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ABSTRACT In tuberculosis (TB), as in other infectious diseases, studies of small non-
coding RNAs (sncRNA) in peripheral blood have focused on microRNAs (miRNAs) but
have neglected the other major sncRNA classes in spite of their potential functions
in host gene regulation. Using RNA sequencing of whole blood, we have therefore
determined expression of miRNA, PIWI-interacting RNA (piRNA), small nucleolar RNA
(snoRNA), and small nuclear RNA (snRNA) in patients with TB (n � 8), latent TB infec-
tion (LTBI; n � 21), and treated LTBI (LTBItt; n � 6) and in uninfected exposed con-
trols (ExC; n � 14). As expected, sncRNA reprogramming was greater in TB than in LTBI,
with the greatest changes seen in miRNA populations. However, substantial dynamics
were also evident in piRNA and snoRNA populations. One miRNA and 2 piRNAs were
identified as moderately accurate (area under the curve [AUC] � 0.70 to 0.74) biomarkers
for LTBI, as were 1 miRNA, 1 piRNA, and 2 snoRNAs (AUC � 0.79 to 0.91) for accom-
plished LTBI treatment. Logistic regression identified the combination of 4 sncRNA (let-
7a-5p, miR-589-5p, miR-196b-5p, and SNORD104) as a highly sensitive (100%) classifier
to discriminate TB from all non-TB groups. Notably, it reclassified 8 presumed LTBI cases
as TB cases, 5 of which turned out to have features of Mycobacterium tuberculosis infec-
tion on chest radiographs. SNORD104 expression decreased during M. tuberculosis infec-
tion of primary human peripheral blood mononuclear cells (PBMC) and M2-like
(P � 0.03) but not M1-like (P � 0.31) macrophages, suggesting that its downregulation in
peripheral blood in TB is biologically relevant. Taken together, the results demonstrate
that snoRNA and piRNA should be considered in addition to miRNA as biomarkers and
pathogenesis factors in the various stages of TB.

IMPORTANCE Tuberculosis is the infectious disease with the worldwide largest dis-
ease burden and there remains a great need for better diagnostic biomarkers to de-
tect latent and active M. tuberculosis infection. RNA molecules hold great promise in
this regard, as their levels of expression may differ considerably between infected
and uninfected subjects. We have measured expression changes in the four major
classes of small noncoding RNAs in blood samples from patients with different stages of
TB infection. We found that, in addition to miRNAs (which are known to be highly regu-
lated in blood cells from TB patients), expression of piRNA and snoRNA is greatly altered
in both latent and active TB, yielding promising biomarkers. Even though the functions
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of many sncRNA other than miRNA are still poorly understood, our results strongly sug-
gest that at least piRNA and snoRNA populations may represent hitherto underappreci-
ated players in the different stages of TB infection.

KEYWORDS biomarkers, biosignature, miRNA, incipient tuberculosis, piRNA, RNA,
snRNA, sncRNA, snoRNA, subclinical tuberculosis, transcriptome, tuberculosis

Tuberculosis (TB) has affected humankind for more than 4,000 years and persists to
this day as a leading cause of death (1, 2). Mycobacterium tuberculosis, the causative

agent of TB, has adapted to survive in the human host, causing latent TB infection (LTBI)
that is maintained for long periods of time (3, 4). The outcome of LTBI ranges from
complete clearance of infection to stable latency and low-grade TB symptoms all the
way to disseminated disease (5). Although there are well-established methods to
diagnose TB, they have well-known drawbacks such as insufficient sensitivity (sputum
smear), long (4-to-8-week) turnaround time to results (culture) (3), and inability to
differentiate LTBI from TB (tuberculin skin test [TST], interferon gamma [IFN-�] release
assay [IGRA]) (6, 7). Even the recently developed Xpert M. tuberculosis/RIF assay has
been reported to exhibit limited sensitivity in detection of early progressors or pauc-
ibacillary TB cases (8). Therefore, a better understanding of the core cellular/molecular
mechanisms responsible for the pathogenesis of active TB and of the progression of
LTBI to active disease would contribute to improved recognition of individuals at high
risk of progression before a clinical diagnosis of TB is made and would lead to novel
interventions to ameliorate the consequences of active disease.

