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Abstract

Chagas disease, the clinical presentation of T. cruzi infection, is a major human health con-

cern. While the acute phase of Chagas disease is typically asymptomatic and self-resolving,

chronically infected individuals suffer numerous sequelae later in life. Cardiomyopathies in

particular are the most severe consequence of chronic Chagas disease and cannot be

reversed solely by parasite load reduction. To prioritize new therapeutic targets, we unbia-

sedly interrogated the host signaling events in heart tissues isolated from a Chagas disease

mouse model using quantitative, multiplexed proteomics. We defined the host response to

infection at both the proteome and phospho-proteome levels. The proteome showed an

increase in the immune response and a strong repression of several mitochondrial proteins.

Complementing the proteome studies, the phospho-proteomic survey found an abundance

of phospho-site alterations in plasma membrane and cytoskeletal proteins. Bioinformatic

analysis of kinase activity provided substantial evidence for the activation of NDRG2 and

JNK/p38 kinases during Chagas disease. A significant activation of DYRK2 and AMPKA2

and the inhibition of casein family kinases were also predicted. We concluded our analyses

by linking the diseased heart proteome profile to known therapeutic interventions, uncover-

ing a potential to target mitochondrial proteins, secreted immune effectors and core kinases

for the treatment of chronic Chagas disease. Together, this study provides molecular insight

into host proteome and phospho-proteome responses to T. cruzi infection in the heart for

the first time, highlighting pathways that can be further validated for functional contributions

to disease and suitability as drug targets.

Author summary

Chagas disease is a significant human health concern as it can cause severe cardiomyopa-

thies in chronically infected patients. Due to the high morbidity associated with Chagasic

cardiomyopathies, it is vital to investigate new treatment options. In this study, we use
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state-of-the-art techniques to interrogate the host signaling events induced by chronic

Chagas disease in the primary affected organ, the heart. We identify proteins and phos-

pho-sites significantly altered upon infection, predict activated and inhibited kinases, and

link our findings to known drug targets. For the first time, this study provides insight into

the in vivo host signaling responses to T. cruzi in the heart, uncovering pathways that can

be validated for contributions to disease and suitability as drug targets.

Introduction

Chagas disease is the manifestation of an infection by the protozoan parasite Trypanosoma
cruzi. First described in 1909 by a Brazilian physician, Carlos Chagas[1], this disease is a signif-

icant health concern, particularly in areas with low socio-economic status. Facilitated by

human population flow, Chagas disease has spread out of endemic areas into more developed

countries, with more than 100,000 cases in Europe[2] and 200,000–300,000 in the United

States[3, 4] reported. Infected insect vectors and congenital transmission are the most com-

mon means of disease spread, accounting for up to ~96% of recorded cases (70% insect vec-

tors, 26% congenital); blood transfusion, organ transplantation and consumption of

contaminated foods also contribute to T. cruzi dissemination[5]. Historically overlooked, Cha-

gas disease is classified as a neglected tropical disease by the World Health Organization[6]

and is estimated to result in a global economic burden of> $7 billion (USD) per year[7].

Thus, Chagas disease is a major human health concern that causes significant morbidity and

mortality worldwide.

The progression of Chagas disease can be classified into two phases, the acute phase and the

chronic phase[8, 9]. The acute phase is asymptomatic in most cases, lasts approximately 1–2

months and usually resolves spontaneously[8]. However, if left untreated, patients can remain

chronically infected, resulting in critical health concerns later in life[8]. These delayed adverse

effects occur in approximately 30% of the infected individuals and include cardiac and visceral

involvement, with cardiomyopathies being the most severe and frequent manifestation[8, 9].

Interstitial fibrosis of the heart is thought to be a major determinant factor for the pathogenesis

of Chagas disease[5]. In fact, even after successfully lowering parasite loads with the current

standard of therapy (ie. benznidazole), patients with advanced cardiomyopathies remained

under high disease burden[9]. The reason for this is currently unclear, but suggestions have

ranged from auto-immune responses[10, 11] to dormant, low-proliferating forms of T. cruzi
that are resistant to anti-trypanosomals[12]. Regardless, directing therapies against fibrotic

phenotypes of heart, in combination with trypanocidal agents, have great potential to effec-

tively treat this disease.

Chronic Chagas disease in the heart is driven by an intense inflammatory response and

excessive immune infiltration[5, 13]. Cytokines and chemokines, secreted by both cardiomyo-

cytes[14] and invading immune cells[15], stimulate a wound-healing response (eg. extracellu-

lar matrix (ECM) deposition) from fibroblasts to repair the damaged tissue[5]. Specifically,

transforming growth factor β (TGF-β)[16], tumor necrosis factor-α (TNF-α)[14], and inter-

feron gamma (IFN-γ)[15] are central to the immune response and pathology of Chagas dis-

ease. These effectors induce a myriad of downstream signaling cascades, resulting in diverse

functional outcomes from apoptosis[17] to accumulation of ECM[16, 18]. The potential intra-

cellular signaling pathways include c-Jun N-terminal kinase (JNK)[19] and p38[20]. Recent

reports from in vitro models of T. cruzi-host cell interaction demonstrated that cardiac fibro-

blasts display an increase in phosphorylation of p38 and c-Jun after infection[21].
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Transcriptomic analysis showed that T. cruzi infection upregulates the JUNB gene and results

in translocation of JunB to nuclei of primary human cardiomyocytes[19]. In line with this

hypothesis, treatment of mice with genistein[22], a tyrosine kinase inhibitor, lowered TAK1

and JNK activity and decreased cardiac fibrosis in a hypertension model[23], suggesting this

pathway is associated with cardiac remodeling. Further, SP600125[24], a canonical JNK inhibi-

tor, is well tolerated by mice and provides protective effects for hearts in damaging conditions

[25]. Despite these developments, Chagas disease progression results in alterations of other sig-

naling pathways[20, 26] that should not be overlooked as therapeutic targets.

Conventional, single target approaches to analyze intracellular signaling pathways have

been the foundation for understanding complex biology. However, these methods only focus

on a few proteins and even simple stimuli are known to induce drastic molecular alterations in

the intracellular milleu. Thus, systems level technologies (eg. transcriptomics and proteomics)

have emerged as an effective tool to unbiasedly assess the gene expression state of various dis-

ease conditions. While total gene expression levels provide useful information, many central

signaling pathways are mediated via post-translational modifications (PTMs), with minimal

alterations in total protein abundance[27–29]. Therefore, proteomics has a distinct advantage

relative to other -omics technologies in the ability to detect protein PTMs at a systems scale

[30]. Phospho-proteomic approaches have provided a means to dissect precise signaling path-

ways involved in diverse biological processes, from development[31] to infectious disease[32].

A phospho-proteomic approach applied to Chagas disease models in the heart has not been

attempted to our knowledge and thus has the potential to deepen the understanding of global

signaling pathways affected by chronic T. cruzi infections.

In this study, we apply a phospho-proteomic workflow to interrogate chronic Chagas dis-

ease progression. This investigation constitutes a foundational examination of the global phos-

pho-signaling response to T. cruzi in the primary affected organ, the heart. Our analyses

uncover both known and previously uncharacterized alterations in total protein abundance

and phosphorylation status. As expected, we captured the classical induction of IFN-mediated

signaling pathways[15] and repression of mitochondrial function[33, 34]. Of significance, our

unbiased approach identified new players that may have a role in disease progression including

Immunity Related GTPase M (IRGM) 1 and 2 and the immune-associated, guanylate binding

proteins (GBPs). In addition to total protein abundance changes, we uncovered a vast signal-

ing network of plasma membrane and intermediate filament proteins with perturbed phos-

phorylation status following infection. These include new targets such as Striated Muscle

Enriched Protein Kinase (SPEG), Tensin 1, BCL2 Associated Athanogene 3 (BAG3), Sorbin

and SH3 domain-containing protein (SORBS) 1/2 and myosin-family proteins in addition to

the previously described p38 axis. Further, we applied bioinformatics to predict active kinases,

supporting the involvement of JNK and identification of new activated (DYRK2 and

AMPKA2) and repressed (casein kinase family) kinases in the host response to T. cruzi infec-

tion. Finally, through the creation of a druggable disease network, we propose a number of

FDA approved drugs that may be repurposed for the treatment of chagasic cardiomyopathy.

