
MINI REVIEW
published: 19 June 2019

doi: 10.3389/fmed.2019.00129

Frontiers in Medicine | www.frontiersin.org 1 June 2019 | Volume 6 | Article 129

Edited by:

Miguel Cacho Teixeira,

University of Lisbon, Portugal

Reviewed by:

John Bennett,

National Institute of Allergy and

Infectious Diseases (NIAID),

United States

Bettina Fries,

Stony Brook Medicine, United States

Carolina Coelho,

University of Exeter, United Kingdom

*Correspondence:

Celio Geraldo Freire-de-Lima

celio@biof.ufrj.br

Specialty section:

This article was submitted to

Infectious Diseases - Surveillance,

Prevention and Treatment,

a section of the journal

Frontiers in Medicine

Received: 13 February 2019

Accepted: 24 May 2019

Published: 19 June 2019

Citation:

Decote-Ricardo D,

LaRocque-de-Freitas IF, Rocha JDB,

Nascimento DO, Nunes MP, Morrot A,

Freire-de-Lima L, Previato JO,

Mendonça-Previato L and

Freire-de-Lima CG (2019)

Immunomodulatory Role of Capsular

Polysaccharides Constituents of

Cryptococcus neoformans.

Front. Med. 6:129.

doi: 10.3389/fmed.2019.00129

Immunomodulatory Role of Capsular
Polysaccharides Constituents of
Cryptococcus neoformans

Debora Decote-Ricardo 1, Isabel Ferreira LaRocque-de-Freitas 2, Juliana Dutra B. Rocha 2,

Danielle O. Nascimento 1,2, Marise P. Nunes 3, Alexandre Morrot 3,4,

Leonardo Freire-de-Lima 2, Jose Osvaldo Previato 2, Lucia Mendonça-Previato 2 and

Celio Geraldo Freire-de-Lima 2*

1 Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil, 2 Instituto de Biofísica Carlos

Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 3 Laboratório de Imunoparasitologia, Instituto

Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil, 4 Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de

Janeiro, Brazil

Cryptococcosis is a systemic fungal infection caused by Cryptococcus neoformans.

In immunocompetent patients, cryptococcal infection is often confined to the lungs.

In immunocompromised individuals, C. neoformans may cause life-threatening illness,

either from novel exposure or through reactivation of a previously acquired latent

infection. For example, cryptococcal meningitis is a severe clinical disease that

can manifest in people that are immunocompromised due to AIDS. The major

constituents of the Cryptococcus polysaccharide capsule, glucuronoxylomannan (GXM),

and galactoxylomannan (GalXM), also known as glucuronoxylomanogalactan (GXMGal),

are considered the primary virulence factors ofCryptococcus. Despite the predominance

of GXM in the polysaccharide capsule, GalXM has more robust immunomodulatory

effects on host cellular immunity. This review summarizes current knowledge regarding

host-Crytococcus neoformans interactions and the role of capsular polysaccharides

in host immunomodulation. Future studies will likely facilitate a better understanding

of the mechanisms involved in antigenic recognition and host immune response

to C. neoformans and lead to the development of new therapeutic pathways

for cryptococcal infection.

Keywords: Cryptococcus neoformans, glucuronoxylomannan (GXM), galactoxylomannan (GalXM),

immunomodulation, immuno evasion

INTRODUCTION

In Cryptococcus neoformans, capsular polysaccharides are located externally to the cell wall. The
polysaccharides constituting the capsule can be found attached to the cell wall or released into the
environment, in which case they are termed exopolysaccharides. Biochemical studies have shown
that the C. neoformans capsule primarily comprises glucuronoxylomannan (GXM), representing
∼88% of the capsule. GXM is a polymer that consists mostly of a linear α-(1–3)-mannan
substituted with β-(1–2)-glucopyranosyluronic acid and β-(1–4)-xylopyranosyl. TheC. neoformans
capsule also comprises 10% galactoxylomannan (GalXM), also called glucuronoxylomannogalactan
(GXMGal) and 2% mannoproteins. The GalXM consists of an α-(1→6)-galactan backbone with
galactomannan side chains that are further substituted with variable numbers of xylose and
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glucuronic acid residues (1). It has recently been characterized
that the polysaccharide capsule can function as a flotation device
to facilitate transport and dispersion in aqueous fluids (2).