MicroRNAs (miRNAs) constitute key regulators of gene expression at the posttran-
scriptional level; they have well-known effects on pathogenesis and immune responses
in infectious diseases and offer potential uses as diagnostics (9, 10). Due to their small
size (�22 nucleotides [nt]) and molecular structure, they are also expected to be
more-stable biomarkers than mRNA (9, 11). Indeed, several recent reports have sug-
gested that changes in host miRNA expression represent a hallmark of bacterial
infections in humans and animals at both the cellular and organismal levels (12),
including in M. tuberculosis infection (13–15).

Other major classes of small noncoding RNAs (sncRNA) also contribute to the
regulation of gene expression (16), i.e., PIWI-interacting RNAs (piRNA), small nucleolar
RNAs (snoRNA), and small nuclear RNAs (snRNA). The principal characteristic of piRNA
is their capability to bind to PIWI proteins. Their functions were initially believed to be
restricted to antiviral defenses in insects and to maintaining genome stability in germ
line cells; however, it now appears that piRNA expression is also highly regulated in
somatic cells in response to a variety of stimuli (16, 17). For instance, previous studies
revealed that piRNA are abundant in human CD4� primary T lymphocytes and that
piR_30840 was able to bind to pre-mRNA introns via sequence complementarity,
resulting in a significant downregulation of interleukin-4 production (18). snoRNA are
60 to 300 nt in length and play important roles in post-transcriptional modifications
during ribosomal assembly. They can be classified into two families according to the
presence of a conserved H/ACA box (SNORA) or C/D box (SNORD) sequence (17, 19, 20),
and dysregulation in their expression can be part of stress responses and disease
mechanisms (19, 21). A recent report showed increased SNORD61 levels in plasma from
TB patients after an effective 24-week anti-TB treatment, providing the first evidence of
a potential role in host responses in TB (22). snoRNA precursors can give rise to miRNA
and piRNAs, thus adding another important biological function to this class of sncRNA
(23). snRNA (�150 nt) are part of small ribonucleoprotein particles and are important
for the positioning of the spliceosome on the substrate pre-mRNA (17). Some snRNA
have relatively stable expression, as exemplified by the uridine-rich snRNA RNU6, which
is often used as a constitutively expressed internal control for quantitative PCR (qPCR)
amplification of small RNAs (24).

Despite the potential importance of all major sncRNA classes to the pathogenesis of
TB, work has thus far focused on miRNAs; there are no published studies on any sncRNA
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as biomarkers to identify LTBI among recently exposed contacts (rCt) and no TB studies
featuring simultaneous profiling and computational evaluation of a broader set of
sncRNA classes. Besides aiming to identify new RNA biomarkers for TB, we therefore
also conducted this study to improve our understanding of the differences in the
relative degrees of reprogramming of the various sncRNA populations in a major
human infectious disease. To this end, we used integrative small RNA sequencing
(RNAseq) to characterize differences in the expression levels of miRNA, piRNA, snoRNA,
and snRNA in whole-blood samples from individuals with LTBI and active TB in
comparison with exposed controls (ExC) and treated LTBI (LTBItt) subjects.

RESULTS
Characteristics of the study cohort. Selected demographic and clinical data of the

study participants are summarized in Table 1 (for a detailed description, see Table S1
in the supplemental material). The diagnostic groups did not differ in terms of age or
sex. Responses to the TST and short-term IGRA (st-IGRA) and long-term IGRA (lt-IGRA)
screening tests differed greatly within both the LTBI and LTBItt groups but did not differ
between these two groups. Nonspecific chest X-ray (CXR) changes were observed in 4
participants in the LTBI and LTBItt groups combined, whereas abnormalities consistent
with M. tuberculosis infection were observed in 7 of the 8 TB patients and spanned a
range of lung injury. The one patient without such CXR findings had pleural TB. CXR
abnormalities suggestive of TB were also reported in 5/21 LTBI cases, but results of
bacterial investigations were negative (see Table 3; see also Table S1). Half of the TB
patients were sputum smear negative for AFB, but all TB cases had a positive sputum
culture, except for the single patient with pleural TB, who was diagnosed by pleural
tissue culture. Six of the eight index cases reported respiratory symptoms consistent
with TB. Similar symptoms were present in the other biological groups, although less
frequently.