Overall, this study reveals new signaling pathways modulated during chronic Chagas disease

that expand the understanding of molecular mechanisms of pathogenesis and inform rational

drug design.

Results

Mouse model of Chagas disease

To ensure that our infection model properly reflects Chagas disease symptoms, we performed

electrocardiography and histological analyses of the infected hearts (Fig 1A). We found that
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mice infected with T. cruzi presented heart arrhythmias (Fig 1B and 1C), a lower heart rate

(Fig 1D) and AV block (Fig 1C and 1E), which mimics human chagasic hearts[35] and are in

accordance with previous mouse models of chronic T. cruzi infection using different strains of

the parasite[36]. The extended QT interval observed in previous mouse infections[36] was also

captured in our model (Fig 1F). These phenomena usually occur in parallel with interstitial

fibrosis and inflammation[5]. Therefore, we performed histological analyses and confirmed

that these mice displayed intense cardiac inflammation (Fig 1G), quantified by % area of cell

nuclei (Fig 1I), and increased collagen deposition (red staining, Fig 1H) in the heart tissue. In

agreement with human clinical symptoms[37], quantification of the fibrotic area demonstrated

a 3-fold increase in the area occupied by collagen in cardiac sections from T. cruzi infected ani-

mals (Fig 1J). Together, this data validates the establishment of an in vivo model of chronic

Fig 1. Chronic Chagas cardiomyopathy model. A, Schematic of model infection and analyses. B, Representative one-second ECG trace from uninfected mouse. C,

Representative one-second ECG trace from infected mouse. D, Average heart rates from uninfected and infected animals during ECG analysis. E, Average PR intervals

from uninfected and infected animals during ECG analysis. F, Average QT intervals from uninfected and infected animals during ECG analysis. G, Representative

images of cell nuclei staining in hearts of uninfected and infected animals. Bar = 100μm. H, Representative images of collagen staining in hearts of uninfected and

infected animals. Bar = 100μm. I, Quantitation of areas of cell nuclei. J, Quantitation of areas of collagen staining. For all graphs, significance was determined using an

unpaired Student’s t-test (�p< 0.05, ��p< 0.01, ����p< 0.0001).

https://doi.org/10.1371/journal.pntd.0007980.g001
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Chagas disease cardiomyopathy that shows clinical symptoms of heart disease similar to those

observed in human patients, providing a strong foundation for subsequent analyses.

General overview of phospho-proteomic results

The applied phospho-proteomic workflow (Fig 2A) identified and quantified 4,622 proteins

(S1 Table) and 6,807 unique phospho-peptides at a false discovery rate (FDR) of< 1%. Our

analyses revealed a high overlap of phospho-peptides that were matched to total protein abun-

dances (S1A Fig). Thus, we were able to normalize 4,526 phospho-peptides to their respective

total protein levels (S2 Table). Subsequent phospho-analyses were performed on the protein-

normalized, phospho-peptide dataset. We found that the biological replicates of both the

proteomic and phospho-proteomic data had low inter-replicate variation (coefficient of varia-

tion (CV) < 15% for all replicates; S1B Fig) and high correlation (S1C and S1D Fig), endors-

ing the reproducibility of the Chagas disease model and proteomic methods. In line with

previous TiO2-enriched phospho-proteomic studies [38, 39], we primarily detected serine

phosphorylation (81%), followed by threonine (16%) and tyrosine (3%) residues (Fig 2B). The

majority of the detected phospho-peptides had only one phosphorylation event (80%) but a

notable fraction possessed 2 or more events (20%) (Fig 2C). Overall, we found significant

changes (pi score < 0.05)[40] in 394 proteins (238 increased, 156 decreased) and 353 phos-

pho-proteins (133 increased, 159 decreased, 61 both) (Fig 2D, S1E and S1F Fig). There was

low overlap between the proteins found to be significantly altered by total abundance and

phosphorylation events, suggesting distinct pathway involvement (Fig 2E). The phospho-sites

quantified in the experiments were primarily evenly distributed across the total protein length,

with a slight bias for protein C-termini (Fig 2F). These broad analyses demonstrate high qual-

ity results and that chronic Chagas disease induces a vast rearrangement in host proteins and

phospho-sites in the heart.

Chronic Chagas disease induces an IFN-mediated immune response and

represses mitochondrial proteins

We focused our initial analysis on the total protein abundance changes following chronic Cha-

gas disease. We found that total levels of 394 proteins were significantly altered during infec-

tion (Fig 2D, S1E Fig). To gain a deeper understanding of the functional outcome of this

proteome perturbation, significantly altered proteins were subject to functional protein associ-

ation network and gene ontology (GO) analyses using String-DB[41] and DAVID[42, 43],

respectively. We observed that the altered proteins formed a highly interconnected network

consisting of two primary clusters of proteins with increasing and decreasing abundance (Fig

3A). Interestingly, proteins altered in the opposite directions were located within the primary

clusters, suggesting that an increase of abundance of one protein may be related to the

decreased abundance of another. GO analysis revealed proteins with increased abundance

were primarily secreted glycoproteins involved in generating an effective immune response

against protozoan invaders (Fig 3B; S3 Table). These changes appeared to be primarily driven

by IFN-mediated signaling pathways, supporting previous studies[15]. Lysosomal proteins

and antigen processing pathways were also increased (Fig 3B), again consistent with an IFN-

driven immune response[44, 45]. In contrast, proteins with decreased abundances were pri-

marily derived from the mitochondria (Fig 3C). Specifically, transmembrane proteins associ-

ated with electron transport and redox reactions were the most enriched among the decreased

proteins. Peroxisomal proteins and lipid metabolic processes were also significantly reduced in

the infected mice (Fig 3C). While it should be noted that GO analysis are not experimental
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and need to be validated further, the total protein level alterations during Chagas disease sug-

gest a strong immune response and suppression of general host metabolism.

To validate the proteomic studies, we cross-examined our data against the current knowl-

edge regarding the impact of T. cruzi infections on host cells (S2A and S2B Fig). It has been

reported that chronic Chagas disease is associated with increased chemokine (eg. CCL2[46]

and CCL5[47]) and adhesion molecule (eg. ICAM1 and VCAM1)[48] expression in the heart

leading to an infiltration of pro-inflammatory immune cells. In the experiments herein, we

found a significant increase in both VCAM1 and ICAM1 (S2A Fig) but the chemokines CCL2

or CCL5 were not identified. However, we did identify CCL8, which had an ~6-fold increase

in expression (Fig 3D). T. cruzi infections have also been associated with increased STAT1

[49], caspase[50] and MHC class I[51] expression, all of which were detected in our data (S2A

Fig). These results suggest highly inflammatory conditions and excessive immune cell influx.

To strengthen this notion, the data was mined for proteins that are primarily expressed in

immune cells and should be absent in normal heart tissue to use as markers for immune inva-

sion. We found an increase in expression of a number of immune-cell enriched markers such

as: Klra2 (killer-cells), LSP1 and Fas (lymphocytes), TGTP1 (T-cells), MHC class II (antigen

presenting cells) (S2B Fig) in our heart samples, suggesting a notable association of these cells

with the heart tissue.

To put our study in the context of the current understanding of T. cruzi infections and

heart disease, we performed an in-depth comparison with previous -omic studies. First, a

recent genome-wide association study (GWAS) identified numerous single-nucleotide poly-

morphisms (SNPs) with significant relationships to Chagas cardiomyopathy in humans[52].

Comparing our list of significant proteins to the GWAS findings, we identified a number of

proteins (S2C Fig) that were detected in the distinct experiments. We found proteins with

Fig 2. Overview of dual proteome/phospho-proteome analyses. A, Schematic of phospho-proteomic analysis workflow. B, Distribution of phospho-sites detected in this

experiment. C, Multiplicity of phospho-peptides detected in this experiment. D, Numbers of significantly altered (pi score< 0.05) proteins and phospho-proteins. E, Venn

diagram of significantly altered proteins and phospho-proteins. F, Relative protein locations of phospho-sites detected in this experiment.

https://doi.org/10.1371/journal.pntd.0007980.g002
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both increased expression (SMAP2, RBP1, COL14A1 and TGM2) and decreased expression

(THBD and GNG7) to have SNPs associated with Chagas-induced cardiomyopathy. The con-

current associations of SNP variation and expression level of these proteins with Chagas dis-

ease offers support for their distinct involvement in disease progression.