It is known that, the manifestation and severity of
cryptococcal infections, as well as the clinical presentation
of the disease depend on the immune response of the patient
(3, 4). Clinical and experimental studies have suggested that
cryptococcosis is controlled by cell-mediated immunity in
immunocompetent patients who develop a Th1 response (5, 6).
In addition, the production of inflammatory mediators induces
the death of C. neoformans potentiating the antimicrobial activity
of immune cells (7–12).

The Involvement of the cellular-mediated immune response
in the cryptococcosis has been described. Macrophages and
dendritic cells are related in the recognition, phagocytosis, and
presentation of antigens and activation of the host response
(13, 14). The involvement of the NK cells has been characterized
in response to the C. neoformans; after the recognition via β-
integrins, cytolytic degranulation occurs leading to the death
of fungal cells in a manner similar to that observed in tumor
cells (15, 16). Despite the importance of the immune response
in the C. neoformans infection, it has recently been described
that the sudden increase of this response could cause non-
specific symptoms favoring tissue damage; this phenomenon
is known as inflammatory response syndrome (IRIS) (17–21).
In some severe cases, medications such as corticosteroids are
required to suppress inflammatory response until resolution of
infection (22, 23).

INNATE RESPONSE TO C. neoformans

Initial infection of C. neoformans occurs via inhalation of
infectious propagules and subsequent colonization of the
respiratory tract. Macrophages and dendritic cells phagocytize
the opsonized fungi. C. neoformans and their secreted products
can be recognized by many cellular receptors, including the
mannose receptors CD14, TLR2, TLR4, and CD18 (13, 24–
27). The TLR-associated adapter protein, MyD88, is known to
play an important role in immune response to C. neoformans,
as mice deficient in MyD88 have increased susceptibility to
Cryptococcosis (27–29). Macrophages are important for defense
against Cryptococcus and respond to C. neoformans infection by
releasing pro-inflammatory signals such as the chemokines IL-
1α, and IL-1β. Furthermore, mice that do not encode the IL1R1
receptor, the expression of which is stimulated through MyD88,
exhibit more disease phenotypes when compared to the wild type
mice (30, 31).

In addition to phagocytosis, the killing of C. neoformans is
crucial for successful host response. The internalization of viable
forms may facilitate the dissemination of this microorganism
to different parts of the vertebrate host. Macrophages become
efficient effector cells when stimulated by pro-inflammatory
cytokines, increasing microbicidal mechanisms, including
lysosomal fusion, acidophagy of phagosomes, iron sequestration,
and enzymatic degradation of proteins. Extracellular killing of
the yeast is mediated by the release of cytokines, NO, and ROS

(32–34). C. neoformans can also be sequestered in tissues by
multinucleated giant cells (35). Moreover, it has recently been
demonstrated that extracellular vesicles of C. neoformans can
stimulate macrophages, which increases its antimicrobial activity
and induces direct death of the fungus (36).

Similar to bacteria, fungi have developed strategies to survive
within phagocytes. Most of these pathogens kill the host cell
to escape and infect other tissues (37, 38). It has recently
been suggested that C. neoformans can exploit monocytes
and macrophages by using these cells as “Trojan horses,”
allowing them to disseminate throughout the host without being
detected by the immune system (38–40). Tucker and Casadevall
have shown that opsonized C. neoformans cells are capable
of being internalized in <2min by alveolar macrophages or
J774 lineage (41). However, infected macrophages are unable
to maintain the acidity of the phagolysosome, which results
in phagolysosome membrane lysis, C. neoformans replication,
concomitant release of the polysaccharides, and eventual lysis of
infected macrophages. Complementing Tucker and Casadevall’s
work, a later study observed lysis of alveolar epithelial cells
18 h after infection with C. neoformans (42). Subsequently, it
was demonstrated that C. neoformans can also escape from
macrophages through a mechanism that does not result in
cell death (43). After the onset of intracellular replication,
C. neoformans are able to extrude from the macrophage
phagosome into extracellular space, an event that has been
termed “phagosome extrusion,” Phagosome extrusion involves
the formation of large fungal cell-filled phagosomes followed
by phagosome ejection and subsequent survival and further
replication of the fungal cells in the macrophage extracellular
space (44). This data suggests that non-lytic expulsion of
C. neoformans is a phenomenon that may have significant
clinical implications in understanding the invasion of the central
nervous system by cells that serve as “Trojan horses” for
C. neoformans (40, 45–47).

