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A B S T R A C T

Glomeruli are histological structures of the kidney cortex formed by interwoven blood capillaries, and are
responsible for blood filtration. Glomerular lesions impair kidney filtration capability, leading to protein loss
and metabolic waste retention. An example of lesion is the glomerular hypercellularity, which is char-
acterized by an increase in the number of cell nuclei in different areas of the glomeruli. Glomerular hy-
percellularity is a frequent lesion present in different kidney diseases. Automatic detection of glomerular
hypercellularity would accelerate the screening of scanned histological slides for the lesion, enhancing
clinical diagnosis. Having this in mind, we propose a new approach for classification of hypercellularity in
human kidney images. Our proposed method introduces a novel architecture of a convolutional neural net-
work (CNN) along with a support vector machine, achieving near perfect average results on FIOCRUZ data set
in a binary classification (lesion or normal). Additionally, classification of hypercellularity sub-lesions was
also evaluated, considering mesangial, endocapilar and both lesions, reaching an average accuracy of 82%.
Either in binary task or in the multi-classification one, our proposed method outperformed Xception,
ResNet50 and InceptionV3 networks, as well as a traditional handcrafted-based method. To the best of our
knowledge, this is the first study on deep learning over a data set of glomerular hypercellularity images of
human kidney.

1. Introduction

Digital histopathology is a research field that exploits digital images
for the analysis of tissue samples. The digital pictures are obtained ei-
ther by scanning histological whole-slide-images (WSIs) or by collecting
snapshots of histological structures relevant for the diagnosis of dis-
eases [2]. This approach makes gathering large-scale data sets of his-
tological lesions easier to review or to exchange information among
pathologists without the inconvenience of working with the actual glass
slides. The evolution of the computer vision field impacted the entire
digital medicine, supporting pathologists on the automatic analysis of
various types of medical images, as well as improving the accuracy of
computer-aided diagnosis [28,27].

In the special case of renal histopathology, disease markers are
mostly found in the glomeruli, presenting highly diverse and hetero-
geneous characteristics. The glomerulus is a histological structure from
the kidney cortex, formed by a network of capillaries charged of per-
forming blood filtration. As an elementary filtering structure, it is tar-
geted with many primary and systemic diseases, leading to different
patterns of glomerular lesions. Finding and classifying glomerular le-
sions are fundamental steps toward the diagnosis of many kidney dis-
eases. These tasks rely on the expertise of pathologists and much effort
has been made to better define and create consensus about relevant
lesions. In fact, after successive discussion and validation studies in the
field, increased consistency has been achieved in the diagnosis and
classification of glomerular renal diseases such as lupus nephritis, IgA
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nephropathy, and rejection of kidney transplant [3,39,23]. Some lim-
iting factors to the performance of histological diagnosis are the com-
plexity of lesions, which, in some cases, may impair a clear definition in
terms of criteria and consequently a suitable agreement among pa-
thologists [4].

Particularly, glomerular hypercellularity is a frequent lesion found
in kidney biopsies, defined by an increase in the number of cells in the
glomeruli. This type of lesion is an integral component of many glo-
merular diseases such as proliferative and membranoproliferative glo-
merulonephritis, being a marker of activity in lupus and IgA nephro-
pathy [3,39]. Hypercellularity can be identified by a careful look at the
histological sections from the glomeruli, searching for the presence of
agglomerates formed by four or more cell nuclei in the mesangial area
(mesangial hypercellularity), or by cell aggregates that fill the capillary
lumen (endocapillary hypercellularity) [10,14]. Fig. 1 shows the com-
plexity of this problem, illustrating the two types of hypercellularity,
including the cases with both and none lesions.

Although hypercellularity is easy to define and usually easy to be
assessed in histological sections, an agreement among pathologists may
decrease for focal hypercellularity and for occurrences in specific re-
gions of the glomerulus. For instance, a recent report from the IgA
Nephropathy Classification Working Group showed inconsistencies among
specialist even in the use of dichotomous MEST system scores such as E
(endocapillary hypercellularity) and M (mesangial hypercellularity)
[39]. Correct assessment of these scores is crucial for relevant clinical-
pathological correlation, as well as for predicting the patient outcome.

A consistent glomerulus classification can be deemed as an important
and difficult step towards diagnosing a renal disease in a biopsy eva-
luation [30].

Some works have already approached the tasks of glomerulus
identification and segmentation [32,24,35], which are useful in situa-
tions that require an analysis of the entire WSI. Barros et al. [5] pro-
posed a method relying on classical image pre-processing techniques
and a k-nearest neighborhood to classify hypercellularity lesions; that
work used 811 images of human glomeruli (referred here as FIOCRUZ
data set) stained with hematoxylin–eosin (H&E) and periodic acid–-
Schiff (PAS) from a set of biopsy slides. More recently, deep neural
networks outperformed handcrafted features for some tasks on histo-
logical images as well, achieving stunning results in different scenarios
[22,41,34,40,37,20,42,13,16]. In particular to glomerular detection
with deep-learning, Marsh et al. [29] introduced a convolutional neural
network for automatic localization of glomeruli, further classifying
global glomerulosclerosis in donor kidney biopsies for transplantation.

