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Details about the choice of the seven capitals

As explained in our Methods section, we chose capitals that had at least 3 years with Dengue Epidemics (DE) and at
least 3 years without DE in the recent past. The following 9 capitals passed this criterium: Aracajú, Belo Horizonte,
Cuiabá, João Pessoa, Manaus, Recife, Rio de Janeiro, Salvador and São Lúıs. We completed missing data through
linear interpolation and/or usage of alternative sources for precipitation time series given that the CVX routine does
not work well for episodical data events. From the 9 capitals, the following 6 had only single precipitation gaps:
Aracajú, Belo Horizonte, Manaus, Recife, Salvador and São Lúıs. The cities of Cuiabá, João Pessoa and Rio de
Janeiro had big missing data epochs. For Rio de Janeiro we found an alternative source of precipitation data, but
the other two capitals had to be discarded from our analysis.

Completing missing climate data via compressive sensing

The time series of our selected climate dataset contain episodic gaps on days where variables (temperature and
precipitation) were not recorded. To fill in the missing data gaps, we employ two different methods: compressive
sensing and interpolation (see Fig. A for illustrative examples). For temperature time series data with 2 or more
consecutive missing recordings, we use a recently developed compressive sensing method based upon L1-convex
optimization for approximating the missing data [1–5]. The compressive sensing method attempts to reconstruct a
signal from a sparse, subsampling of the time series data. In this case, the sparse subsampling occurs from the fact
that we have missing data. We have chosen to fill in the missing data through this matrix completion procedure
for two reasons: (i) the mathematical methods for handling missing in this way have matured significantly over the
past decade, and (ii) mixing data from two different recording devices (satellite data and ground recording data) is
statistically unjustified. Specifically, the data collected by ground stations at fixed locations are the most reliable
sources of climate information. Satellite data is typically noisier and has less precision, in part, due to the limitations
of its resolution in comparison to ground recordings. Ultimately, using one data source as a proxy for another is its
own statistically interesting, yet challenging, data science problem [6–8].

The signal reconstruction problem is nothing more than a large underdetermined system of linear equations.
To be more precise, consider the conversion of a time series data to the frequency domain via the discrete cosine
transform (DCT)

ψc = f (1)

where f is the signal vector in the time domain and c are the cosine transform coefficients representing the signal
in the DCT domain. The matrix ψ represents the DCT transform itself. The key observation is that most of the
coefficients of the vector c are zero, i.e. the time series is sparse in the Fourier domain. Note that the matrix ψ is of
size n × n while f and c are n × 1 vectors. The choice of basis functions is critical in carrying out the compressed
sensing protocol. In particular, the signal must be sparse in the chosen basis. For the example here of a cosine basis,
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the signal is clearly sparse, allowing us to accurately reconstruct the signal using sparse sampling. The idea is to
now sample the signal randomly (and sparsely) so that

b = φf (2)

where b is a few (m) random samples of the original signal f (ideally m � n). Thus φ is a subset of randomly
permuted rows of the identity operator. More complicated sampling can be performed, but this is a simple example
that will illustrate all the key features. Note here that b is an m× 1 vector while the matrix φ is of size m× n.
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Figure A: Completing missing data. The daily measurements of climate variables for Brazilian state capitals from
the National Institute of Meteorology (INMET) contain episodical gaps. a. We reconstruct larger portions of lacking
data with compressed sensing (L1-convex optimization routines ). b. Data values at minor holes were estimated by
simpler interpolation protocols. Capitals with intractable missing portions of data were not considered.

Approximate signal reconstruction can then be performed by solving the linear system

Ax = b (3)

where b is an m× 1 vector, x is n× 1 vector and

A = φψ (4)
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is a matrix of size m×n. Here the x is the sparse approximation to the full DCT coefficient vector. Thus for m� n,
the resulting linear algebra problem is highly under-determined. The idea is then to solve the underdetermined
system using an appropriate norm constraint that best reconstructs the original signal, i.e. the sparsity promoting
L1 is highly appropriate. The signal reconstruction is performed by using

f ≈ ψx . (5)

If the original signal had exactly m non-zero coefficients, the reconstruction could be made exact (See Ref. [1],
Ch. 18).