RNAseq: counting statistics. The mapping statistics were analyzed to evaluate the
abundance variation of the sncRNA species across all groups. Of the �17 million reads
sequenced, after adaptor removal and filtering for a size range of 15 to 32 nucleotides,
an average of 11.48 million (standard deviation [SD], 2.43 � 106) sncRNA reads were
uniquely mapped to the hg38 human genome (Fig. 1A). To reduce the possibility of
bias resulting from the presence of transcripts expressed at low levels (25), we included
only sncRNA with �5 reads in all samples. Applying this filter resulted in a minor
reduction in the total number of uniquely mapped reads to 11.46 million (SD,

TABLE 1 Characteristics of the study participantsa

Supergroup
or study
group n

No. (%) of
males

Mean (SD) valuesb

TST/IGRA
response

No. (%) of patients
with indicated
CXR abnormality

No. (%) of patients
with indicated response
consistent with TB

Age
(yrs)

TST
(mm)f

st-IGRA
(pg/ml)

lt-IGRA
(pg/ml) Nonspecific

Probability of
M. tuberculosis
infectionc

Respiratory
symptom(s) AFB� Culture�Possible Likely

NTB
ExC 14 5 (35.7) 35.6 (13) 0.6 (1.4) 0.1 (0.4) 6.8 (10.7) �/� 0 0 0 4 (28.6) NA NA
LTBI 21 7 (33.3) 46.1 (10.5) 14.3 (5.0)*** 25 (57.9)** 561.2 (584.1)*** �/� 3 (14.3) 2 (9.5) 3 (14.3) 9 (42.9) 0 0

LTBIttd 6 3 (50) 38.5 (10.8) 9.5 (2.9)# 31.2 (42.6)* 368.3 (347.60)** �/� 1 (16.7) 0 0 2 (33.3) 0 0

TB 8 5 (62.5) 47 (18.2) 8.7 (4.3)# NA NA NA 0 1 (12.5) 6 (75) 6 (75) 4 (50) 8 (100)e

Total 49 20 (40.8) 42.3 (13.7) — — — — 4 3 9 21 4 8
aAbbreviations: ExC, exposed controls; LTBI, latent TB infection; LTBItt, treated LTBI; TB, tuberculosis; NTB, non-TB; NA, not available; —, not done; TST, tuberculin skin
test; st-IGRA, short-term IGRA; lt-IGRA, long-term IGRA; �, positive; �, negative.

bStatistical significance of results of multiple-group comparisons is indicated as follows: #, P � 0.08; *, P � 0.05; **, P � 0.005; ***, P � 0.001 (versus ExC).
cInfiltrates (with or without cavitation) or fibrotic scars consistent with TB.
dScreening tests for LTBI/TB were performed before IPT and were not repeated.
eOne case was detected by positive culture of the pleural tissue sample.
fInduration diameter.
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FIG 1 Differential representation of miRNA, piRNA, snoRNA, and snRNA in the sncRNA population before
and after applying different filters. (A) Total number of sequenced reads, reads that passed the length
filter (15 to 32 nt), and sncRNA uniquely mapped to the hg38 human genome. (B and C) Total number
of counts of all mapped sncRNA transcripts that possessed �5 reads in all samples (B) and number of
those that were thus included in this study after including only transcripts with a P-adj value of �0.05
in a multiple-group comparison (C). (D) Total numbers and percentages of miRNA, piRNA, snoRNA, and
snRNA after the sequential application of the following filters: sncRNA included in panel B; sncRNA
included in panel C; sncRNA differentially expressed (P value of �0.05 and |LFC| value of �0.5) in pairwise
analyses of comparisons of LTBI to ExC and LTBItt (labeled LTBI) or of TB to LTBI, LTBItt, and ExC (labeled
TB) or DE in both of these analyses (labeled Both); sncRNA fulfilling criteria for potential biomarkers in
ROC curve analysis (lower 95% CI value of �0.5, asymptotic P value of �0.05) in the comparisons of LTBI
to ExC and LTBItt (LTBI) or of TB to LTBI, LTBItt, and ExC (TB) or identified in both of these analyses (Both).
The bars in panels A, B, and C correspond to means (SD).
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2.43 � 106), and it also eliminated the differences in the number of mapped reads
compared to snRNA (compare panel A to panel B in Fig. S1 in the supplemental
material), with the result that now there were no statistical differences in the number
of mapped reads in any of the four sncRNA classes across the diagnostic groups.
Consistent with this, applying the filter resulted in only a slight change in variance
among the diagnostic groups. This is illustrated in a principal-component analysis (PCA)
plot, which also shows a high degree of overlapping of the diagnostic groups typically
seen in small RNA studies of whole blood in humans (Fig. S2). Taken together, these
data suggest that applying this filter eliminated mostly background signals of little
biological significance. The relative composition of the remaining 296 sncRNA was
roughly the same as that of the 619 sncRNA before the filter step in that miRNA
constituted by far the most abundant (83.1%) class, followed by piRNA and snoRNA
(Fig. 1D; see also Fig. S1B).