An automated process for glomerular lesion classification would
have many applications, such as: large-scale classification of cases
based on histological images, consistency of morphological classifica-
tion, and identification of tissue markers of disease progression.

1.1. Contributions

Three main contributions are brought here: (i) Instead of using
conventional classification methods as in [5], we propose a CNN-based

Fig. 1. Four glomeruli containing (a) endocapillary, (b) mesangial, (c) both lesion, and (d) no lesion.
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architecture to extract trainable features to represent a glomerulus, (ii)
by using the proposed CNN as a feature extractor, an SVM classifies the
CNN features as a normal or an injured glomerulus, (iii) we also extend
the proposed model for classification of specific hypercellularity lesions
(endocapillary hypercellularity, mesangial hypercellularity, and both),
providing an analysis of the generated features for both binary and
multi-lesion classification. The final CNN-SVM classifier reached near
perfect results in four different train/test splits of the data set in-
troduced in [5]; in the multi-classification task, the same architecture
achieved an average performance of 82% in 10-fold cross-validation,
surpassing Xception, ResNet50 and InceptionV3 networks, as well as
the method propose in [5], this latter modified to deal with multi-class.

2. Classifying glomerular hypercellularity

The classification of a glomerular hypercellularity lesion could be
tackled as defining areas and counting nuclei. If the number of nuclei
per area surpasses a threshold, one can diagnose a glomerulus as with a
hypercellularity lesion. Instead of following this pathologist-annotation
approach, an automatic classification consists of using examples of
histological images to train a classifier. A histological image is a 2-di-
mensional grid of pixels that brings specific information such as colors,
edges, shapes, textures, which can be general or specific to classify a

glomerular lesion. Consequently, conceiving a successful feature ex-
tractor demands some domain expertise, which brings us to the fol-
lowing question: What is the best feature set for classifying glomerular
hypercellularity lesions?

Many feature extraction techniques are available in the literature,
and a specific method could be designed as well. In contrast to con-
ventional classifiers, deep-learning aims to automatically learn hier-
archical feature representations of the input data, without the need of
creating any particular feature extractor [26]. Our work proposes a
novel CNN-based architecture for glomerular hypercellularity classifi-
cation. After training a CNN, it is possible to use a strong classifier on
the convolutional backbone of features. This way, we propose to use a
CNN architecture to extract trainable features, which ultimately will
feed an SVM to carry on the final classification. The proposed archi-
tecture is evaluated for both binary and multi-class classification. The
rationale to use an SVM is based on the main characteristic of this
classifier that is to cast optimization problems, which are convex and
quadratic. Ultimately, these characteristics guarantee that the hyper-
plane found is the optimum one. The second reason is to analyze the
behavior of feature space extracted from the CNN, which empirically
demonstrated to be linear, in our experiments. Linearity in the feature
space is expected to provide faster and higher results.

Fig. 2. Four CNN architectures proposed here: (a) architecture 1 and (b) architecture 2, with four convolutional layers in the backbone; (c) architecture 3 and (d)
architecture 4, with five and six convolutional layers, respectively, in the backbone.
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2.1. Conceiving the proposed CNN architecture

There are several well-established CNN architectures available in
the literature [6], which were designed to be robust to deal with hun-
dreds of different classes. However, these models tend to overfitting,
when trained using few data. Since the data set we used [5] consists of a
small training set, we decided to build our own architecture from
scratch, modifying it accordingly to our needs. The ultimate goal is to
focus on achieving a high accuracy, avoiding overfitting.

A CNN architecture is organized in layers, each one applying a
specific operation. Although there are many variations of CNN archi-
tectures, they share some basic components, such as convolutional,
pooling, and fully-connected layers [17]. The convolutional layer is the
fundamental building block of a CNN model, which is comprised of
various learnable kernels (filters) followed by a nonlinear activation
function. A pooling layer (usually applied after a convolutional layer) is
used to compute feature maps condensed in a smaller representation
with the goal of achieving some invariance. After some convolutional
and pooling operations, the top of the network results in a high-level
representation of the input image, which is more robust than the raw
pixel information, or hopefully than handcrafted features. This type of
architecture requires a fully-connected layer to perform high-level
classification using those features, working as a multilayer perceptron
(MLP) on top of a CNN backbone.

Four architectures were initially implemented and Fig. 2 highlights
the convolutional blocks (CNN backbone) used for feature extraction,
and the MLP blocks (fully-connected layers and final activation) used
for classification. The first architecture was designed in the view of
investigating how the lesion classification behaved using fewer layers.
In addition to the operations previously cited, batch normalization,
regularization, and dropout operations were applied to reduce over-
fitting. The first architecture (Fig. 2a) is composed mainly of four
convolutional layers, with the other operations applied between those
layers, followed by one fully-connected layer. A rectified linear unit

(ReLu) was used as an activation function and max-function for pooling
operations. For the calculation of the class probabilities after the fully-
connected layers, a sigmoid function was first tried, and further
changed to a soft-max function. With this first architecture in mind,
updates were performed based on the stability of the accuracy curve in
the validation set, and other three architectures were proposed
(Fig. 2b–d).