We applied this technique specifically to the climate series of Rio de Janeiro, Salvador and São Lúıs. For the
other state capitals, we just linearly interpolate the time series whenever a single daily recording is missing. We note
that there were intractable large gaps for the INMET precipitation series for Rio de Janeiro, which forced us to use
alternative data sources made available by the city’s alert system of rain events [9].

Variable Selection

Here we present a simple method based on the Singular Value Decomposition (SVD) [1] to utilize our climate date to
find periods of high-separability between dengue vs non-dengue years. Our original dataset consists of the following
daily measurements: (1) maximum temperature, (2) minimum temperature, (3) mean temperature, (4) humidity and
(5) precipitation. These variables were not pre-selected, but instead, were the ones made available by INMET [10].
Our SVD algorithm works as follows:

1. We select climate data over the same period (t0, p) for different years and build a corresponding matrix X(t0, p)
that allows for an SVD decomposition.

2. We select data from k climate variables over the years, always starting at t0 and ending p days later.

3. We stack and normalize the data associated with year j in a block matrix Bj(t0, p), for j = 1, . . . , N . All blocks
are reshaped into column vectors, forming a new matrix X = X(t0, p), which yields

X(t0, p) = UΣV T (t0, p)

The columns of U – the SVD modes – form an orthogonal basis for the space generated by the columns of X and
the projections of the principal components are given by the ΣV T (t0, p) matrix. For details see [11]

Figure B shows a panel with SVD-heatmaps from all state capitals considered in this study, for the same range of
t0 and p values that we used in the SVM method. In the top row, we find the critical periods (highest separability
between dengue vs non-dengue years) using all variables. On the bottom row, we find critical periods selecting only
average temperature and precipitation. For most cities – and especially to the city of Rio de Janeiro – we can observe
that these two variables detect almost the same periods of high separability in the [t0 × p] heatmaps as detected
by all variables. We highlight a few of the similar high-separability periods with green boxes (by visual inspection)
to illustrate this fact. This result helps illustrate our choice of a sparse and generalizable variable set that gives a
regression performance on part with using all variables.

Such an approach to a selection of a parsimonious variable set is consistent with commonly used regression
techniques such as the LASSO, or with information criteria such as AIC (Akaike information criteria) and BIC
(Bayes information criteria), whereby the selection of variables and goodness-of-fit is penalized by the number of
total variables. Thus our methodology is consistent with well-known and commonly used techniques in the statistical
sciences for variable selection.

In addition, there is the issue of generalizability. While it is true that for some cities, there might exist some
particular combinations of variables that gives equal or better outcome. The city of Manaus, for example, yields a
better result if one considers humidity instead of precipitation. These particular choices, however, do not generalize,
thus, we decided to keep the two that are collectively a better representative of the climate dataset across all
cities. Indeed, the two variables we have kept are the only two that generalize across all the cities, despite their
distinct climates and clustering patterns. This generalizability argument is also consistent with LASSO and BIC/AIC
model/variable selection theory [12,13]
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Figure B: Comparison between the use of all climate variables to detect high-separability periods (top row) vs using average
temperature & precipitation alone (bottom row). Rio de Janeiro, Belo Horizonte, Aracajú, and Salvador detected very
similar separability periods using this widely available and easily accessible environmental data (as highlighted by the green
boxes to facilitate visual inspection). Different combinations of variables - even if they might perform better for a particular
city - do not generalize to all others.

Examples of periods with high and low separability of the climate sig-
natures

For each state Capital we selected special time windows in which there is a clear separation between climate signatures
preceding epidemic and non-epidemic years. Figure C illustrates the distinct separation of the data for each individual
city, suggesting that a universal model for climate effects across all cities may be unattainable. The separability of
data further suggests that epidemics may be accurately predicted in a given state capital six to nine months in
advance of their outbreak. This separability notion is made quantitatively precise by the SVM scores.

Figure D shows specific time windows in which the epidemic and non-epidemic climate variables seem to be
poorly distinguishable, therefore not suitable for dengue prediction. Unlike Fig. C, the mixing of data suggests poor
predictability across all cities. This separability notion is made quantitatively precise by the SVM scores.

