal

Experiments from the Universidade Federal de Minas Gerais (CETEA/UFMG

270/2010). The symbol “*” in the groups (MWNT, rDENV3E, MWNT-rDENV3E)

demonstrates statistical differences (p < 0.05) compared to PBS group,

according One-way ANOVA test and Tukey’s post-test analysis.

Americas is already billions of dollars a year (106). The strategy
of investing in patient treatment and disregard vector control
has already proven to be a complete failure, as arbovirus-related
diseases have shown no clear sign of reduction over the
past years.

The TBVs are strategies that consist of using essential
vector proteins capable of inducing specific antibody production
after host immunization. Therefore, after blood meal on an
immunized host, the antibody triggered by vaccination could
induce interference in the cell cycle on the vector or/and
block virus infection to the vector, thus preventing disease
transmission to human hosts (107). Some successful examples
against transmission of Plasmodium berghei by Anopheles
stephensi (108), P. vivax (109) by A. dirus (110), P. falsiparum
by A. gambiae (111), and Leishmania infantum by Lutzomyia
longipalpis (112) have been reported in the literature, showing
this strategy as promising and possibly helpful in interrupting
distinct pathogen transmission cycle. Notwithstanding the
potential of TBVs, they do not directly protect humans, so there
is resistance to their use in public health programs (113). In
1980, there were about 95 species of arboviruses cataloged in
Brazil alone, but this number has doubled in the last three
decades and today 210 arboviruses circulate in the country.
It is known that at least 37 of them are capable of causing
disease in humans (2). The recent epidemics in South America

warn of the possibility of the emergence of new arboviruses and
the resurgence of diseases transmitted by previously controlled
vectors (114). In addition to preventing disease transmission,
new strategies for sustainable control of vector populations are
highly recommended (27). As viruses first infect and multiply
in the midgut, molecules overexpressed after blood meal have
been suggested as possible TBVs. The challenge with this strategy
is the fact that some viruses have more than one serotype
(114). Our research group has focused on the development
of TBVs against some vectors, including A. aegypti. In a pre-
clinical trial, we analyzed distinct vector antigen targets. The
data are in the final phase of analysis, but we have already
identified promising targets that interfered in all A. aegypti
developmental stages and reduced the number of mosquitoes
generated at the end of the first generation by up to 90%
(unpublished data). TBVs that target specific mosquito molecules
can help to reduce the circulation of pathogens transmitted
by the same vector simultaneously. Taking into account the
challenges of controlling vector-borne diseases, the future of
vaccines against pathogens transmitted by vector will most
likely incorporate the TBV rationale. One example is the use of
subunit vaccines against Dengue in which nanocarrier platforms
are added to recombinant immunogenic DENV proteins. Such
nanocarriers are able to increase the immunogenicity of rather
poor immunogens in the presence of adjuvants, potentiating
their use. Carbon nanotubes are a good example of carriers
that could be used for this purpose (Figure 2), being also
associated to the TBV antigen in a single formulation. This
approach could permit improved vaccinal efficacy toward a
new generation of high-performance vaccines against vector-
borne diseases.

The medical importance of A. aegypti is clear, such as
the failure to control it, the large number of transmitted
pathogens, and the persistently high number of cases, as
observed in dengue. In this scenario, biotechnological proposals,
such as TBV development, could result in an important
reduction in number of vectors and prevent the transmission
of pathogens.
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