In order to choose the best model among the candidate archi-
tectures, we randomly selected 90% of the data set for training the
model, while using 10% for validation. To deal with the great size of the
data set in memory, we applied a mini-batch strategy, which consists of
using several batches of N images to update the final model (instead of
one single block of data). After each epoch, the proposed architecture
was evaluated by using the validation set. Since we focused on reducing
the overfitting, the more likely architecture to be selected would be the
one with high accuracy and less oscillation in the accuracy. Fig. 3 shows
the accuracy curve for each architecture, illustrating the raise not only
on the accuracy peak, but also on the stability of the curve after several
epochs. Our final CNN architecture (Fig. 2d) consists mainly of six
convolutional layers, five max-pooling layers, followed by three fully-
connected and one soft-max layers for classification. The training
parameters were empirically obtained through several experiments on
the four architectures. The best results using architecture 4 were
achieved by training the deep network using the following parameters:
200 epochs, Adam training algorithm [25], 10−6 of decay rate, batch
size of 32, and a learning rate of 10−4.

2.2. Classifying the CNN features with SVM

After choosing the best architecture, the trained CNN features fed an
SVM, instead of the multi-layer perceptron used for training the model.
This CNN-SVM architecture was evaluated with four kernel functions:
Linear, radial basis function (RBF), polynomial and sigmoid (see Fig. 4).

SVM is a supervised binary classifier, which finds an optimal

Fig. 3. Stability evaluation of CNN architectures. From ‘architecture 1’ to ‘architecture 4’, accuracy reaches stability as the number of training epochs increases. Best
results were achieved with ‘architecture 4’, which used a softmax layer at the top, resulting in a more stable accuracy on the validation set.
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hyperplane to separate the classes of hypercellularity from those of
normal glomeruli by using v support vectors. When these classes are
non-linearly separable, different kernel functions can be used to map
the input vectors to a higher-dimensional space (so-called feature space),
in which the input image can be linearly separated. To classify an input
feature vector, SVM evaluates the sign of a function f(x), given by

= +
=

f x y N x x b( ) sign ( , ) ,
i

v

i i i j
1 (1)

where there are v-support vectors with the model parameters, yi, and a
bias parameter, b, Laplacian coefficients from the dual optimization
problem, αi. N(xi, xj) is a kernel function.

3. Experimental analysis

3.1. Data set

In order to assess the performance of our proposed CNN archi-
tecture, the data set introduced in [5] was used. The data set consists of
811 images, containing 300 images of normal human glomerulus, while
511 images of human glomerulus with hypercellularity. As the images
originated from human kidneys with different diseases, the cellular
component of the hypercellularity varies among the cases. The images
were selected from the digital histological image library of the Gonãlo
Moniz Institute (FIOCRUZ), including cases of all the kidney biopsies
performed for the diagnosis of glomerular diseases in referral ne-
phrology services of public hospitals in Bahia state, Brazil, between
2003 and 2015. The tissue samples were fixed in Bouin's fixative or
formalin–acetic acid–alcohol, included in paraffin. Sections of 2–3 μm
were stained by H&E and PAS. The images were captured using an
Olympus QColor 3 digital camera attached to a Nikon E600 optical
microscope (using 200× magnification). Details of the clinical and
demographic characteristics of the patients from which kidney biopses
were collected are presented in [5]. Due to the requirements of the
research protocol approved by the Ethical committee for research with
human subjects, the images used for building the data set used in this
study were disconnected to the patient information. Therefore, it is not
possible to say anything about the number of images collected from the
biopsy of a given patient.

Considering Oxford MEST, the former binary data set was relabeled
into four classes: Endocapillary (90 images with endocapillary hy-
percellularity), mesangial (238 images with mesangial hypercellu-
larity), endoMes (179 images with both lesions) and normal (304
images with no lesion). In this re-evaluation process using the MEST
criteria for hypercellularity, four images were misclassified as lesioned
glomeruli in the original binary data set used by Barros et al. [5]. This
occurrence led to a difference between the number of normal glomeruli
on the binary corpus (300 images) and on the 4-class (304) data set.

3.2. Methodology

Most of the images have one centered glomeruli only with different
dimensions, varying in height from 205 to 1333 pixels, and in width
from 238 to 1459 pixels. In order to normalize the images, all images

were resized to 224×224 pixels (which is a common input dimension
on several deep learning architectures from the literature) and divided
by 255. For a comparative evaluation considering a binary classifica-
tion, a K-fold cross-validation was applied, varying K as 2, 3, 5 and 10
folds. On each iteration, 1 different fold is used for validation, and the
rest (K−1 folds) is used for training the model. With the best CNN
architecture, we compared the performance of two types of classifiers
on the top of CNN backbone: CNN-MLP and CNN-SVM. Our metho-
dology can be summarized in two steps:

• CNN-MLP: the best architecture is first found by using only 90/10
split without cross-validation. Next, using different values of K, we
applied K-fold cross-validation, analyzing the performance of the
models using different sizes of training and validation data.

• CNN-SVM: For each value of K (folds), we selected the best CNN-
MLP model. Then, we used the CNN features, obtained from the last
layer before the fully-connected MLP, for the input of the SVM (see
Fig. 4).