Results for each Capital

Aracajú

The most accurate predictions were obtained with (i) a nonlinear RBF kernel, (ii) an SVM threshold of α = 0.9, and
(iii) using the EP-strategy to calculate the outbreak probability. Surprisingly, the same EP-rectangle was used in
all out-of-sample predictions, giving an EP-window within June 1st – 19th (winter). Fig E highlights this rectangle
(green box) and the respective results in the 〈Tj〉 × 〈δj〉−1 plane for each year. Only the year of 2006 was wrongly
predicted (FP). There is a clear separability between dengue and No-dengue regarding a temperature threshold
around 26°Celsius.

Belo Horizonte

Figure F highlights our best prediction results with (i) an RBF kernel, (ii) α = 1, and (iii) using the EP-strategy.
Most EP rectangles occurred during winter, yielding an EP-window within June 13th to August 25th. A total of 8
years were correctly predicted (73% of accuracy), but 2003 (FP), 2006 (FP), and 2007 (FN) were not. Most epidemic
years had a precipitation rate in the interval [0.02,0.08] within the EP- chosen rectangles. The AA-strategy with the
same kernel and α value also yielded 73% accuracy.
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ARACAJÚ : 8/12 – 9/24

Period            precedes :       

               epidemic year
        non-epidemic year        
                   

  Mean of temperature

  Rate  of  rain events

BELO HORIZONTE : 1/9 – 4/8

MANAUS : 8/12 – 9/14

RECIFE : 1/3 – 1/26

RIO DE JANEIRO  : 6/19 – 8/16

SALVADOR : 10/11 – 12/8

SÃO LUÍS : 7/25 – 9/16

Figure C: Examples of high separability plots with the full data sets.

Manaus

Figure Jb shows the best prediction results for Manaus using (i) a linear kernel, (ii) α = 0.95, and (iii) the AA
strategy. Seven years were correctly predicted (64% accuracy) but the years 2002 (FN), 2004 (FP), 2006 (FN), and
2008 (FP) were not. Once again, we leave for the SI section the full list of time periods corresponding to the (t0, p)
rectangles found in all out-of-sample predictions. The selected AA-months were August, September and October.
The EP strategy gave poor results, with a maximum accuracy of 54%.
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ARACAJÚ : 2/2 – 2/25

Period            precedes :       

               epidemic year
        non-epidemic year        
                   

  Mean of temperature

  Rate  of  rain events

BELO HORIZONTE : 11/22 – 2/13

MANAUS :10/29 – 11/21  

RECIFE : 10/5 – 12/17 

RIO DE JANEIRO  : 11/28 – 12/16 

SALVADOR : 9/11 – 10/19 

SÃO LUÍS : 11/28 – 1/10 

Figure D: Examples of low separability plots with full data set.

Recife

Prediction highlights for the city of Recife are shown in Fig. G. Best results used (i) a linear kernel, (ii) α = 1, and
(iii) AA strategy. A total of 9 years were correctly predicted (82% accuracy) and the years of 2003 and 2003 (both
FP) were wrongly predicted. A single (t0, p)-rectangle was chosen in all out-of-sample predictions, with climate data
from December 28th to January 11th during the summer.
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Figure E: Prediction results for Aracajú. We predicted the outcome of each target year using the others as a training set.

Best results occurred choosing (i) a nonlinear RBF kernel, (ii) an SVM threshold of α = 0.9, and (iii) the Earliest as Possible

(EP) strategy (see main text), which takes only the earliest (t0, p)-rectangle (called EP-chosen rectangle) and calculate the

dengue probability Prob(j = 1) in the 〈Tj〉 × 〈δj〉−1 plane. Most EP-chosen rectangles (boxed in green) occurred within June

1st – 19th, i.e., during the early winter preceding the epidemic outbreak. All years were correctly predicted except 2006 (false

positive).