A survey of the literature showed that no prior proteomic studies of chagasic hearts had been

reported. However, recent transcriptomic analyses have focused on 1) organ-level host responses

to T. cruzi infection[53, 54] and 2) the effects of a genetically-induced cardiomyopathy[55]. These

host responses may provide a means to validate the current proteomic results and be a useful

comparison to our dataset. We hypothesized that a similar modulation of gene expression may be

present in various organs affected by T. cruzi as well as distinct cardiomyopathy models. Indeed,

we observed a notable correlation of protein levels from our study with significantly altered

Fig 3. Total proteome perturbations demonstrate induction of host immune response and suppression of mitochondrial proteins. A, Functional protein association

network of all significantly altered proteins detected in the standard proteomic workflow. B, GO results of significantly increased proteins. C, GO results of significantly

decreased proteins. (Significance of enrichment is shown in parenthesis to the right of the bars). D, Selected increased and decreased proteins detected in the standard

proteomic workflow. Significance is noted in reference to the pi score cutoffs for respective significance thresholds (� - α< 0.05; �� - α< 0.01; ��� - α< 0.001; ���� - α<
0.0001). E, Western blot validation of IRGM1 expression (R1 –replicate 1, R2 –replicate 2). F, Differentially expressed GBPs detected in the standard proteomic workflow.

G, Differentially expressed NDUFs detected in the standard proteomic workflow. H, Differentially expressed CoA-containing enzymes detected in the standard proteomic

workflow. For differentially expressed families of proteins (F-H), a paired T-test was used (��� - α< 0.001; ���� - α< 0.0001).

https://doi.org/10.1371/journal.pntd.0007980.g003
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transcripts in both chagasic hearts (R = 0.630, p< 0.001; S2E Fig) and placentas (R = 0.598,

p< 0.001; S2F Fig). Further, we found that the correlation of gene expression between chagasic

hearts and genetically driven, dilated cardiomyopathy (R = 0.417, p< 0.001; S2G Fig) and heart

failure (R = 0.425, p< 0.001; S2H Fig) was also significant, albeit with lower correlation values.

Strikingly, 80–90% of the significant genes identified in both studies were altered in the same

direction (S2E–S2H Fig), suggesting there are similar mechanisms involved in these distinct mod-

els. As expected, this proportion was highest for proteins (this study) and transcripts from chaga-

sic hearts (>96% agreement; S2E Fig). Together, the above analyses demonstrate the

concordance of our results with previous studies, supporting the validity of our findings.

In addition to previously known associations to T. cruzi infections, our unbiased, systems-

level assessment found a number of proteins that have not yet been interrogated in the context

of Chagas disease. Interesting proteins were ranked by pi-score, a metric that combines both

fold-change and p-value. For example, we found additional, immune-related proteins

increased in response to T. cruzi infection including: IRGM1/2, IIGP1, CCL8, C6, C9 (Fig 3D

and 3E), among others. We also noted an increase in all of the guanylate-binding proteins

(GBPs) detected in our analysis (Fig 3F). On the other hand, we detected a decrease in abun-

dance of proteins with no prior association to Chagas disease or immune responses. The most

significantly altered among these include: PLPP7, A1BG, SYNGR3, CTCF and TRDN (Fig

3D). As mentioned above, our GO pathway analysis highlighted a decrease in mitochondrial

proteins related to redox and electron transport (Fig 3C). Specifically, we noted a decrease in

nearly all of the NADH dehydrogenases (NDUFs) (Fig 3G) and coenzyme A-containing pro-

teins (Fig 3H) detected in our experiments. These findings are in-line with previous reports of

decreased mitochondrial function[33] and identify the major protein families affected. These

analyses demonstrate that chronic Chagas disease drives an IFN-mediated immune response

and suppresses mitochondrial pathways in murine hearts. Our global proteomic data are sub-

stantiated by comparisons with previous studies and western blot validation. These results also

highlight new proteins that may be involved in Chagas disease progression.

The phospho-proteome of chagasic hearts

While total protein abundances provide useful information, many cellular signaling pathways

are mediated via phosphorylation, with minimal alterations in total abundance. Therefore, we

employed a phospho-proteomic approach to dissect signaling pathways affected by chronic

Chagas disease. We found that phospho-sites on 353 phospho-proteins were significantly

altered following infection. The majority (83%) of these phospho-proteins had only increased

(159) or decreased (133) phosphorylation, but a subset had both increased and decreased phos-

pho-sites (61) (Fig 2D). Creating a functional protein association network[41] (Fig 4A), we

observed that proteins with opposite directions of phosphorylation abundance were highly

interconnected, indicating that the increase of phosphorylation of one protein is associated with

a decrease in phosphorylation of related proteins, and vice-versa. While the majority of phos-

pho-proteins possessed only one significantly altered phospho-peptide, ~40 proteins had five or

more significantly altered phospho-peptides (Fig 4B). Interestingly, most of these proteins had

both increasing and decreasing phosphorylation sites (Fig 4C) and were centrally located in our

network, putting forth their roles as key signaling hubs in Chagas-induced cardiomyopathy.

Chronic Chagas disease alters membrane protein and microtubule

phosphorylation

To determine the global signaling pathways altered during chronic Chagas disease, we per-

formed GO analysis on all of the phospho-proteins with significantly altered phospho-sites
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(Fig 4D; S4 Table). We found highly significant enrichments for proteins localized to the

plasma membrane, adherens junctions and intermediate filaments. As expected, we noted sig-

nificant enrichments for many proteins involved in intracellular signaling such as kinases, cal-

modulin-binding proteins, and GTPases. Protein domains that govern signaling pathways

from the plasma membrane through the cytoskeleton, such as pleckstrin-homology, PDZ and

SH3 domains, were also enriched in this dataset. These results indicate that chronic Chagas

disease has the most significant effects on intracellular signaling pathways bridging the plasma

membrane and the cytoskeleton.

Specific proteins of interest were prioritized based on 1) the number and significance of

altered phospho-sites, 2) their involvement in plasma membrane and cytoskeletal signaling,

and 3) their relationship to previously described Chagas disease processes or other cell stresses.

These include: striated muscle preferentially expressed protein kinase (SPEG), Tensin 1, BCL2

Associated Athanogene 3 (BAG3), Sorbin and SH3 domain-containing protein (SORBS) 1/2

and a number of myosin-related proteins (MYH6, MYBPC3, MYO18A, MYL2, MYOM1,

MYOZ2). SPEG had the highest number of significantly altered phospho-peptides (23 phos-

pho-peptides; Fig 4B, 4E and 4F) followed by Tensin 1 (16 phospho-peptides; Fig 4B, 4G and

4H). Both of these proteins had phospho-sites that increased or decreased in abundance, sug-

gesting distinct kinases/phosphatase regulation of these proteins. BAG3 contained 11 signifi-

cantly altered phospho-peptides that were all increased (Fig 4B, 4I and 4J). SORBS1/2 (S3A–

S3D Fig) and a number of myosin proteins (S3E–S3P Fig) also had multiple, significant phos-

phorylation shifts in response to T. cruzi infection. The fact that we captured multiple mem-

bers of these protein families argues for their importance in the host response to T. cruzi.
In accordance with previous in vitro studies with cardiac fibroblasts[21] and colon cells[20],

we detected an increase in p38 Y182 phosphorylation following chronic T. cruzi infection in mice

(Fig 4K–4M). Interestingly, we also detected a significant decrease in singly phosphorylated p38

T180 peptides (Fig 4K). Residues T180 and Y182 of p38 are sequentially phosphorylated in

response to pro-inflammatory conditions[56]. The observed decrease in singly phosphorylated

p38 T180 peptides may be a result of an increase in the doubly phosphorylated species, which was

not detected in our phospho-proteomic data. To clarify these findings, we performed western blot

of p38 Y182 (Fig 4M), confirming its increased phosphorylation status. We also detected

increased phosphorylation of N-Myc Downstream-Regulated Gene 2 (NDRG2) (Fig 4N–4P),

which can act upstream of p38[57, 58]. These results further support the activation of this pathway

in the host response to infection. Overall, the above analyses highlight global pathways and spe-

cific proteins whose phosphorylation status is modulated during chronic Chagas disease.