Finally, for multi classification, we used the same approach as the
binary classification, but without varying the value of K. Since the 4-
class data set is derived from the original data set used for binary
classification, the number of images per class became smaller. This way,
we decided to use K=10 in order to avoid a very small number of
training samples per class. The one-versus-all technique was used to
achieve SVM multi-class outputs. In addition to the comparison with
Barros et al. [5], we also compared the proposed methods (CNN-MLP
and CNN-SVM) with other three state-of-the-art CNN models: Xception
[8], ResNet50 [18] and InceptionV3 [38].

Implementation details: The CNN models were implemented
using Tensorflow [1] and Keras2 on a Python environment. We used the
Scikit-learn [31] implementation of the SVM for the CNN-SVM archi-
tecture. To achieve a more robust training for comparing the CNN
models, we use the training procedures proposed by He et al. [19]. We
used label smoothing, warm-up and cosine decay for the learning rate
schedule, 200 epochs, batch size of 32, learning rate base equal to
0.1 * batch _ s ize/256= 0.125, and Adam optimizer, running on a ma-
chine with 8GB RAM and an NVIDIA GEFORCE GTX 1060. Since the
warm-up approach is more suitable to fine-tuning pre-trained models,
we used this technique only on the Xception, ResNet50 and InceptionV3
models, which had pre-trained weights loaded from Imagenet data set
[11]. These pre-trained weights were fine-tuned on the top layers only,
aiming to keep the rich features learned previously.

3.3. Evaluation metrics

Four metrics were used to evaluate our proposed method: Precision
(P) as the ratio of correctly predicting glomerular hypercellularity, and
the sum of predicted true positive and false positive observations
(whereby high precision is regarded to low false positive rate), recall
(R) as the ratio of correctly predicting glomerular hypercellularity, and
the sum of predicted true positive and false negative observations

Fig. 4. CNN-SVM architecture. From left to right: a glomerulus as an input image in an RGB color space, resized to 224× 224 pixels. After applying architecture 4
(Fig. 2d) for feature extraction, a feature vector with 128 features is generated. Finally, the resultant feature vector is classified by an SVM evaluated by
considering linear, polynomial, RBF and sigmoid kernel functions.

2 https://www.keras.io.
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(whereby high recall is regarded to low false negative rate), f1-score
(F1) as the weighted average of precision and recall (whereby high f1-
score is regarded to high precision and recall rates), and, finally, ac-
curacy (Acc) as the ratio of correctly predicting glomerular hy-
percellularity and normal glomeruli, and the total sum of positive and
negative observations (whereby accuracy is proportional to true posi-
tive and true negative rates, and inversely proportional to false positive
and false negative rates). Since we applied K-fold cross-validation, we
analyzed the models by using the weighted average of the metrics and
their standard deviations, notated with μ before each metric notation:
μP, μR, μF1, and μAcc.

3.4. Evaluating the proposed CNN model for binary classification

The final CNN was evaluated by using the average of the chosen
metrics, observing how the model generalized the classes as the size of
the training and validation set changed. It is noteworthy that a K equals
to 2 represents a split of 50/50, as well as, K equals to 3, 5 and 10
represents 67/33, 80/20 and 90/10, respectively. Since the training set
decreases proportionally to K, we used a technique of online image
augmentation, applying pre-defined random modifications (such as
rotation, horizontal flip, zoom and shift) on each batch. For each value
of K, there were K different validation sets, resulting in K training
processes and K candidate models at the ending of the training. For
example, for K=10, there is one model for each training set combi-
nation, resulting in 10 models. When we evaluate only the CNN-MLP
approach, the average of the metrics were computed with respect to
these 10 models. However, since the aim was using the model as a
feature extractor backbone, the best one out of the 10 candidates was
selected, choosing the one with highest accuracy of all epochs. Table 1
shows the results of training the proposed CNN-MLP model, displaying
the average metrics and their standard deviations for each train/test
split. In general, all the train/test splits returned top results, achieving
accuracies between 98.8% (50/50 split) and 99.6% (90/10 split). As
expected, in the experiments using larger training sets (90/10 split),
better results were achieved, although the worst scenario (50/50 split)
still showed superior values for all the proposed metrics (around 98%)
in comparison with previous work [5] (85%). Another observation is
the small standard deviation on all results, demonstrating the stability
of the model.

3.5. Choosing the best SVM kernel for binary classification

Choosing optimal parameter values for the SVM kernel raises some
questions about the interpretation of the model generated by this
function and the results obtained. These questions were investigated in
several works [7,12,21,15,36]. As shown in Table 2, the CNN-SVM
architecture was evaluated with three parameters of kernel functions:
‘C’, ‘gamma’ and ‘degree’. The regularization parameter ‘C’ is 1 by de-
fault, common to all SVM kernels, trading off misclassification of
training examples against flatness of the solution. A low ‘C’ makes the
classifier flatness smooth, while a high one can lead to overfitting. The
‘gamma’ parameter is usually 1 by default divided by number of fea-
tures, and it is presented in all SVM kernels, but the linear. A small
‘gamma’ value represents a Gaussian distribution of the kernel function
with large variance in such a way that the model might not capture the

Table 3
The best results per SVM kernel on binary classification.