Rio de Janeiro

Figure H shows the best prediction result for Rio de Janeiro using (i) an RBF kernel, (ii) an SVM threshold of
α = 1, and (iii) the EP-strategy to calculate the outbreak probability. Most EP-chosen rectangles occurred in the
winter and in the spring. The corresponding EP -window ranged between June 19th and September 25th, when most
Epidemic years (all except 2012) had average temperatures above 23 Celsius and precipitation rates below 0.15. All
years except 2010 (FP) and 2012 (FN) were correctly predicted (82% accuracy).

Salvador

Figure I (top) shows the best prediction result for the city of Salvador using (i) an RBF kernel, (ii) an SVM
threshold of α = 0.95, and (iii) the AA-strategy to calculate the outbreak probability. The (t0, p) rectangles used in
the prediction covered most of the year but were especially clustered around December-February (boxed in magenta).
All years except 2002 (FN) and 2010 (FN) were correctly predicted (82% of accuracy).

Predictions using (i) a linear kernel, (ii) α = 0.9, and (iii) the EP-strategy also gave good results (highlighted in
Fig I (bottom) ). Eight years were correctly predicted (73% accuracy) but the years of 2008 (FP), 2010 (FN) and
2012 (FN) were not. The EP strategy was just slightly less accurate than the AA strategy, yielding EP-windows
within August 30th and December 11th (spring and summer). The epidemic years typically showed lower precipitation
rates in the selected EP-rectangles.

São Lúıs

Fig Ja highlights the best prediction results for the city of São Lúıs using (i) an RBF kernel, (ii) an SVM threshold
of α = 1, and (iii) the AA strategy to calculate the outbreak probability. All years except 2003 (FP) and 2006 (FN)
were correctly predicted (82% accuracy). See the SI material for a full list of (t0, p) rectangles used in all out-of-
sample predictions. The selected AA-months were December, January, February and March. This AA-strategy was
significantly more accurate than all possible choices of EP-strategies.
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Belo Horizonte

prediction data

    EP - chosen rectangle

non-epidemic year

epidemic year

 wrong predictioncorrect prediction

Figure F: Prediction results for Belo Horizonte. Best choice used (i) an RBF kernel, (ii) α = 1 (maximum separability

score), and (iii) the EP strategy. The EP-window occurred within June 13th to August 25th, during winter. Eight years were

correctly predicted (73% of accuracy) while 2003 (false positive), 2006 (false positive) and 2007 (false negative) were not.

Additional Practical Considerations

Throughout the manuscript, we refer to a “user” as someone with access to new/different data (both climate and
epidemiological) willing to calculate Dengue outbreak probabilities using our same methodology.

The user’s first task is to (i) split the yearly climate data between a training set and a testing/prediction set.
Then, he/she must choose between (ii) SVM kernels (linear or nonlinear), (iii) alpha values, (iv) rectangle sizes and
(v) prediction strategies. If the user is simply appending new climate data to the Brazilian Capitals analyzed in this
work, they could leverage our best parameter/strategy choices shown in Table 1. For other cities, the user might
want to follow our work as a guideline. Ultimately, one should compute prediction routines for each combination of
parameters, build confusion matrices, and compare the distinct choices listed above regarding their accuracy. Table
1 also demonstrates that cities may require significantly different choices. Thus, we recommend the user trying to
predict a dengue outbreak in a novel city to systematically test all sensible combinations. We point out that the
user should be careful when choosing rectangle sizes: smaller rectangles will increase the heatmap resolution but
will contain fewer (t0, p) points. Our choice of dimensions 5 and 6 was reasonable for our specific dataset, but will
likely not generalize to others. It is definitely worth to investigate in future studies this tradeoff between resolution
vs content in rectangle sizes and how to control it to maximize prediction accuracy.

Tables with epidemic/non-epidemic years and missing climate data gaps

We provide tables with estimated population, total number of Dengue cases, incidence per 100, 000 inhabitants, and
details of our climate data completing protocols (if any). For Rio de Janeiro, we consider the time period from 2003
to 2013 and we use epidemic data from municipal webpage (link). For the other capitals, the analyzed period ranges
from 2002 to 2012 and data was collected from the Ministry of Health’s Notifiable Diseases Information System.
(SINAN)
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Recife 

  

 wrong prediction

correct prediction

most chosen 
 rectangles

Figure G: Prediction results for Recife. Best results occurred choosing (i) a linear kernel, (ii) α = 1, and (iii) the AA

strategy. A total of 9 out of 11 years were correctly predicted, with most chosen rectangles (boxed in magenta) occurring in

the summer season.