The development of cell-mediated protective immunity
against C. neoformans depends, in part, on the activation of
dendritic cells by the fungus (48). Dendritic cells are also
important for antifungal immunity, as they can recognize and
phagocyte different fungi, such as C. neoformans, Aspergillus
fumigatus, Candida albicans, and Histoplasma capsulatum (49–
53). Mannose and FcγRII receptors present on dendritic cells are
essential forC. neoformans phagocytose and antigen presentation
to T cells (54). After dendritic cells identify and phagocytize C.
neoformans, they express costimulatory molecules, migrate to
the lymphoid tissues, and secrete cytokines (53, 55, 56). After
real-time imaging, Wozniak and Levitz demonstrated that C.
neoformans can be found in lysosomal compartments 20min
after the onset of phagocytosis, resulting in the degradation of
the fungal cells followed by antigen presentation to T cells (57).

The development of cell-mediated protective immunity
against C. neoformans depends, in part, on the activation of
dendritic cells by the fungus (48). Dendritic cells also represent an
important interface between innate and adaptive immunity (58–
60). In addition, the interaction between dendritic cells and C.
neoformans modulates T cell responses in vitro (61–63). In vivo
observations have determined that T cells migrate to the thoracic
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lymph nodes after infection (64–66). In addition, both dendritic
cells and CD4+T cells were detected in bronchoalveolar infiltrate
from lungs of C. neoformans infected mice. This phenomenon
coincided with increased expression of IL-12 cytokines from both
subunits (p40 and p35) and the presence of IFN-γ in the lung
homogenate (67).

ADAPTIVE RESPONSE TO C. neoformans

C. neoformans infection is normally controlled by cell-mediated
immunity in immunocompetent patients who develop a Th1
response following the production of IL-12, TNF-α, IFN-γ,
and NO (5, 10, 68–70). CD4+T cells producing IFN-γ (71)
are important for inducing immune defenses that control
the growth and propagation of C. neoformans (70, 72). The
formation of granulomas also serves as an important antifungal
mechanism (73, 74). In addition to CD4+ T cells, granulomas
also contain macrophages, NK cells, and CD8+ T cells (73).
Effector NK cells and CD8+ T cells are potent producers
of perforin and granulysin that destroy cells infected with C.
neoformans and directly destroy the fungus itself (75, 76). Recent
studies with the cryptococcosis murinemodel have demonstrated
that Th1 and Th17 subtype responses are associated with
disease protection and Th2 responses are deleterious for the
host (77–79).

IMMUNOMODULATORY ROLE OF

CAPSULAR CONSTITUENTS

Capsules are commonly found in bacteria. However, the
only pathogenic encapsulated fungus described so far
is Cryptococcus. In this model, the capsule is the most
studied structure since it is considered one of the main
virulence factors. When in the saprophytic phase, the
polysaccharide capsule protects the fungus against various
types of stress and dehydration. In the murine experimental
model, acapsular mutants do not cause cryptococcosis or
have reduced virulence. Other studies have demonstrated
that the capsular polysaccharides GXM and GalXM, have
immunomodulatory properties and improve fungal survival
by aiding host immune evasion (80). In addition, the fungus
releases constituents of the polysaccharide capsule which can
easily be found in body fluids during infection (81). These
capsular constituents exert various immunomodulatory roles
in host cells and are been used as research models by several
research groups.

IMMUNOMODULATORY ACTIVITY OF GXM

C. neoformans is considered an opportunistic intracellular
pathogen (82) and, as mentioned previously, can survive,
and even replicate inside macrophages. The role of the
capsule in intracellular parasitism was demonstrated mostly
using the CAP67 mutant, which does not contain GXM in
the capsule and is not able to replicate within phagocytic
cells (83). This indicates that the capsule, particularly GXM,

plays a key role in intracellular parasitism. GXM is also
involved in the inhibition of phagocytosis probably due
to the fact that this molecule is polyanionic, which may
cause an electrostatic repulsion that prevents host immune
cells from interacting with and eliminating fungal cells (84).
Inhibition of phagocytic events will also decrease the amount
of presented antigen to T cell and, consequently, reduces host
immune response (85). A GXM molecule could also present
distinct combinations of motifs, demonstrating the complex
heteropolymeric structure of this capsular polysaccharide.
Recently, the presence of a secreted lactonohydrolase (LHC1)
of C. neoformans, has been characterized in the formation
of a higher order capsular structure proposing enzymatic
remodeling after assembly of polysaccharides in the extracellular
space and thus inhibiting the deposition of components of
the complement system, thus avoiding the destruction of
the fungus by formation of the membrane attack complex
and the formation of fragments iC3b, which are important
opsonic (86).