Split Kernel Parameters μAcc

90/10 Linear ‘C’: 1 1.000± (0.000)
RBF ‘C’: 0.1, ‘gamma’: 0.001 1.000± (0.000)
Polynomial ‘C’: 1, ‘degree’: 1, 1.000± (0.000)

’gamma’: 1
Sigmoid ‘C’: 0.01, ‘gamma’: 0.01 1.000± (0.000)

80/20 Linear ‘C’: 0.001 0.994± (0.011)
RBF ‘C’: 0.1, ‘gamma’: 0.01 0.996± (0.010)
Polynomial ‘C’: 0.001, ‘degree’: 1, 0.994± (0.011)

’gamma’: 1
Sigmoid ‘C’: 0.01, ‘gamma’: 0.01 0.996± (0.010)

67/33 Linear ‘C’: 10 0.993± (0.006)
RBF ‘C’: 1, ‘gamma’: 1 0.994± (0.003)
Polynomial ‘C’: 0.001, ‘degree’: 3, 0.994± (0.007)

’gamma’: 2
Sigmoid ‘C’: 1, ‘gamma’: 0.01 0.991± (0.009)

50/50 Linear ‘C’: 0.01 0.988± (0.005)
RBF ‘C’: 10, ‘gamma’: 0.01 0.988± (0.005)
Polynomial ‘C’: 0.001, ‘degree’: 2, 0.988± (0.005)

’gamma’: 1.5
Sigmoid ‘C’: 1, ‘gamma’: 0.01 0.988± (0.005)

The bold values signifies the higher results found in the comparison, for all
splits.

Table 1
Comparison between four different train/test splits with CNN-MLP on binary classification. The average metrics and their standard deviations are given for precision
(μP), recall (μR), f1-score (μF1) and accuracy (μAcc).

Split CNN-MLP

μP μR μF1 μAcc

90/10 0.996(±0.009) 0.997(±0.006) 0.995(±0.012) 0.996(±0.008)
80/20 0.995(±0.008) 0.994(±0.009) 0.996(±0.006) 0.995(±0.007)
67/33 0.995(±0.005) 0.994(±0.005) 0.995(±0.005) 0.995(±0.005)
50/50 0.987(±0.003) 0.987(±0.003) 0.987(±0.003) 0.988(±0.003)

The bold values signifies the higher results found in the comparison, for all splits.

Table 2
Range of parameters to be evaluated for each SVM kernel.

Kernel Function N(xi, xj) Parameter

Linear x xi
T

j ‘C’: [0.001, 0.01, 0.1, 1, 10, 100]

RBF exp(−γ||xi− xj||2 ), where γ refers to gamma ‘C’: [0.001, 0.01, 0.1, 1, 10, 100], ‘gamma’: [0.001, 0.01, 1, 1.5, 2]
Polynomial +x x r( ( ) )i

T
i

d , where γ denotes gamma, r by coef θ and d by degree ‘C’: [0.001, 0.01, 0.1, 1, 10, 100], ‘gamma’: [0.001, 0.01, 1, 1.5, 2], ‘degree’:[1, 2, 3, 4]
Sigmoid +x x rtanh( ( ) )i

T
j , where γ denotes gamma and r is specified by coef θ ‘C’: [0.001, 0.01, 0.1, 1, 10, 100], ‘gamma’: [0.001, 0.01, 1, 1.5, 2]

The bold values signifies the higher results found in the comparison, for all splits.
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“shape” of the data set. When ‘gamma’ is high, the resulting model will
behave similarly to a linear kernel with a set of hyperplanes separating
the points of the two classes; hence, large gamma takes to high bias and
low variance models, and vice-versa. The ‘degree’ parameter is 3 by
default, and used only in polynomial kernel function. This parameter
adjusts the feature space for higher-dimensional interactions. Larger
‘degrees’ tend to overfit the data.

The same range of K values applied to evaluate the CNN was also
used to evaluate SVM. Table 3 shows the best parameter combinations
for each kernel at each split, using accuracy as a metric for optimiza-
tion. It is noteworthy that the linear kernel achieving top results means
that the feature space can be linearly separable. The overall results of
the CNN-SVM approach are summarized in Table 4, showing the per-
formance of the proposed approach using the previously defined me-
trics. For the 90/10 split, all SVM kernels showed perfect μAcc. For the
80/20 split, RBF and sigmoid kernels achieved the highest results. In
the 67/33 split, RBF kernel obtained the best result. In the 50/50 split,
all SVM kernels achieved the same results. Table 5 brings a detailed
comparison between the two proposed approaches and the three state-
of-the-art CNN models along with the method proposed by Barros et al.
[5]. As that previous work [5] did not use the F1-score for evaluation,
we calculated this score based on the precision and recall provided on
the cross-validation stage. Hence, we could compare the three results
using all four metrics, considering 10-fold cross-validation (90/10

split). We used their method to calculate the scores for the other splits.
We can note that the CNN-MLP already outperforms the three deep
models in all train/test splits for all metrics. CNN-SVM achieved the
highest results for all train/test splits except for 50/50, but still out-
performed the three deep models in all splits.