Table 1: Aracajú.
Year Pop. Cases Incidence
2002 473, 991 1, 933 407.81
2003 479, 767 1, 301 271.17
2004 491, 898 166 33.75
2005 498, 619 271 54.35
2006 505, 286 355 70.26
2007 520, 303 728 139.92
2008 536, 785 10, 702 1,993.72
2009 544, 039 1, 232 226.45
2010 571, 149 302 52.88
2011 579, 563 1, 399 241.39
2012 587, 701 2, 656 451.93

Incidence = Cases per 100, 000 inhabitants. Single gaps of missing climate data were filled by linear interpolation;
temperature on 12/21/2006 and precipitation on 7/24/2010.
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Rio de Janeiro

prediction data

    EP - chosen rectangle

non-epidemic year

epidemic year

 wrong predictioncorrect prediction

Figure H: Prediction results for Rio de Janeiro. Best results occurred choosing (i) a nonlinear RBF kernel, (ii) an SVM

threshold of α = 1 (maximum separability score), and (iii) the EP-strategy. Most EP-rectangles occurred in winter and spring,

leading to an EP-window within June 19th and September 25th. A total of 9 years were correctly predicted (82% accuracy),

but 2010 (false positive) and 2012 (false negative) were not.

Table 2: Belo Horizonte.
Year Pop. Cases Incidence Temp (L.I) Precip (L.I)
2001 – – – 8/9 –
2002 2, 284, 468 4, 749 207.88 8/31 10/1

10/3 – 10/4
2003 2, 305, 812 1, 800 78.06 – –
2004 2, 350, 564 472 20.08 – –
2005 2, 375, 329 149 6.27 – –
2006 2, 399, 920 872 36.33 – –
2007 2, 412, 937 5278 218.74 12/31 –
2008 2, 434, 642 12, 967 532.60 1/1 1/1
2009 2, 452, 617 14, 494 590.96 12/12 –
2010 2, 375, 151 52, 315 2,202.60 – –
2011 2, 385, 640 1, 749 73.31 – –
2012 2, 395, 785 635 26.50 – –

Incidence = Cases per 100, 000 inhabitants. L.I stands for Linear Interpolation. We exceptionally used linear
interpolation in the precipitation time series between 10/3 and 10/4 of 2002 due to the lack of other data sources.
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Salvador – Earliest as Possible 

Figure I: Prediction results for Salvador. Two sets of parameters led to good results: top. choosing (i) a nonlinear RBF

kernel, (ii) an SVM threshold of α = 0.95, and (iii) the Average of All (AA) strategy. Most rectangles (boxed in magenta) used

by the AA-strategy remained within December-February, suggesting that the summer season has a good predictive power. A

total of 9 years were correctly predicted (82% of accuracy), but 2002 and 2010 were not (false negatives). bottom. Choosing

(i) a linear kernel, (ii) α = 0.9, and (iii) the EP strategy gave 8 correct predictions and 3 wrong predictions: 2008 (false

positive), 2010, and 2012 (false negatives). This resulted in 73% of accuracy. This EP-choice performed slightly worse than

the AA-strategy and led to EP-windows within August 30th - December 11th (spring-summer seasons).