Prediction of kinase activity during chronic Chagas disease reveals

increased JNK/DYRK and decreased CK2 activity

Detecting alterations in phospho-site abundances is crucial to understanding the ultimate out-

comes of various signaling processes. However, linking phospho-site abundance to specific

Fig 4. Phospho-proteome interrogation reveals alterations in membrane and cytoskeletal protein phosphorylation and activation of p38. A,

Functional protein association network of all proteins with significantly altered phospho-peptides. B, Bar graph of proteins with 5 or more significantly

altered phospho-peptides. C, Pie chart depicting the phospho-peptide direction shifts of proteins with 5 or more significantly altered phospho-peptides D,

GO results of all proteins with significantly altered phospho-peptides. Graph depicts the number of phospho-proteins in the respective ontology with

enrichment p-values displayed above the bar. E, Bar graphs of significantly altered SPEG phospho-peptides. F, Bar graph of total SPEG protein. G, Bar

graphs of significantly altered TNS1 phospho-peptides. H, Bar graph of total TNS1 protein. I, Bar graphs of significantly altered BAG3 phospho-peptides. J,
Bar graph of total BAG3 protein. K, Bar graphs of significantly altered p38 phospho-peptides. L, Bar graph of total p38 protein. M, Western blot validation

of p38 phosphorylation status. N, Bar graphs of significantly altered NDRG2 phospho-peptides. O, Bar graph of total NDRG2 protein. P, Western blot

validation of NDRG2 phosphorylation status. For western blot figures, R1 –replicate 1 and R2 –replicate 2. Significance is noted in reference to the pi score

cutoffs for respective significance thresholds (� - α< 0.05; �� - α< 0.01; ��� - α< 0.001; ���� - α< 0.0001).

https://doi.org/10.1371/journal.pntd.0007980.g004
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kinases provides more mechanistic insight into the underlying biology and can identify poten-

tial drug targets. Therefore, in an effort to identify kinase-substrate interactions with increased

and decreased activity during Chagas disease progression, we undertook a two-pronged

approach.

First, we used the group-based prediction (GPS) tool[59] to predict the kinases that target

the significant phosphorylation sites detected in our experiments. This analysis predicted sub-

strates for 125 kinases within our dataset (S5 Table), with AGC-group kinases having the most

unique members (25 kinases; S4A Fig) and CMGC-group kinases targeting the most sites (422

sites; S4B Fig). We then compared which kinases were predicted for phosphorylation sites

with increased vs. decreased abundance (Fig 5A; S4C–S4F Fig). We found that more site-

kinase pairs were predicted to have increased activity in the infected samples than in the con-

trols (S4C Fig). Stratifying predicted kinases by kinase groups and families suggests that there

is a significant increase in activity from the CAMK, CMGC and TKL groups (S4D Fig) and

MAPK, PKC, MAPKAPK, DYRK and LISK families (S4E Fig). Individual kinases with

increased activity include: IKKB, CDC28, MNK1, AMPKA2, MARK1, LIMK, ERK1,

MAPK2K2, JNK2 and DYRK2 (Fig 5A, S4F Fig). In contrast, the kinases with the most

decreased activity are VRK2, CSNK1D, TTBK1 and ROCK. Interestingly, we identified kinases

that are predicted to target phospho-sites with both increased and decreased abundance, such

as FRAP, PIM1, PAK1 and RAF, suggesting that the specificity of these kinases may be modu-

lated as opposed to overall activity.

Second, we extracted the flanking sequences of each phospho-site using the PTMphinder R

package[60] and used the motif-x algorithm[61, 62] to identify enriched peptide motifs that

were either increased or decreased during infection (S6 Table). Through this analysis we

found that phospho-sites within the motifs: PxSpP (Fig 5B), RxxSpP (Fig 5C) and SPxxSp (Fig

5D) were increased following infection and phospho-sites within the SpxxE motif (Fig 5E)

were decreased following infection. We then linked the phospho-sites within these motifs to

their predicted kinases from the GPS analysis to create putative kinase-substrate interactions

(Fig 5B–5E; S7 Table). This dual prediction approach provides further evidence for an activa-

tion of JNK/p38 family kinases and downstream MNK kinases, but also uncovers unexpected

kinases such as DYRK2 (increased activity) and CK2 (decreased activity). Overall, both known

(eg. JNK) and previously unknown (eg. DYRK2, CK2) kinases were predicted to be differen-

tially activated in response to T. cruzi infection. We also identified their respective substrates

for further validation as functional players in Chagas disease progression.

The druggable network of chagasic hearts

To elucidate druggable signaling pathways that can be further explored for their therapeutic

potential, we linked the significant proteomic, phospho-proteomic and kinase prediction

results to known drug targets within the DrugBank database[63, 64] (S8 Table). Visualizing

these druggable proteins using functional protein association analysis, we found that they

formed a highly interconnected network with the predicted kinases at the center, closely fol-

lowed by phospho-proteins, and the standard proteins residing in the distal regions (Fig 6A).

Gene ontology analysis revealed that the most druggable pathways are mitochondria, secreted

proteins, kinases and cell-cell adherens junctions (Fig 6B; S9 Table), all of which are inti-

mately linked to T. cruzi infections and heart disease. Strikingly, more than 80% of the proteins

in our network are known interactors with FDA approved drugs (Fig 6C); approximately 35%

of which are linked to the intended, on-target effects (Fig 6D). To identify drugs that could

broadly impact multiple proteins altered during chronic T. cruzi infections, putative therapeu-

tics were ranked based on the total number of targets present in the network (Fig 6E). We
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found that Fostamatinib, Artenimol, metals bound by secreted immune proteins (zinc and

copper) and NADH may have a strong influence on the outcomes of T. cruzi infections. Of

note, acetylsalicylic acid (aspirin), emerged as one of the most influential drugs in our network,

and has been demonstrated to be beneficial for the host during T. cruzi infections [65, 66], spe-

cifically at later stages of the disease[65].

Fig 5. Bioinformatic kinase prediction uncovers stimulation of JNK and DYRK2 and suppression CK2 activities. A, Kinases with significant proportions (Chi-

squared p-value< 0.05) of differentially expressed phospho-sites. B, Logo of enriched motif “PxSpP” (top) with bar graph of the number of predicted kinase sites

(bottom left) and list of target proteins (bottom right). C, Logo of enriched motif “RxxSpP” (top) with bar graph of the number of predicted kinase sites (bottom left)

and list of target proteins (bottom right). D, Logo of enriched motif “SPxxSp” (top) with bar graph of the number of predicted kinase sites (bottom left) and list of target

proteins (bottom right). E, Logo of enriched motif “SpxxE” (top) with bar graph of the number of predicted kinase sites (bottom left) and list of target proteins (bottom

right).

https://doi.org/10.1371/journal.pntd.0007980.g005

PLOS NEGLECTED TROPICAL DISEASES Phospho-proteomic analysis of chagasic cardiomyopathy

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007980 May 20, 2020 12 / 31

https://doi.org/10.1371/journal.pntd.0007980.g005
https://doi.org/10.1371/journal.pntd.0007980


Discussion

Cardiomyopathy is the most common and severe pathological result of chronic Chagas disease

[5, 8, 13]. While studies focusing on individual host factors have provided insight into specific

mechanisms of pathogenesis, proteins typically work in co-regulated networks with significant

involvement of PTMs, which are often overlooked in standard assays. Therefore, a systems-

level analysis would represent a significant step toward understanding the signaling pathways

and molecular mechanisms underlying disease progression. Previous studies applying proteo-

mics to investigate Chagas disease have mostly been focused on serum, looking for disease pro-

gression markers using two-dimensional gel electrophoresis prior to mass spectrometry in rats