3.6. Extending the proposed architecture to multi-classification

We also proposed the use of our CNN-SVM architecture for classi-
fication of a 4-class data set, including the following classes:
Endocapillary hypercellularity, mesangial hypercellularity, endoMes
(both lesions) hypercellularity, and normal glomerulus. The same

Table 5
Overall comparison between CNN-MLP, CNN-SVM, Xception, ResNet50, and IceptionV3 on binary classification.

Split Model μP μR μF1 μAcc

90/10 Xception 0.995(±0.007) 0.995(±0.008) 0.995(±0.008) 0.995(±0.008)
ResNet50 0.991(±0.010) 0.991(±0.011) 0.991(±0.011) 0.991(±0.011)
InceptionV3 0.990(±0.010) 0.990(±0.010) 0.990(±0.010) 0.990(±0.010)
CNN-MLP 0.996(±0.009) 0.997(±0.006) 0.995(±0.012) 0.996(±0.008)
CNN-SVM 1.000(±0.000) 1.000(±0.000) 1.000(±0.000) 1.000(±0.000)
[5]a 0.923 0.880 0.901 0.883(±0.036)

80/20 Xception 0.991(±0.006) 0.991(±0.006) 0.991(±0.006) 0.991(±0.006)
ResNet50 0.989(±0.007) 0.988(±0.007) 0.988(±0.007) 0.988(±0.007)
InceptionV3 0.986(±0.007) 0.986(±0.007) 0.986(±0.007) 0.986(±0.007)
CNN-MLP 0.995(±0.008) 0.994(±0.009) 0.996(±0.006) 0.995(±0.007)
CNN-SVM 0.996(±0.006) 0.996(±0.007) 0.996(±0.003) 0.996(±0.010)
[5] 0.918(±0.051) 0.845(±0.070) 0.877(±0.035) 0.852(±0.039)

67/33 Xception 0.986(±0.004) 0.986(±0.004) 0.986(±0.004) 0.986(±0.004)
ResNet50 0.985(±0.003) 0.985(±0.003) 0.985(±0.003) 0.985(±0.003)
InceptionV3 0.984(±0.001) 0.984(±0.001) 0.984(±0.001) 0.984(±0.001)
CNN-MLP 0.995(±0.005) 0.994(±0.005) 0.995(±0.005) 0.995(±0.005)
CNN-SVM 0.996(±0.004) 0.996(±0.004) 0.996(±0.001) 0.994(±0.007)
[5] 0.911(±0.023) 0.817(±0.082) 0.859(±0.046) 0.834(±0.045)

50/50 Xception 0.972(±0.003) 0.971(±0.003) 0.971(±0.003) 0.971(±0.003)
ResNet50 0.980(±0.002) 0.980(±0.002) 0.980(±0.002) 0.980(±0.002)
InceptionV3 0.980(±0.004) 0.980(±0.004) 0.980(±0.005) 0.980(±0.004)
CNN-MLP 0.987(±0.003) 0.987(±0.003) 0.987(±0.003) 0.988(±0.003)
CNN-SVM 0.988(±0.008) 0.983(±0.015) 0.985(±0.004) 0.988(±0.005)
[5] 0.908(±0.075) 0.741(±0.189) 0.793(±0.085) 0.775(±0.063)

a μP, μR and μF1 are given, but not their standard deviations in the article. We just list the values in this row as they are in [5].

Table 6
The best parameters per SVM kernel on 4-class classification.

Kernel Parameters μAcc

Linear ‘C’: 0.01 0.815
RBF ‘C’: 1, ‘gamma’: 0.01 0.816
Polynomial ‘C’: 1, ‘degree’: 2 0.820

‘gamma’: 0.01
Sigmoid ‘C’: 10, ‘gamma’: 0.001 0.817

The bold values signifies the higher results found in the comparison, for all
splits.

Table 4
Comparison between four different train/test splits with CNN-SVM on binary classification. The average metrics and their standard deviation are given for average
precision (μP), average recall (μR), average f1-score (μF1) and average accuracy (μACC).

Split CNN-SVM

μP μR μF1 μAcc

90/10 1.000(±0.000) 1.000(±0.000) 1.000(±0.000) 1.000(±0.000)
80/20 0.996(±0.006) 0.996(±0.007) 0.996(±0.003) 0.996(±0.010)
67/33 0.996(±0.004) 0.996(±0.004) 0.996(±0.001) 0.994(±0.007)
50/50 0.988(±0.008) 0.983(±0.015) 0.985(±0.004) 0.988(±0.005)