Table 3: Manaus.
Year Pop. Cases Incidence
2002 1, 488, 805 1, 855 124.60
2003 1, 527, 314 3, 731 244.29
2004 1, 592, 555 789 49.54
2005 1, 644, 690 915 55.63
2006 1, 688, 524 495 29.32
2007 1, 646, 602 1, 989 120.79
2008 1, 709, 010 5, 975 349.62
2009 1, 738, 641 623 35.83
2010 1, 802, 014 3, 748 207.99
2011 1, 832, 424 54, 342 2,965.58
2012 1, 861, 838 3, 703 198.89

Incidence = Cases per 100, 000 inhabit. Single gaps of missing climate data were filled by linear interpolation;
temperature on 12/23/2005 and precipitation on 2/11/2005.
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Figure J: Best Prediction results for São Lúıs and Manaus. a. For the city of São Lúıs, the best prediction
results were found choosing (i) an RBF kernel, (ii) α = 1 (maximum separability score), and (iii) the AA strategy.
In total, there were 9 correct predictions (82 % of accuracy) but wrong predictions for 2003 (false positive) and 2006
(false negative). The AA-months spanned December – March. b. For the city of Manaus, best results were found
using (i) a linear kernel, (ii) α = 0.95, and (iii) the AA strategy. From a total of 11 years, 7 were correctly predicted
(%64 of accuracy). The AA-months remained usually within the months of August – October.

Table 4: Recife
Year Pop. Cases Incidence Temp (L.I) Precip(L.I)
2001 – – – – –
2002 1, 449, 135 42, 791 2,952.86 – –
2003 1, 461, 320 449 30.73 – –
2004 1, 486, 869 241 16.21 – –
2005 1, 501, 008 830 55.30 – –
2006 1, 515, 052 1, 443 95.24* 11/4 –

12/2
2007 1, 533, 580 1, 503 98.01* – –
2008 1, 549, 980 4, 771 307.81 4/28 –
2009 1, 561, 659 578 37.01 4/30

7/31 –
11/19

2010 1, 537, 704 11, 494 747.48 9/8 –
2011 1, 546, 516 5, 471 353.76 – –
2012 1, 555, 039 11, 444 735.93 1/1 1/1

5/2 5/2
6/14 8/14
8/14

Incidence = Cases per 100, 000 inhabitants. L.I stands for Linear Interpolation. *Years 2006 and 2007 were
particularly considered epidemic because their incidence values were almost the same as the classification threshold.
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Table 5: Rio de Janeiro.
Year Pop. Cases Incidence Temp (CVX) Precip (subst)
2002 – – – 8/31 –
2003 5, 974, 081 1, 610 26.95 3/1 – 3/2 6/20 – 6/30

6/20 – 6/30
2004 6, 051, 399 607 10.03 – –
2005 6, 094, 183 980 16.08 – –
2006 6, 136, 652 14, 435 235.23 – 12/13 – 12/31
2007 6, 093, 472 26, 507 435.01 1/1 – 2/1 1/1 – 1/10
2008 6, 161, 047 110, 861 1799.39 – –
2009 6, 186, 710 2, 961 47.86 2/11 –
2010 6, 320, 446 3, 000 47.47 – –
2011 6, 355, 949 78, 645 1237.34 – –
2012 6, 390, 290 137, 505 2151.78 12/8 –

12/26 – 12/27
2013 6, 429, 923 66, 278 1030.77 6/13 – 6/21 6/14 – 6/19

Incidence = Cases per 100, 000 inhabitants. Number of Dengue cases in 2013 taken from the City’s hall health
department, because data from SINAN is not available for that year. For the larger gaps of missing data on
precipitation time series, we have used data of the Alerta Rio system from Saúde neighborhood, the closest to the
Santos Dumont airport where INMET’s rain collectors are located.

Table 6: Salvador.
Year Pop. Cases Incidence Temp (CVX) Precip (L.I)
2001 – – – – –
2002 2, 520, 504 26, 838 1,064.79 10/9 – 10/21 –
2003 2, 556, 429 908 35.52 – –
2004 2, 631, 831 154 5.85 – –
2005 2, 673, 560 270 10.10 10/21 – 10/31
2006 2, 714, 018 377 13.89 – –
2007 2, 892, 625 1, 349 46.64 10/6 – 10/7 10/7
2008 2, 948, 733 2, 476 83.97 – –
2009 2, 998, 056 6, 819 227.45 6/9 –

12/27
2010 2, 675, 656 6, 159 230.19 – –
2011 2, 693, 606 5, 321 197.54 – –
2012 2, 710, 968 5, 161 190.37 – –