Differences in sncRNA reprogramming. Hierarchical clustering was then used to

test whether the extent of expression change of these four sncRNA classes differed
among the biological groups (compared to ExC) (Fig. 2A). This analysis showed that the
combined group of all sncRNA and three of the four subclasses (except snoRNA)
separated active TB into its own clade from the other diagnostic groups. Indeed, active
TB induced the greatest expression change with respect to ExC (as indicated by
Euclidean distances; Fig. 2A) in both the global (all sncRNA) and the sncRNA class-
specific analyses. snoRNA formed an exception in that they grouped the M. tuberculosis-
infected groups (LTBI and TB) in one clade and that the Euclidian distance was greatest
between LTBI and ExC. Consistent with the observation that the level of sncRNA
reprogramming was greatest in TB, the biclustering analysis results shown in Fig. 2B
revealed 2 major clades (featured in red or blue) of sncRNA which were mostly driven
by expression changes in TB. However, the LTBI and LTBItt groups also displayed shared
and distinct expression patterns which are addressed below in the respective differ-
ential expression (DE) analyses.

Additional criteria were then applied to the data set in order to detect sncRNA
dysregulation of biological importance and statistical significance. We first selected the
transcripts with a false-discovery-rate (FDR [adjusted P value {P-adj}]) of �0.05 in a
multiple-group comparison (Fig. 1C). We then selected the transcripts with a P value of
�0.05 and a |log2 fold change (LFC)| value of �0.5 in any pairwise comparison of LTBI
to ExC or LTBItt or of TB to each of the other three groups (Fig. 1D). These filters resulted
in the elimination of (i) all snRNA and (ii) nearly all of the most highly expressed other
sncRNA (normalized expression values �50,000; also see Fig. S3), probably because the
latter corresponded to constitutively expressed “housekeeping” sncRNA. Indeed, the
drastic reduction in the level of the piRNA counts (compare Fig. 1B and C) was due to
the removal of a single transcript (piR_016658), which has been described as the most
highly expressed piRNA in whole blood and leukocytes (26).

The composition of the remaining stringently selected 57 DE sncRNA (39 miRNA, 13
piRNA, 4 snoRNA, and 1 putative miRNA [p-miRNA]) differed from that of the prefilter
population in that the relative contributions of piRNA and snoRNA were now greater
(Fig. 1D). A total of 17 sncRNA were classified as LTBI related, and a total of 48 were
classified as TB related. piR_020490, piR_017936, piR_009059, piR_020548, piR_019912,
miR-4286, miR-99b-5p, and SNORD104 were commonly found in both LTBI- and
TB-related analyses, indicating that the patterns of sncRNA dysregulation of these two
stages of M. tuberculosis infection may overlap. PCA based on these sncRNA revealed a
further reduction in the overall variance in the sncRNA populations and a more distinct
spatial distribution of the diagnostic groups (Fig. S2). The 17 LTBI-related sncRNA were
predominantly downregulated as follows: 6 of 7 piRNA, 4 of 7 miRNA, and all 3 snoRNA.
In active TB, DE miRNA were also predominantly downregulated (n � 20/35), but piRNA
were predominantly upregulated (n � 8/11). The 2 TB-associated snoRNA were regu-
lated in opposite directions from each other (Table S2).
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sncRNA expression changes associated with LTBI. The 18 sncRNA that were
exclusively DE between LTBI and TB are discussed in the next section. A total of 17
sncRNA were specifically DE between LTBI and LTBItt or ExC (Fig. 3A). Four of these
(miR-409-3p, piR_009059, piR_020381 and piR_020490) were DE with respect to both
ExC and LTBItt, suggesting that they reflect an M. tuberculosis-uninfected state through
a “normalization” of expression after isoniazid (INH) preventive treatment (IPT). The
other 13 were DE uniquely between LTBI and LTBItt; only 1 of them was also DE
between LTBItt and ExC (Fig. S5), suggesting that the remaining 12 do not reflect
adverse effects of IPT (e.g., persisting drug toxicity) but clearance of the infection.
piR_009059 was unique in that its expression was significantly lower in LTBI than in the
other three groups.