The bold values signifies the higher results found in the comparison, for all splits.
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binary classification methodology was followed, but now maintaining
K=10 on the cross-validation. As expected, the only modification on
the CNN architecture was the number of dense layers at the top of the
model, since the number of classes was changed. At each fold on cross-
validation, weights from the best CNN-MLP model on binary classifi-
cation were loaded, updating only the number of classes on the last
layer. Then, the whole CNN-MLP model was retrained on the 4-class
data set using the same former training parameters, achieving an
average accuracy of 75.2%. Just as the binary classification, the best

model was selected among the 10 models from each fold of cross-va-
lidation, using the CNN backbone as a feature extractor, feeding an
SVM classifier. The kernel parameters were varied in the same way as in
the former experiments, achieving, as the best result, an average ac-
curacy of 82%. Table 6 shows the parameters of the best results for each
SVM kernel; while Table 7 summarizes the final results for comparison
between CNN-MLP and CNN-SVM along with the other three deep
models and the method proposed by Barros et al. [5]. Even though the
polynomial kernel had achieved the best results, all kernels had similar
scores, proving the robustness of the CNN architecture for feature ex-
traction. Since Barros et al. [5] developed a handcrafted feature ex-
tractor for binary classification, it is expected a lower performance on
4-class classification. This underperformance did not occur when using
deep learning models, which, as explained in Section 2.1, do not depend
on the domain problem. Although the CNN-MLP model has not sur-
passed the three deep models, the proposed model achieved a very close
performance. This behavior may indicate that the 4-class classification
could need a deeper architecture to achieve better accuracy on a full
end-to-end network. Regardless, the CNN-SVM outperformed all the

Fig. 5. t-SNE visualization of the 4-class data set. The CNN feature extractor generates a 128-dimensional feature vector, and the t-SNE algorithm reduces the
dimensionality to a 2-dimensional vector to help the analysis of the clusters.

Table 8
Number of parameters of the evaluated CNN models.

Model # parameters

Xception 22,910,480
ResNet50 25,636,712
InceptionV3 23,851,784
CNN-MLP 1,220,128
CNN-SVM (backbone) 431,904

Table 7
Overall comparison between CNN-MLP, CNN-SVM, Xception, ResNet50, InceptionV3, and the method proposed in [5], on 4-class classification with 90/10 split.

Method μP μR μF1 μAcc

Xception 0.786(±0.050) 0.782(±0.050) 0.775(±0.051) 0.782(±0.050)
ResNet50 0.791(±0.025) 0.782(±0.029) 0.776(±0.028) 0.782(±0.029)
InceptionV3 0.788(±0.037) 0.775(±0.036) 0.772(±0.035) 0.775(±0.036)
CNN-MLP 0.750(±0.041) 0.752(±0.033) 0.740(±0.037) 0.752(±0.033)
CNN-SVM 0.829(±0.038) 0.820(±0.040) 0.819(±0.039) 0.820(±0.040)
[5] 0.518(±0.052) 0.539(±0.004) 0.528(±0.007) 0.539(±0.004)

The bold values signifies the higher results found in the comparison, for all splits.
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other models, proving the robustness of the feature extractor combined
with the SVM classifier.

4. Discussion and conclusions

On binary classification, the two classification approaches (CNN-
MLP and CNN-SVM) achieved high overall results on all metrics with
low standard deviations, as showed in Tables 1 and 4 . The two methods
had close results, with CNN-SVM approach showing a slightly better
performance for every value of K, proving the robustness of the final
proposed model. Despite the unbalanced data set (more samples for

Fig. 6. Six images of misclassified glomeruli with CNN-SVM architecture. From the left to right: (a) endocapillary hypercellularity misclassified as mesangial
hypercellularity, (b) endocapillary hypercellularity misclassified as endoMes hypercellularity, (c) mesangial hypercellularity misclassified as endocapillary hy-
percellularity, (d) mesangial hypercellularity misclassified as endoMes hypercellularity, (e) endoMes hypercellularity misclassified as endocapillary hypercellularity,
and (f) endoMes hypercellularity misclassified as mesangial hypercellularity.

Table 9
Confusion Matrix sum over the 10-fold cross-validation using CNN-SVM model.
The rows represent the predicted classes; the columns represent the true classes.

Endocapillary EndoMes Mesangial Normal

Endocapillary 53 24 13 0
EndoMes 28 122 29 0
Mesangial 9 31 198 0
Normal 0 1 11 292
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lesion than for normal glomeruli), we did not observe the models being
heavily biased on the class with more images. This behavior may be due
to two factors: Image augmentation and feature quality. The process of
image augmentation helped to solve this issue by increasing the number
of images through random modifications on the original training set.
The features obtained from the CNN backbone proved to be highly
suitable for classification using all kernels, achieving an average accu-
racy of 100% on the linear kernel. This outcome demonstrates that,
despite the size of the CNN features (128), these features are linearly
separable, which is an outstanding finding.

A summary of the results of binary classification is presented in
Table 5, displaying the best results of the CNN-MLP and CNN-SVM
models in comparison with other three deep models and the method
proposed by Barros et al. [5] for all splits. To the best of our knowledge,
Barros et al. [5] were the first to address the problem of glomerular
hypercellularity lesion classification so far, what demonstrates that we
achieved an improvement of 12 percentage points in accuracy with our
proposed deep learning-based model on the same data set. The pro-
posed models also outperformed the other state-of-the-art methods with
much fewer parameters, as summarized in Table 8. As the main out-
come, we obtained perfect accuracy with at least 53 times fewer
parameters than the other state-of-the-art deep-learning architectures,
and achieved a linear feature separation.