[67] and human patients[68, 69]. Also, proteomic and phospho-proteomic approaches have

been targeted toward the parasite itself, describing its response to nutritional stress[70] and

proteins modulated during the differentiation process[71, 72]. However, a large-scale, phos-

pho-proteomic analysis of chagasic hearts, one of the most affected organs, has not been per-

formed. To address this gap in knowledge, we performed a multiplexed, quantitative phospho-

proteomic analysis of an in vivo murine model of Chagas-induced cardiomyopathy. We find

that our model possesses common clinical symptoms of chagasic hearts[35, 36], indicating

that it accurately reflects human biology. While this manuscript describes findings based on

Fig 6. Druggable network of chagasic hearts. A, Functional protein association network of significantly altered proteins, phospho-proteins and predicted kinases

that are known interactors of drugs from DrugBank. B, GO analysis of proteins in the druggable network. Pie charts of the C, approval status and D, intended target

status of drugs that interact with proteins in the druggable network. E, Bar chart of drugs with 5 or more targets in the druggable network.

https://doi.org/10.1371/journal.pntd.0007980.g006

PLOS NEGLECTED TROPICAL DISEASES Phospho-proteomic analysis of chagasic cardiomyopathy

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007980 May 20, 2020 13 / 31

https://doi.org/10.1371/journal.pntd.0007980.g006
https://doi.org/10.1371/journal.pntd.0007980


two, independent, biological replicates, we believe that the agreement in our replicates (S1

Fig), particularly in the proteins/phospho-sites displayed in the figures, and comparisons to

previous studies (S3 Fig), largely substantiate the dataset. However, further analysis is neces-

sary to biologically confirm the targets appointed through our study.

We compared our proteomic expression results to previously published studies including

conventional assays (eg. western blot and histology) as well as GWAS and transcriptome anal-

yses. Together this helped validate our proteomic and prioritize interesting proteins for analy-

sis. From this meta-analysis, we found that the host response to T. cruzi is significantly

correlated across distinct organs and that chagasic hearts follow gene expression profiles simi-

lar to other cardiomyopathies. We also found a number of proteins that were differentially

expressed in our proteomic data and possessed SNP-associations to Chagas disease progres-

sion. Notable among these is retinol-binding protein 1 (RBP1), which was significantly

increased upon infection and linked to Chagas cardiomyopathy through GWAS studies[52].

Rbp1 functions in the uptake and storage of retinol (vitamin A)[73], a molecule with anti-oxi-

dant[74] and immune-related[75] activities. Further, isotretinoin, a naturally-occurring deriv-

ative of retinol[76] has been shown to have promising trypanocidal effects in the nanomolar

concentration range[77]. Due to the high structural similarity of retinol and isotretinoin, it

seems plausible that increased Rbp1 could also increase intracellular isotretinoin concentra-

tions, acting as a host defense mechanism against T. cruzi or chronic inflammation. Treatment

of T. cruzi infections with vitamin C has been shown to have myocardial protective effects[78]

and retinol can help defend against many forms of cardiovascular disease[74], however, treat-

ment of T. cruzi infections with either retinol or isotretinoin has not yet been tested.

Other interesting groups of proteins include immune-related proteins, with both described

and previously undescribed associations with Chagas disease. For example, we verified previ-

ous reports of an upregulation of the adhesion molecules VCAM1 and ICAM1[48] and the

chemokine CCL8[54] which is thought to enable excessive immune infiltration. Previous stud-

ies identified CCL5 as a primary contributor to immune influx[47]. Both CCL5[79] and CCL8

[80] can interact with CCR1, CCR3 and CCR5 on target cells inducing immune recruitment to

the site of inflammation. Their co-expression increase suggests a redundant mechanism in the

chemotaxis and could result in excessive immune infiltration.

A striking finding in our standard proteomic data was the increase in nearly the entire fam-

ily of guanylate binding proteins (GBPs). Previous studies have indicated an increase of

expression of GBP2 and GBP6 following T. cruzi infection in both the heart and the placenta

[53, 54], but not in response to genetic cardiomyopathies[39]. However, our findings include

the additional family members: GBP2B, GBP4, GBP5, GBP7 and GBP9. GBPs are induced by

IFN-γ as a host defense against invading pathogens[81, 82] and are thought to function as a

complex, supporting the precise co-regulation observed in the present study. Of note, GBP1,

along with GBP2, 4 and 5, has been shown to localize to T. gondii containing vacuoles[83].

Further, it has been shown that mice deficient in GBP2 are highly susceptible to T. gondii
infections[84]. While GBP1 was demonstrated to not co-localize with T. cruzi[83], the alter-

nate GBPs detected in our experiments might be involved in host recognition of T. cruzi. This

data demonstrates a mechanism of host response to T. cruzi that is conserved in multiple

organs and highlights the additional proteins that are co-regulated in the heart. These results

warrant further investigation into which specific GBPs functionally respond to T. cruzi and the

ultimate consequences of this interaction.

In contrast to the proteins with increased abundance mentioned above, we detected a

strong signature of mitochondrial proteins being significantly downregulated following infec-

tion. The dysfunction in mitochondria following T. cruzi infections is well known[33], but

poorly understood. Previous studies have exhibited T. cruzi co-localizing with mitochondria
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via their single flagella[85]. Mitochondrial dysfunction is described to start in the acute phase

of the infection, continuing to a reduction of oxidative phosphorylation capacity in the heart

of mice during chronic infection[86]. In addition, a decline in the activities of the respiratory

complex III and antioxidant enzymes (MnSOD and GPX) as well as in GSH contents has been

observed in chronic Chagas patients[87]. With respect to chronic T. cruzi mouse infections,

the current study, supported in part by previous transcriptome analyses[54], have demon-

strated a decrease in many mitochondrial proteins. Our analyses have identified NDUFs and

CoA-containing enzymes as primary contributors to this observed mitochondrial signature.

NDUFs and CoA-containing enzymes are involved in many metabolic functions including

electron transport and fatty acid synthesis. Intriguingly, it has been demonstrated that T. cruzi
actively scavenges host long-chain fatty acids to promote its intracellular survival, a mecha-

nism that was further validated by showing reduced parasite proliferation in fibroblasts lacking

de novo triacylglycerol biosynthesis[88]. The downregulation of NDUFs and CoA enzymes in

the heart may reflect a host effort to effectively starve out the parasite. Unfortunately, this

decrease in mitochondrial function can also contribute to cardiomyopathy progression[89].

By identifying the specific proteins involved, it may be possible to target therapeutic

approaches that enhance myocyte function and survival while simultaneously starving the par-

asite. As such, our studies reinforce previously described interplays of host-parasite lipid

metabolism and highlight specific host proteins likely to be involved.

In addition to total protein expression, our analysis captured the first shotgun, phospho-

proteomic analysis of the interaction of T. cruzi with host cells in vivo. We found drastic alter-

ations in host phosphorylation status following infection as evidenced by significant changes

of phospho-site abundance in 353 unique phospho-proteins. Functional protein association

analysis[41] highlighted potential key players, which sat central to the network with large num-

bers of phosphorylation changes (up to 23 distinct phospho-peptides significantly altered).

Specifically, SPEG, Tensin 1, BAG3, SORBS1/2 and a number of myosin-related proteins

(MYH6, MYBPC3, MYO18A, MYL2, MYOM1, MYOZ2) emerged as integral components of

this network. Of note, all of these proteins have been linked to proper heart function and/or

implicated in the development of cardiomyopathies[90–99]. Thus, their differential phosphor-

ylation in response to T. cruzi may be mechanistically related to the development of severe dis-

ease states.

Chronic Chagas disease drives severe inflammation and fibrosis in the heart, and our phos-

pho-proteomic analyses found substantial evidence that the primary implicated intracellular

signaling pathways are c-Jun N-terminal kinase (JNK) and p38. First, we found elevated phos-

phorylation of p38 at Y182, a known activation site. Second, we detected an increase in phos-

phorylation of NDRG2, a cell-stress related protein. Phosphorylation of p38 has been

described for in vitro models of T. cruzi infection in colon cells (18) and cardiac fibroblasts

[21]. p38 was also found increased during T. cruzi acute infection[100], but our data shows for

the first time that p38 might be implicated in chronic Chagas cardiomyopathy in a model that

displays clinical symptoms of heart failure. Overexpression of NDRG2 has been shown to

increase p38 phosphorylation[58], suggesting it can function upstream. The observed increase

in phosphorylation of NDRG2 provides further evidence for activation of this pathway.