Gene set enrichment analysis (GSEA) was performed in order to identify biological
pathways potentially regulated by miRNA in LTBI. It revealed that 2 of the 6 LTBI-related
miRNA, i.e., miR-183-5p (which was DE only with respect to LTBItt) and miR-409-3p (DE
in LTBI versus both ExC and LTBItt) were significantly associated with the IFN-�

FIG 2 Differential reprogramming of miRNA, piRNA, snoRNA, and snRNA in the four diagnostic groups. Analysis was performed on the basis of mean expression
of the 296 sncRNA possessing �5 reads in all samples. (A) Hierarchical clustering based on the average logarithmic values of the normalized expression data
of all 296 sncRNA or only miRNA (n � 241 miRNAs, 5 putative miRNAs [p-miRNA]), piRNA (n � 35), snoRNA (n � 13), or snRNA (n � 2). The dendrograms were
generated using the Euclidean distance metric; the distance values are shown in the tables. (B) Biclustering analysis based on the same 296 sncRNA as described
for panel A, illustrating global expression differences and relationships among the four diagnostic groups. The four groups were clustered by Euclidean distance
between rows/columns and single-linkage clustering. The normalized expression values were log transformed; the colored bar along the top of the heat map
indicates the z-scores, and the color code on the left identifies each sncRNA class.
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FIG 3 Differential sncRNA expression, gene set enrichment analysis, and biomarker screening reveal a modest degree of sncRNA reprogramming in LTBI.
Analyses were performed on the basis of the 17 sncRNA that passed the filters of statistical significance (multiple group: P-adj, �0.05) and differential expression
in the pairwise comparisons of LTBI versus ExC and LTBItt (P value of �0.05 and |LFC| value of �0.5). Results of analysis of the 18 sncRNA DE exclusively between
LTBI and TB are shown in Fig. 4. (A) Venn diagram illustrating distinct and overlapping differential expression patterns of sncRNA in the three possible pairwise
comparisons (ExC versus LTBI, n � 4 sncRNA; LTBI versus LTBItt, n � 17; LTBI versus TB, n � 19). (B) Heat map based on the average logarithmic values
of the normalized expression data with clustering analysis of the 17 sncRNA DE in LTBI versus ExC and LTBItt. (C) Gene set enrichment analysis performed
with the 6 LTBI-related miRNAs. Two (miR-183-5p and miR-409-3p) of the 6 LTBI-related miRNAs (miR-183-5p, miR-409-3p, miR-4286, miR-4435,
miR-629-5p, and miR-99b-5p) were predicted to significantly modulate 11 pathways. (D and E) Biomarker screening using dispersion plots illustrating
DE (ratio of means [also known as fold change], y axis) and biomarker potential (area under the ROC curve [AUROC], x axis) for the comparisons of LTBI
versus ExC (D) and LTBI versus LTBItt (E). Three potential biomarkers (AUROC lower 95% CI value of �0.5, P value of �0.05) were identified for LTBI versus
ExC and four for LTBI versus LTBItt (more-detailed information is given in Table S5). Each dot represents one sncRNA species; the corresponding sncRNA
class is identified by the fill color.
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signaling pathway, as well as with other pathways functionally related to immune
responses to M. tuberculosis (Fig. 3C; see also Table S4). Considering that the IGRA is
based on IFN-� responses and that the TST can also reflect IFN-� responses (27), we
performed an analysis of correlation between all LTBI-related sncRNA and the quanti-
tative responses to these LTBI screening tests across the 14 ExC plus 21 LTBI samples
together (n � 35). Indeed, significant correlations were observed for both miRNAs;
miR-183-5p correlated positively with st-IGRA (P � 0.02), and miR-409-3p correlated
negatively with TST (P � 0.016) and lt-IGRA (P � 0.003) (Table 2). In addition,
piR_017936 (P � 0.01) and miR-4286 (P � 0.033) correlated negatively with st-IGRA,
whereas neither the other sncRNA nor the presumably stably expressed internal control
RNU6P-233P (28) correlated significantly with any of the LTBI tests.