Considering the 4-class classification, both CNN-MLP and CNN-SVM
models achieved high results, even though the gap between these two
approaches has increased (approximately seven percentage points) for
all metrics, as summarized in Table 7. This behavior may have occurred
due to the difficulty of differentiating the 4 classes, mainly with respect
to the sub-lesions. Another relevant characteristic is the endoMes class,
which contains features that can be confused with both endocapillary
and mesangial hypercellularity. Fig. 5 illustrates the feature space of the
data set plotted using the t-distributed stochastic neighbor embedding

(t-SNE), which is a common technique for visualizing high-dimensional
data into 2-dimensional plots. It is noteworthy that the “no lesion” class
is well separated from the other lesion classes, which explains the 100%
accuracy of the binary classification. The three lesion classes have some
well-defined groups, but these classes also have some areas with quite
an overlap of instances, meaning that images containing endocapillary,
mesangial and endoMes hypercellularity can be very similar. Overall,
the endocapillary class is well separated from the mesangial one, but
the endomes class overlaps between the two groups. To confirm these
findings, we summed the confusion matrices over the 10 folds on cross-
validation of the CNN-SVM best model, and results are shown in
Table 9. One finding was that there is no false negative, indicating a
good performance on differentiating lesion from non-lesion (perfor-
mance already identified on binary classification). The zero false ne-
gative rate is especially important in diagnosis tasks, avoiding that le-
sioned glomeruli to be misclassified as normal ones.

Fig. 6 shows six images misclassified by the CNN-SVM model,
considering every possible error combination. These images depict
complex lesions that may represent a challenge even for ne-
phropathologists (corroborating with the t-SNE visualization). Fig. 6(a)
represents a glomeruli with increased circularity caused by cell pro-
liferation and influx of inflammatory cell with disruption of glomerular
compartments. Fig. 6(b) represents a glomeruli with hypercellularity
combined with mesangial matrix expansion and capillary wall thick-
ening probably by immune complex deposition on the subendothelial
and on the subepithelial aspects of the glomerular basement membrane
burling the limits of glomerular compartments. Fig. 6(c) hypercellu-
larity is combined with capillary wall thickening and partial mesangial
dissolution. In Figs. 6(d) and (f), mesangial and capillary lumen are not
always well defined. We showed these six images to be independently
classified by three pathologists. The results of this analysis are shown in
Table 10. Complete agreement among nephropathologists on the dis-
tribution of hypercellularity was achieved only in two out of the six
images. In diagnostic practice most of the difficulties generated by these
complex lesions are usually solved by examining contiguous tissue
sections of 2-10 μm apart, stained with a variety of techniques to
highlight basement membrane and mesangial matrix such as PAS and
periodic acid-methenamine silver (PAMS).

Even though we have compared pathologist and model predictions
in the consensus analysis, the pathologist and machine classification
processes are very different. Barros et al. [5] used nuclei segmentation
and estimation of the number of clusters for feature extraction, re-
sulting in an understandable set of features for doctors. Our proposed
model (and deep learning models in general) performs feature extrac-
tion using several convolutions and matrix operations, which cannot
return a “human-readable” set of features. However, several

Table 10
Comparison between the pathologists’ labels and the results obtained by the
trained CNN-SVM model. The Pool column represents the majority vote: com-
puter (COMP) or pathologist (PAT).

Image (see
Fig. 6)

Classifier Pool

Pathologist 1 Pathologist 2 Pathologist 3 CNN-SVM

a END END END MES PAT
b END ENDOMES ENDOMES ENDOMES COMP
c MES END ENDOMES END COMP
d MES MES MES ENDOMES PAT
e ENDOMES MES ENDOMES END PAT
f ENDOMES ENDOMES END MES PAT

Fig. 7. Left image: glomerulus with endocapillary lesion. Right image: GRAD-CAM heatmap [33] visualization of relevant regions for the 4-class CNN-MLP model.
The hotter the glomerulus area, the more important is the region to the CNN as a feature.
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visualization techniques have been proposed to interpret deep learning
model predictions, where one of these techniques is the class activation
map (CAM) [43]. Aiming to illustrate a form of visualization of the
model prediction, we used Grad-CAM [33], which is a CAM technique
variation, to “visually explain” the decision of the classifier. Fig. 7
shows a glomerulus with an endocapillary lesion (correctly classified by
the 4-class CNN-MLP model), and in the right, the Grad-CAM visuali-
zation highlighting the important regions for prediction by the CNN-
MLP model. The visualization is a heatmap plotted over the original
image, where the “hottest” regions are more important to the classifi-
cation. One cannot state that the regions relevant to classification are
also pathologically relevant, so we leave this field to future research.

For future work, we are investigating different ways of using a
transfer learning approach to initialize our network with better weights
for generalizing glomerulus image classes, where sufficient training
data exists. Additionally, we plan to expand the number of samples
(now around 31,000 unlabeled images) in the data set, working with
other types of lesions and histological stains used in the pathology la-
boratory for better data analysis. Another work in progress is the au-
tomatic glomerulus segmentation in a WSI containing several glo-
meruli; the goal is to classify each found segmented glomerulus.
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