Several research groups have suggested that GXM behaves
as a molecule that contributes to immune suppression. Syme
et al. (54) demonstrated that GXM is directly involved with
FcRγII expression in monocytes, macrophages, and dendritic
cells, which results in an inhibitory signal that suppresses
host immune response. GXM also induces secretion of IL-
10 and IL-8 in human monocytes and neutrophils (87, 88).
IL-10 is a potent suppressor of proinflammatory cytokines,
which suggests that C. neoformans-induced IL-10 secretion
interferes with cell-mediated immunity (89). In 2001, GXM was
reported to indirectly reduce IL-12 secretion in monocytes by
directly increasing IL-10 secretion in monocytes co-cultured
with T cells (71). GXM also induces the accumulation of TGF-
β in macrophages (90). In contrast to mice infected with a
hypocapsular mutant, mice infected with encapsulated strains
were not able to produce Th1 cytokines, due to the accumulation
of significant amounts of IL-10. These results suggest that yeasts
encapsulated with GXM are able to inhibit the development
of a Th1-type protective response via the induction of IL-
10 (71, 91). Despite this, the immunosuppressive activity of
GXM has beneficial effects in other types of inflammatory
pathologies. GXM can act as a potent immunosuppressant
during induced arthritis (92) and inhibits NETs production in
neutrophils (93).

In addition to having potent immunosuppressive effects on
cytokine production, GXM is also capable of inducing apoptosis
in different systems. Monari et al. (94) have demonstrated that
Fas-L expression in macrophages induces apoptosis of activated
T lymphocytes. In 2008, the same group demonstrated that
apoptosis of T lymphocytes involves intrinsic and extrinsic
pathways (95). Furthermore, our group observed that capsular
GXM is able to induce apoptosis in macrophages through a
mechanism that involves the increased production of Fas and
Fas-L (90). This ability of GXM expands the repertoire of
immunosuppressive activities observed during cryptococcosis
pathogenesis and complements other reports in literature, where
Fas-induced apoptosis has been described in infections caused by
othermicroorganisms (73, 96). Themechanism of GXM-induced
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cell death may also be related to inhibition of glycolytic
flux (97).

Chiapello et al. (98) demonstrated that GXM is capable of
inducing cellular apoptosis in different organs after treatment.
Apoptosis was also observed in vitro in rat splenocytes (99). The
authors suggested that apoptosis would be a consequence of an
immunomodulation of the host defense during infection. GXM
deposition in tissue, increased splenocyte production and release
of the anti-inflammatory cytokines may lead to these processes
(98–100). In rats infected with C. neoformans, T cell production
of IL-10 could reduce LFA-1 expression and IL-2 production,
resulting in decreased T-cell activation and proliferation capacity.
Chiapello et al. (98) also demonstrated that total splenocytes from
infected mice and activated by concanavalin A (ConA), increased
IL-10 production. Addition of anti-IL-10 antibody reversed
the suppressor effect, suggesting that this cytokine would be
related to suppress total splenocyte proliferation (100). Thus,
the production of IL-10 during cryptococcosis could prevent
the activation of T cells-mediated control of C. neoformans,
resulting in the spread of the disease. These observations
confirm other studies that have demonstrated that pathogen-
derived molecules promote apoptosis in the host cell, and thus
they may be important factors in the survival of infectious
microorganisms (101, 102).

IMMUNOMODULATORY ACTIVITY OF

GALXM

The majority of studies on the immunomodulatory effects
of capsular polysaccharide from C. neoformans has been
performed with GXM. There are fewer studies demonstrating the
immunomodulatory functions of GalXM, but they have increased
in recent years. Chaka et al. (103) demonstrated that GalXM is
capable of inducing the production of TNF-α in peripheral blood
mononuclear cells (PBMC). In addition, our group has observed
that GalXM induces TNF-α release and iNOS expression, which
results in NO production (90).