Finally, our dual kinase-substrate prediction analysis reported an increase in JNK activity, par-

ticularly at phospho-sites within the motifs PxSpP and SPxxSp. Of note, many of the highly

altered phospho-proteins of interest mentioned above possess predicted JNK target sequences,

suggesting downstream involvement in this signaling pathway. Together, this data supports a

central role of JNK and p38 signaling pathways in Chagas disease progression and identifies

new components both up- and downstream.
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NDRG2 also targets other signaling pathways. Reports from cancer studies demonstrated

that NDRG2 inhibits c-Myc expression by suppressing the expression of β-catenin[101] and

reduces c-Jun phosphorylation and cyclin D1 expression resulting in suppression of cell prolif-

eration in human colon carcinoma cells[102]. NDRG2 can also activate glycogen synthase

kinase 3β (GSK-3β), impacting β-catenin signaling[103] and potentially contributing to car-

diomyopathy establishment as the GSK3 family has been implicated in the regulation of car-

diac remodeling downstream of the PI3K–Akt pathway[104]. NDRG2 has been described to

be involved in survival-associated proteins and pathways with an anti-apoptotic effect, repress-

ing the apoptotic activator Bcl-2-associated X protein (BAX)[105]. In addition, NDRG2

expression inhibits signal transducer and activator of transcription 3 (STAT3) activation[106],

which can result in dysregulation of the mitochondria[107] and possibly be involved in the

mitochondrial dysfunction observed in T. cruzi infection. Finally, NDRG2 has been implicated

with the stress response in cardiac ischemia/reperfusion[108]. Altogether, NDRG2 constitutes

a new therapeutic target for treatment of Chagas chronic cardiomyopathy.

In addition to activation of JNK and p38 pathways above, our analysis predicted an activa-

tion of IKKB, MNK1 and DYRK2 and suppression of CK2, CSNK1D and VRK2. Activation of

IKKB and MNK1 is logical given the highly inflammatory conditions and activation of JNK/

p38 described above[109, 110]. IKKB phosphorylates the NFKB Inhibitor Alpha in the NFKB

complex, causing dissociation of the inhibitor and activation of NFKB in response to pro-

inflammatory stimuli[111]. MNK1 is a MAPK activated protein (MAPKAP) and functions

downstream of p38[112]. Upon activation, MNK1 phosphorylates downstream substrates, pri-

marily involved in translational regulation, including eIF4E and eIF4G[112, 113]. While we

didn’t detect any spectra assigned to eIF4E, we detected significant increases in phosphoryla-

tion of eIF4G at both S1231 and S1238, further reinforcing activation of this pathway. DYRK2

functions to regulate cell cycle and proliferation[114], apoptosis[115] and organization of the

cytoskeleton[116]. We predicted DYRK2 to phosphorylate a number of interesting proteins

from our phospho-hits including SPEG, BAG3, NDRG2, MYBPC3 and MYO18A. The poten-

tial for DYRK2 to phosphorylate these central proteins and also affect cytoskeletal organization

make it an interesting finding for further interrogation. Finally, we noted an intriguing down-

regulation of CK2, CSNK1D and VRK2 activity, all kinases related to casein kinase families.

VRK2 has been previously shown to downregulate JNK activity[117, 118]. Further, CSNK1D

has been hypothesized to be phosphorylated by p38 at a regulatory site, reducing its activity

[119]. Thus, the inactivation of these kinases further supports JNK and p38 activation in our

model. On the other hand, there are conflicting reports on the impact of CK2 on JNK activity

in response to inflammation[120–123]. It is important to note that, while CK2 activity was pre-

dicted to decrease, this finding was primarily linked to sites within SpxxE motifs. A nearly

equivalent number of other CK2-predicted sites were found to be increased; however, they

showed no bias toward the SpxxE motif. These results demonstrate a decrease in CK2 activity

against specific sites, suggesting the specificity of CK2 may be altered rather than a global

decrease in activity.

We conclude our study by identifying FDA approved drugs that could be repurposed for

the treatment of Chagas disease in the chronic phase. This analysis indicates that therapeutic

targeting of the central kinases highlighted herein (such as JNK, p38 and IKKB) could be an

effective means to influence a variety of downstream proteomic and phospho-proteomic alter-

ations. Fostamatinib, a kinase inhibitor recently approved for rheumatoid arthritis and

immune thrombocytopenic purpura[124], has affinity for all these targets and thus represents

a means to simultaneously disrupt these key signaling pathways. On the other hand, targeting

a particular group of downstream effectors (eg. complement proteins, NDUFs, and the protea-

some) could be implemented as a more focused therapy. For example, zinc supplementation
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has been shown to reduce complement activity in age-related macular degeneration[125].

Effectively blocking complement deposition could reduce the disease burden associated with

high inflammatory conditions of the chagasic heart. Interestingly, we identified a large number

of antibody-based, anti-inflammatory therapeutics (Efalizubmab, Natalizumab, etc.) that also

interact with complement proteins (C1QA and C1QB), as well as EGFR and immune adhesion

molecules (ICAM1, ITGAL). These targeted therapies may be useful in reducing the inflam-

matory conditions of the heart, particularly when used in combination with zinc or other

immuno-modulatory agents. As with any immune suppressing drugs, there is an increased

risk of infection for patients taking the medication[126]. Further, excessive zinc can also lead

to immune dysfunction[127]. Determining which approach would be most effective at reduc-

ing disease burden, while simultaneously preserving normal cardiac function and immune sys-

tem health, would represent a critical step toward developing new therapeutic options for

Chagas cardiomyopathies. A thorough assessment of the impact of the identified pharmaco-

logical agents on disease progression should be pursued to build further evidence for the roles

of these proteins and tease out precise mechanisms of action.

Overall, this study presents a comprehensive view of the molecular underpinnings of chaga-

sic hearts. We identify specific host pathways and proteins that respond to T. cruzi infections

at both the raw protein and phospho-site abundance levels. As expected, we found a predomi-

nantly IFN-driven immune response as evidenced by infiltration of immune cells and activa-

tion of the JNK and p38 pathways. We also found a downregulation of many mitochondrial

proteins which may be linked to the known mitochondrial defects observed in T. cruzi infec-

tions. Our phospho-proteomic analyses revealed potential up- and downstream mediators of

JNK, p38 and NDRG2 signaling and identified additional kinase families that may be activated

or repressed. Finally, we highlight and discuss the potential repurposing of FDA approved

drugs for the reduction of Chagas disease burden. Together, these studies provide a systems-

level overview of chagasic hearts and sets the groundwork for future studies to validate the

functional consequence of these alterations.

Methods

Experimental design and statistical rationale

Multiplexed, quantitative MS experiments were performed in independent, biological dupli-

cate (two mice per condition). P-values for altered proteins and phospho-sites were deter-

mined by Student’s t-test with Welch’s correction if the variances were unequal. Pi scores[40]

corresponding to alpha < 0.05 were considered significant. No adjustment for multiple

hypothesis testing was performed. Quantitative data was binned and plotted to ensure normal

distributions. Due to the low numbers of replicates assessed, we performed a thorough com-

parison of our results to previous studies[53–55] (S3 Fig) and validated key findings using

western blot.

Ethics statement

Research utilizing animals adhered to the Animal Welfare Act and Regulations (USDA/

APHIS), Public Health Service Policy on Humane Care and Use of Laboratory Animals

(OLAW/PHS Policy, AVMA Guidelines for the Euthanasia of Animals: 2013 Edition, and

complied to the principles stated in the Guide for the Care and Use of Laboratory Animals,

National Research Council, 2011. The facility where this research was conducted is fully

accredited by the Association for Assessment and Accreditation of Laboratory Animal Care

International. Animal research was conducted under approved protocol S14187 from the

Institutional Animal Care and Use Committee, University of California, San Diego.
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Animals

Six week old female C57Bl/6 mice, weighing 16–18 g were used for the animal experiments.

Mice were housed and kept in a conventional room at 20 to 24˚C under a 12 hour (hr)/12 hr

light/dark cycle. The animals were provided with sterilized water and chow ad libitum.