Incidence = Cases per 100, 000 inhabitants. L.I stands for Linear Interpolation.
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Table 7: São Lúıs .
Year Pop. Cases Incidence Temp (CVX) Precip (L.I)
2001 – – – 10/1 – 10/31

11/14 –
11/21

2002 906, 567 448 49.42 4/30 –
2003 923, 526 567 61.40 9/5 – 9/26 –

9/28 – 10/10
2004 959, 124 154 16.06 – –
2005 978, 824 2, 580 263.58 – –
2006 998, 385 1, 395 139.73 – –
2007 957, 515 3, 827 399.68 – –
2008 986, 826 1, 183 119.88 – –
2009 997, 098 100 10.03 – 5/31
2010 1, 014, 837 2, 731 269.11 – –
2011 1, 027, 430 5, 229 508.94 10/20 –
2012 1, 039, 610 1, 315 126.49 6/8 – 6/9

6/12 – 6/13 –
7/24 – 7/25
7/29

Incidence = Cases per 100, 000 inhabitants. L.I stands for Linear Interpolation.

Prediction Results for each state capital

Here the reader can find the best prediction results for all 7 state capitals considered in our work. We have chosen
a criterion based on highest prediction accuracy (see manuscript for details) for selecting the SVM kernel, threshold
α and prediction strategy. The following tables contain the evaluated probabilities of dengue outbreaks for each
test year. For those state capitals where the EP-strategy performed the best results, we could also exhibit the
correspondent dates of the EP-chosen rectangles of each out-of-sample prediction. For those capitals where the
AA-strategy had best results, we provide a full list of the time windows ((t0, p)-rectangles) that were common in all
out-of-sample predictions. The AA-months are those months containing all time windows that were found.

Table 8: Aracajú: Prediction Results – EP strategy, RBF Kernel, α = 0.9
Year Data Dengue Prob. Result EP-chosen rectangle
2002 D 0.97 X Jun 1 – 19
2003 D 0.87 X Jun 1 – 19
2004 ND 0 X Jun 1 – 19
2005 ND 0 X Jun 1 – 19
2006 ND 0.93 × Jun 1 – 19
2007 D 1 X Jun 1 – 19
2008 D 0.87 X Jun 1 – 19
2009 D 0.73 X Jun 1 – 19
2010 ND 0 X Jun 1 – 19
2011 D 0.87 X Jun 1 – 19
2012 D 0.9 X Jun 1 – 19

Remark: “D” represents epidemic years and “ND” non-epidemic years.
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Table 9: Belo Horizonte: Prediction Results - EP strategy, RBF Kernel, α = 1
Year Data Dengue Prob. Result EP-chosen rectangle (dates)
2002 D 1 X Jun 13 – Aug 25
2003 ND 1 × Jun 13 – Aug 25
2004 ND 0 X Jun 13 – Aug 25
2005 ND 0 X Jun 13 – Aug 25
2006 ND 0.9 × Jun 1 – Jul 9
2007 D 0 × Jun 13 – Aug 20
2008 D 1 X Jun 13 – Aug 25
2009 D 1 X Jun 13 – Aug 25
2010 D 0.87 X Jun 1 – Jul 14
2011 ND 0 X Jun 19 – Sept 10
2012 ND 0 X Jun 7 – Aug 24

Remark: “D” represents epidemic years and “ND” non-epidemic years.

Table 10: Manaus: Prediction Results – AA strategy, Linear Kernel, α = 0.95
Year Data Dengue Prob. Result
2002 D 0.3 ×
2003 D 0.65 X
2004 ND 0.88 ×
2005 ND 0.27 X
2006 ND 1 ×
2007 D 0.9 X
2008 D 0 ×
2009 ND 0.2 X
2010 D 0.73 X
2011 D 0.93 X
2012 D 0.87 X

Remark: “D” represents epidemic years and “ND” non-epidemic years.
We find the following time windows (in the format DD/MM) common to all out-of-sample predictions: 11/09-9/10,
11/09-14/10, 12/08-24/09, 12/08-24/10, 12/08-29/09, 17/09-15/10, 18/08-25/10 and 23/09-16/10.
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Table 11: Recife: Prediction Results for AA strategy, linear Kernel, α = 1
Year Data Dengue Prob. Result
2002 D 1 X
2003 ND 0.92 ×
2004 ND 0.78 ×
2005 ND 0.23 X
2006 D* 1.00 X
2007 D* 1.00 X
2008 D 1.00 X
2009 ND 0 X
2010 D 0.99 X
2011 D 0.67 X
2012 D 0.64 X