Delfino et al. (104) showed that GalXM induces IL-6 release by
monocytes. In 2006, another group demonstrated that prolonged
stimulation with the CAP67 mutant increases expression of IL-
6 in PBMC and results in resolution of infection, whereas that
does not occur encapsulated fungus (105). This suggests that
GXM and GalXM have different immunomodulatory activities.
Despite this, GalXM is also capable of inducing apoptosis in
different cells of the immune response. Pericolini et al. (106)
demonstrated that GalXM induces apoptosis in human T cells,
at a rate ∼50 times greater than GXM, via activation of caspase
8. This suggests that GalXM suppresses the proliferation of
T cells. Our group also demonstrated that GalXM induces
apoptosis in macrophages mediated by Fas/FasL interaction. This
effect was greater than that observed by GXM (90). GalXM-
mediated cell death could enhance the suppressive effect of GXM
during cryptococcosis.

Galactose, a major component of GalXM, has been described
as an important virulence factor of C. neoformans (107).
The enzymes UDP-Glc epimerase and UDP-Gal transporter

participate in GalXM biosynthesis and are present in GXM
positive and GalXM negative phenotypes. Moyrand et al.
demonstrated that strains encoding mutated forms of the
enzymes UDP-Glc epimerase (uge11) and UDP-Gal transporter
(ugt11) are unable to colonize the brain in the first days of
infection. These results suggest that although these constituent
polysaccharides have different profiles, they may act together
to suppress the host’s immune response during infection.
Recently, it was demonstrated that treatment with GalXM
activates dendritic cells and induces Th17 differentiation when
co-cultured with T cells. The authors also demonstrated that
treating mice with GalXM prior to infection induced immune
protection and this phenomenon was dependent on IL-6 and
IL-17 production (108).

THE IMPORTANCE OF XYLOSYLATION

UDP-Xyl is the substrate for the synthesis of xylose-containing
glycoconjugates (109). In C. neoformans xylose is present in
the capsular constituents GXM and GalXM and in yeast
membrane glycoinositolphosphorylceramides (GIPCs) (110,
111). The enzyme β-1,2-xylosyltransferase transfers xylose to α-
1,3-dimannoside to form the sequence Xyl-β-1,2-α-1,3-Man. In
a cxt1 mutant strain of C. neoformans, which is deficient in
beta-xylosyltransferase, shows decrease or lack of xylose units in
GalXM and GXM, respectively. This mutante strain presents low
virulence in the murine model (111). Mutant strains that encode
a deletion in the UDP-xyl synthase gene (uxs1) produce GXM
without β(1,2)-xylose (112). The genes CAS31, CAS32, CAS33,
CAS34, and CAS35 are homologous to CAS3 and help regulate
the addition of xylose units onto the GXM side chain (113).
Experiments using the 1uxs1 strain, which does not encode
UDP-Xyl synthase, suggest that the presence of xylose units in
the GXM structure contributes to C. neoformans virulence by
delaying the deposition of the C3 complement system factor and
altering the accumulation of GXM in the spleen (114). Moyrand
et al. (112) observed that a cohort of mice infected with the
1uxs1 strain survived after 60 days of infection, whereas mice
infected with the wild type strain died 30 days post-infection.
Animals infected with 1uxs1 strain were sacrificed 90 days after
infection and no C. neoformans colonies were observed in mouse
brains. These results suggest the importance of xylosylation for
C. neoformans virulence and infectivity. In addition, deletion
of the Cxt1 gene, which is responsible for encoding a β(1,2)-
xylosyltransferase involved in capsule synthesis, led to lower
levels of infection by C. neoformans in murine models of disease
(115). These data suggests that xylose is important for basal
interactions between the pathogen and the host (116).

CONCLUSIONS

C. neoformans is an opportunistic fungus that has
a polysaccharide capsule that exhibits important
immunomodulatory activity in vivo. Both GXM and
GalXM polysaccharides exert modulatory effects on different
components of the innate and adaptive immune response. The
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function of all cell types is impacted by capsular polysaccharides,
including macrophages which are important phagocytes and
antigen-presenting cells that reside in various tissues throughout
the body. The C. neoformans polysaccharides are important
pathogen associated molecular patterns that are essential for
stimulating cell-mediated immunity. However, there is no
cell receptor that specifically recognizes these molecules. The
cell-host recognition may occur through different receptors
present on the cellular surface.

Further understanding the interactions between
capsular polysaccharides and immune cells as well as the
immunomodulatory effects of capsular polysaccharides may lead
to the development of vaccines against this important pathogen.
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