Chagas disease infection model

T. cruzi Sylvio X10/4 was maintained in C2C12 myoblasts culture. After 5–7 days of passage of

cells and parasites, trypomastigotes released in the supernatant were collected after centrifuga-

tion for 15 minutes (min) at 3300 rpm, re-suspended in Dulbecco’s Modified Eagle Medium

(DMEM), and used to infect mice by intraperitoneal injection with 1x106 trypomastigote form

of T. cruzi/mouse. The infected groups were age and sex matched with uninfected controls and

kept under the same conditions. The general health of the mice was evaluated weekly for one

year. At 1-year post infection, the development of heart disease was monitored by electrocardi-

ography at Seaweed Canyon Cardiovascular Physiology Laboratory, Institute for Molecular

Medicine, UCSD. After ECG analysis of the mice, heart tissue was collected for further analysis.

Surface ECG

Adult mice were anesthetized with isoflurane (5% induction, 1–1.5% maintenance in 100%

oxygen) and placed on a warming pad (35˚C– 37˚C). Needle electrodes made of 27-gauge nee-

dles were inserted subcutaneously into each of the four limbs and the chest area. Simultaneous

standard ECG leads I, II, and chest leads were recorded at a frequency response of 0.05–500

Hz. The signal was digitized and recorded at 2,000 Hz on LabChart (ADinstruments).

Histology

Upon euthanasia, the hearts were collected from the mice and cut in half in the sagittal orienta-

tion, placed in cryomolds, embedded in Tissue-Tek (O.C.T., Sakura Finetek) and snap frozen

in liquid nitrogen. Samples were sectioned in a cryostat, fixed in buffered formalin and stained

with hematoxylin and eosin or Sirius Red/Fast Green to stain collagen fibers. The slides were

scanned using Nanozoomer Slide Scanner (Hamamatsu Photonics, NJ, USA) and images were

obtained through NDP viewer software (Hamamatsu Photonics, NJ, USA).

Histopathology analysis

Levels of inflammation and fibrosis were quantified as previously described[128]. Briefly, 5 ran-

dom images of mouse hearts (10X magnification) were obtained from each animal, comprising

most of the heart section area. Lymphocyte nuclei was segmented through the Particle Analyzer

Image processing plugin from FIJI software[129], and lymphocyte nuclei were counted. To

measure fibrosis, the red staining of collagen fibers was segmented through color thresholding,

and the area fraction of collagen was measured in the generated binary image after segmenting.

Tissue lysis and protein digestion

Heart tissue was homogenized in a buffer consisting of 3% SDS, 75 mM NaCl, 1 mM β-glycer-

ophosphate, 1 mM NaF, 1 mM Na3VO4, 10 mM Na4P2O7, 1 mM phenylmethanesulfonyl fluo-

ride and 1X Roche cOmplete mini EDTA free protease inhibitor in 50 mM HEPES, pH 8.5.

Homogenization was conducted using a bead beater 3X for 1 min each time with a 1 min rest

in between each session. Homogenates were sonicated for 5 min in a water bath sonicator to

ensure complete lysis. Lysate supernatants were transferred to a new tube and any remaining
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cellular debris was pelleted via centrifugation (5 min, 16,000 x g, 4˚C). The resulting, clarified

supernatant was processed for downstream analysis.

Proteins were denatured by addition of an equal volume of 8 M Urea, 50 mM HEPES, pH

8.5. Disulfide bonds were reduced and alkylated by sequential addition of DTT and IAA,

respectively[130]. The proteins were then precipitated using methanol and chloroform as pre-

viously described[131]. Precipitated proteins were dried on a heat block before being resus-

pended in 1 M Urea 50 mM HEPES, pH 8.5 for digestion. Protein digestion was performed in

a two-step process by digesting with LysC overnight at room temperature (RT) followed by

digesting with trypsin for 6 hrs at 37˚C. Digested peptides were desalted using C18 solid-phase

extraction[132]. Desalted peptides were dried in a speed-vac, resuspended in a buffer com-

posed of 50% acetonitrile/5% formic acid and quantified using the Thermo Fisher Colorimet-

ric Peptide Quant Assay according to manufacturer instructions. From each sample, a 50 μg

aliquot was taken for standard proteomic analysis while the rest of the sample was saved a

phospho-peptide enrichment protocol. Aliquots of peptides were dried in a speed-vac prior to

subsequent analyses.

Enrichment of phospho-peptides

Phospho-peptides were enriched by TiO2 beads as previously described[38]. Briefly, the fol-

lowing buffers were made. Binding buffer: 2 M lactic acid, 50% acetonitrile; wash buffer: 50%

acetonitrile/0.1% trifluoracetic acid; elution buffer: 50 mM KH2PO4, pH 10. TiO2 beads were

washed (once with binding buffer, once with elution buffer and twice with binding buffer).

Peptides were resuspended in binding buffer, mixed with beads at a ratio of 1:4 (peptides to

beads) and vortexed at RT for 1 hr. Beads were then washed three times with binding buffer,

followed by three times with wash buffer. Phospho-peptides were eluted from the beads with

elution buffer (two 5 min incubation while vortexing). Enriched peptides were desalted with

solid-phase extraction columns then lyophilized and stored at −80˚C until they were labeled

for quantitation.

TMT labeling and bRPLC

Samples were labeled with tandem mass tags (TMT) 10-plex reagents for multiplexed, quanti-

tative proteomics[133, 134]. TMT reagents were used to label the digests in random order.

Labeling was conducted for 1 hr at RT and was quenched by addition of 9 μl of 5% hydroxyl-

amine. Samples were then acidified by addition of 50 μl of 1% Trifluoroacetic acid (TFA) and

pooled. The pooled, multiplexed samples were desalted using C18 solid-phase extraction as

above.

Fractionation was carried out by basic pH reverse-phase liquid chromatography with frac-

tion combining as previously described[132]. Briefly, samples were solubilized in 110 μl of 5%

formic acid/5% acetonitrile and 100 μl was separated on a 4.6 mm x 250 mm C18 column on

an Ultimate 3000 HPLC. The resultant 96 fractions were combined into 24 distinct fractions

and dried prior to multiplexed LC-MS3 analysis.

LC-MS2/MS3 analysis

LC-MS2/MS3 was performed using an Orbitrap Fusion MS equipped with an in-line Easy-nLC

1000 and chilled autosampler. Fraction were resuspended in 5% acetonitrile/5% formic acid

and separated on a home-pulled, home-packed column (I.D. 100 μm, O.D. 360 μm) filled with

~0.5 cm of 5 μm C4 resin, ~0.5 cm of 3 μm C18 resin and ~29 cm of 1.8 μm C18 resin for a total

length of 30 cm. Peptides were eluted using a gradient of 11 to 30% acetonitrile in 0.125% for-

mic acid over 165 min followed by 15 min of 100% acetonitrile for a total of 180 min analysis
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time per fraction. The column was heated to 60˚C and electrospray was induced by applying

2000 V through a stainless-steel T-junction connecting the column to the LC.

MS1 spectra were acquired in data dependent mode with a scan range of 500–1200 m/z and

a resolution of 60,000. Automatic gain control (AGC) was set to 2 x 105 with a maximum ion

inject time was 100 ms and a lower threshold for ion intensity of 5 x 104. Ions selected for MS2

analysis were isolated in the quadrupole at 0.5 Th. Ions were fragmented using collision-

induced dissociation (CID) with a normalized collision energy of 30% and were detected in

the linear ion trap with a rapid scan rate. AGC was set to 1 x 104 and a maximum inject time of

35 ms. MS3 analysis was conducted using the synchronous precursor selection (SPS) option to

maximize TMT quantitation sensitivity[135]. Up to 10 MS2 ions were simultaneously isolated

and fragmented with high energy collision induced dissociation using a normalized energy of

50%. MS3 fragment ions were analyzed in the Orbitrap at a resolution of 60,000. The AGC was

set to 5 x 104 using a maximum ion injection time of 150 ms. MS2 ions 40 m/z below and 15

m/z above the MS1 precursor ion were excluded from MS3 selection.