Remarks: “D” represents epidemic years and “ND” non-epidemic years. *Years 2006 and 2007 were particularly considered
epidemic because their incidence values were almost the same as the classification threshold.
We find the following time window (in the format DD/MM) common to all out-of-sample predictions: 28/12-11/01.

Table 12: Rio de Janeiro: Prediction Results – EP strategy, RBF Kernel, α = 1
Year Data Dengue Prob. Result EP-chosen rectangle (dates)
2003 ND 0.27 X Jun 19 – Sept 30
2004 ND 0 X Jun 19 – Sept 25
2005 ND 0 X Jun 19 – Sept 25
2006 D 1 X Aug 18 – Nov 29
2007 D 0.5 X Jun 13 – Sept 24
2008 D 1 X Jun 19 – Sept 25
2009 ND 0.03 X Jun 13 – Sept 24
2010 ND 1 × Jun 19 – Sept 25
2011 D 1 X Jun 19 – Sept 25
2012 D 0 × Jun 19 – Sept 25
2013 D 1 X Jun 19 – Sept 25

Remark: “D” represents epidemic years and “ND” non-epidemic years.
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Table 13: Salvador: Prediction Results – EP strategy, Linear Kernel, α = 0.9
Year Data Dengue Prob. Result EP-chosen rectangle (dates)
2002 D 1 X Sept 23 – Dec 10
2003 ND 0 X Sept 5 – Dec 12
2004 ND 0.06 X Sept 5 – Dec 17
2005 ND 0 X Sept 5 – Dec 12
2006 ND 0 X Aug 30 – Dec 11
2007 ND 0 X Aug 30 – Dec 11
2008 ND 1 × Aug 18 – Nov 29
2009 D 1 X Aug 30 – Dec 11
2010 D 0 × Aug 30 – Dec 6
2011 D 1 X Aug 30 – Dec 11
2012 D 0 × Aug 30 – Dec 6

Remark: “D” represents epidemic years and “ND” non-epidemic years.

Table 14: Salvador: Prediction Results – AA strategy, RBF Kernel, α = 0.95
Year Data Dengue Prob. Result
2002 D 0.37 ×
2003 ND 0.49 X
2004 ND 0.44 X
2005 ND 0.20 X
2006 ND 0.32 X
2007 ND 0.34 X
2008 ND 0.40 X
2009 D 0.64 X
2010 D 0.05 ×
2011 D 0.72 X
2012 D 0.78 X

Remark: “D” represents epidemic years and “ND” non-epidemic years.
We find a total of 168 time windows common to all out-of-sample predictions, covered by almost all months of the year.
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Table 15: São Lúıs: Prediction Results – AA strategy, RBF Kernel, α = 1
Year Data Dengue Prob. Result
2002 ND 0.038 X
2003 ND 0.64 ×
2004 ND 0.33 X
2005 D 0.95 X
2006 D 0.35 ×
2007 D 0.68 X
2008 D 0.61 X
2009 ND 0.49 X
2010 D 0.72 X
2011 D 0.83 X
2012 D 0.93 X

Remark: “D” represents epidemic years and “ND” non-epidemic years.
We find the following time windows (in the format DD/MM) common to all out-of-sample predictions: 10/12-3/03,
10/12-6/02, 10/12-11/02, 10/12-16/02, 10/12-26/02, 16/12-4/03, 16/12-7/02, 16/12-12/02, 16/12-17/02, 22/12-13/02,
22/12-18/02 and 22/12-28/02

Confusion Matrices

We provide all confusion matrices. See manuscript for details on how we compute them. The best results are
highlighted in bold-red color. For those capitals where we find the same accuracy for different α values, we choose
the highest α in order to promote the best separability scores. The file can be downloaded here
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