Peptide identification by proteome discoverer

Resultant data files were processed using Proteome Discoverer 2.1. MS2 data were queried

against the Uniprot mouse database (downloaded: 05/2017–59,010 entries) using the Sequest

algorithm[136]. MS2 data were also queried against the T. cruzi proteome derived from a

NCBI genome sequence (downloaded: 09/2017–10,809 entries), but, due to minimal spectrum

matches, these data were not included in downstream analyses. A decoy search was also con-

ducted with sequences in reversed order[137, 138]. For MS1 spectra, a mass tolerance of

50 ppm was used and for MS2 spectra a 0.6 Da tolerance was used. Static modifications

included TMT 10-plex reagents on lysine and peptide N-termini and carbamidomethylation

of cysteines. Variable oxidation of methionine and phosphorylation of serine, threonine and

tyrosine residues were also included in the search parameters. The digest specificity was set to

fully tryptic with up to two missed cleavages. Data were filtered to a 1% peptide and protein

level false discovery rate using the target-decoy strategy[137, 138].

Data processing and analysis

Reporter ion intensities were extracted from MS3 spectra for quantitative analysis[135, 139]. Pro-

tein-level quantitation values were calculated by summing signal to noise values for all peptides per

protein meeting the specified filters. Data were normalized in a two-step process as previously

described[140]. First, the values for each protein were normalized to an average value of all the

samples in the experiment. Then, the values were normalized to the median of each reporter ion

channel. Phospho-peptides were normalized the same with the following changes. First, phospho-

peptides were summed to the unique peptide level rather than protein level. Second, phospho-pep-

tide abundance was normalized to their respective total protein abundance from the standard

proteomic experiments. Treatment conditions were compared using an unpaired Student’s t-test

with Welch’s correction if the variances were unequal. Pi score[40] was used as a final measure of

significance and to rank interesting hits. Gene ontology[42, 43] and functional protein association

networks[41] were used to identify enriched groups of related proteins. PTMphinder[60] was used

to extract protein locations and flanking motifs and motif-x[62, 141] was used to identify enriched

motifs. GPS[59] was used to predict active kinases and their corresponding sites on target proteins.

Western blot analysis

Western blots were performed on identical samples to the proteomic experiments. Samples

were prepared by grinding minced pieces of heart tissue with mortar and pestle using lysis
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buffer (50 mM Tris, 150 mM NaCl, 1% Triton X-100, pH 8.0) containing 1X Roche cOmplete

mini EDTA-free phosphatase inhibitor and protease inhibitor cocktails (2 mM AEBSF, 0.3 μM

Aprotinin, 130 μM Bestatin, 1 mM EDTA, 14 μM E-64, and 1 μM Leupeptin—Sigma Chemical

Co.). After separating 20 μl for protein quantification, 4X Laemli buffer (Bio-Rad) + 25mM of

DTT was added and the samples were boiled at 100 oC for 5 min to guarantee complete inacti-

vation of phosphatases. The protein concentration was determined, and 10 μg or 20 μg of total

protein extracts were subjected to electrophoresis on a 12% polyacrylamide gel containing SDS

(SDS-PAGE). The electrophoretic separated proteins were transferred to nitrocellulose mem-

branes and incubated for 1 hr at 4˚C with blocking buffer consisting of 25 mM Tris, 150 mM

NaCl and 0,05% Tween 20 (TBST), 3% non-fat dry milk (Molico) and 0.1% Tween 20. After

blocking, the membranes were incubated with anti-IRGM1 (1:200; ABclonal Technology),

anti-phosphorylated NDRG2 (1:1000; Signalaway Antibody, recognizes Phospho-T348), anti-

total NDRG2 (1:500; ABclonal Technology), anti-phosphorylated p38 (1:200; Santa Cruz Bio-

technology, recognizes Phospho-Y182) antibodies for 18 hrs at 4˚C. Anti-GAPDH antibodies

(1:100; Santa Cruz Biotechnology) were used as internal controls. The membranes were then

washed with 1X TBST and incubated for 1 hr at room temperature with anti-rabbit (1:20,000)

or anti-mouse (1:30,000) peroxidase conjugated antibodies (Pierce Biotechnology) in blocking

buffer. The membranes were washed, and the peroxidase was revealed by chemiluminescence

using the Super Signal West Pico (Pierce Biotechnology) kit, imaged by ChemiDoc MP Imag-

ing System (Bio-Rad). Densitometry of the resulting bands was performed with the Image J

program (http://rsbweb.nih.gov/ij/).
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S1 Fig. Extended Overview of Proteome/Phospho-proteome Results. A, Proportion of phos-

pho-peptides with corresponding total protein levels detected in the standard proteomic work-

flow. B, Percent coefficient of variation (% CV) of biological replicates from standard and

phospho-proteomic workflows. C, Correlation matrix of biological replicates from standard

proteomic workflow. D, Correlation matrix of biological replicates from phospho-proteomic

workflow. E, Volcano plot of standard proteins. F, Volcano plot of phospho-peptides. For vol-

cano plots, significantly altered features (pi score< 0.05) are highlighted in blue (decreased

expression upon infection) or red (increased expression upon infection).
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S2 Fig. Concordance of Proteome Findings with Previous Studies. A, Significantly altered

proteins detected in the standard proteomics experiments known to be altered during Chagas

disease. B, Immune cell marker proteins detected in standard proteomic experiments. C, Pro-

teins that overlap between the standard proteomic experiments and a GWAS of Chagas com-

plications. D, Correlation matrix of significantly altered genes in organ-level Chagas infections

and genetic cardiomyopathies. E, Scatter plot of significantly altered genes in chagasic hearts at

the protein and RNA level with pie chart of direction agreements. F, Scatter plot of signifi-

cantly altered genes in chagasic hearts (protein level) and placentas (RNA level) with pie chart

of direction agreements. G, Scatter plot of significantly altered genes in chagasic hearts (pro-

tein level) and DCM hearts (RNA level) with pie chart of direction agreements. H, Scatter plot

of significantly altered genes in chagasic hearts (protein level) and HF hearts (RNA level) with

pie chart of direction agreements. (DCM–dilated cardiomyopathy; HF–heart failure). Signifi-

cance is noted in reference to the pi score cutoffs for respective significance thresholds (� - α<
0.05; �� - α< 0.01; ��� - α< 0.001; ���� - α< 0.0001).
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S3 Fig. Phospho-protein Families with Numerous Significantly-Altered Phospho-peptides.

A, Bar graphs of significantly altered SORBS1 phospho-peptides. B, Bar graph of total SORBS1

protein. C, Bar graphs of significantly altered SORBS2 phospho-peptides. D, Bar graph of total

SORBS2 protein. E, Bar graphs of significantly altered MYH6 phospho-peptides. F, Bar graph

of total MYH6 protein. G, Bar graphs of significantly altered MYBPC3 phospho-peptides. H,

Bar graph of total MYBPC3 protein. I, Bar graphs of significantly altered MYO18A phospho-

peptides. J, Bar graph of total MYO18A protein. K, Bar graphs of significantly altered MYL2

phospho-peptides. L, Bar graph of total MYL2 protein. M, Bar graphs of significantly altered

MYOM1 phospho-peptides. N, Bar graph of total MYOM1 protein. O, Bar graphs of signifi-

cantly altered MYOZ2 phospho-peptides. P, Bar graph of total MYOZ2 protein. Significance is

noted in reference to the pi score cutoffs for respective significance thresholds (� - α< 0.05; ��

- α< 0.01; ��� - α< 0.001; ���� - α< 0.0001).

(TIFF)

S4 Fig. Overview of Kinase Prediction Results. A, Bar graph depicting number of unique

kinases predicted in each kinase group. B, Pie chart depicting proportion of predicted target sites

for each kinase group. C, Proportion of predicted target sites with increased and decreased abun-

dances. D, Proportion of predicted target sites with increased and decreased abundances stratified

by kinase group. E, Proportion of predicted target sites with increased and decreased abundances

stratified by kinase family. F, Proportion of predicted target sites with increased and decreased

abundances stratified by individual kinases. For C-F significance was determined by a Chi-

squared test (� - α< 0.05; �� - α< 0.01; ��� - α< 0.001; ���� - α< 0.0001).
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