Seven LTBI-related sncRNA qualified as potential biomarkers (lower confidence
interval [CI] value of �0.5 and asymptotic P value of �0.05 in receiver operating
characteristic [ROC] analysis) to discriminate LTBI from ExC (miR-409-3p, piR_017936,
and piR_019675) or from LTBItt (miR-4435, piR_009059, SNORA74A, and SNORD104)
(Table S5). In this subset, the overall distribution of the sncRNA classes had changed
from the original profile (Fig. 1D; see also Table S5), as it now contained a much larger
fraction of piRNA. The highest area under the ROC curve (AUROC) values for the
distinction between LTBI and ExC were 0.74 (miR-409-3p) and 0.72 (piR_017936),
revealing only moderate biomarker potential for sncRNA to identify LTBI among ExC.
On the other hand, upregulation of miR-4435 constituted a highly accurate biomarker
candidate (AUROC � 0.91) for accomplished IPT (Fig. 3D and E).

sncRNA expression changes associated with active TB. 48 sncRNA (35 miRNA, 11
piRNA, and 2 snoRNA; Fig. 4A) were DE between the active TB group and the other 3
groups. Six sncRNA (let-7i-5p, miR-150-5p, miR-4677-3p, piR_001421, piR_018570, and
piR_020582) were globally associated with active TB, as they were DE in all comparisons
involving TB (Fig. 4A, center). Other transcripts were DE only in comparison with two
specific groups; 7 miRNAs (containing four members of the let-7 family) were DE versus
ExC and LTBI, 2 miRNAs (miR-10b-5p and miR-155-5p) versus ExC and LTBItt, and 18
sncRNA (also including 4 piRNAs and 2 SNORDs) only versus LTBItt. The latter result
suggested that changes in sncRNA expression may reveal biomarkers to detect pro-
gression to TB after IPT (Fig. 4A).

TABLE 2 Correlations between sncRNA expression and reactivity to TST and short-term
and long-term IGRAa

Assay or
transcript

TST
(mm)b

st-IGRA
(pg/ml)

lt-IGRA
(pg/ml)

st-IGRA 0.56***
lt-IGRA 0.66*** 0.54***
piR_009059 �0.25 �0.18 �0.28
piR_017936 �0.17 �0.42** �0.18
piR_019675 �0.26 �0.29 �0.23
piR_019912 �0.12 �0.024 �0.091
piR_020381 �0.24 �0.28 �0.24
piR_020490 �0.21 �0.23 �0.33
piR_020548 �0.12 �0.27 �0.18
miR-183-5p 0.01 0.38* 0.06
miR-409-3p �0.41* �0.16 �0.48***
miR-4286 �0.09 �0.36* 0.034
miR-4435 0.11 0.11 0.001
miR-629-5p 0.11 0.27 0.13
miR-99b-5p �0.03 0.05 0.01
p-miR-103 0.02 �0.03 0.01
SNORA74A �0.13 �0.08 �0.19
SNORD99 0.08 0.01 0.01
SNORD104 �0.04 0.17 �0.25
RNU6-223P 0.12 0.05 0.11
alt, long term; st, short term; *, P � 0.05; **, P � 0.01; ***, P � 0.005.
bDiameter of induration.

de Araujo et al. ®

November/December 2019 Volume 10 Issue 6 e01037-19 mbio.asm.org 8

 on D
ecem

ber 16, 2019 at F
U

N
D

A
C

A
O

 O
S

W
A

LD
O

 C
R

U
Z

http://m
bio.asm

.org/
D

ow
nloaded from

 

https://mbio.asm.org
http://mbio.asm.org/


Consistent with the global clustering analysis shown in Fig. 2B, hierarchical cluster-
ing based on the subset of 48 TB-related sncRNA placed the TB group in its own clade,
and 2 major clades of transcripts that were upregulated (n � 14; labels in red font) or
downregulated (n � 16; blue font) in TB were evident (Fig. 4B). Interestingly, expression
of a set of miRNAs from the let-7 family (let-7a-5p, let-7b-5p, let-7c-5p, let-7d-5p,
let-7f-5p, let-7g-5p, and let-7i-5p) was significantly decreased in TB. A third clade
(Fig. 4B, black font; n � 18) was predominantly, but not exclusively, composed of
transcripts DE only between LTBItt and TB (n � 12/18).

GSEA based on the 35 TB-related miRNA revealed enrichment of 104 pathways
(Table S3). The subcategories with the highest significance values (P � 0.00014)
corresponded to pathways modulating metabolism and mitogen-activated protein
kinase (MAPK), transforming growth factor � (TGF-�), JAK-STAT, Fc epsilon RI, insulin,
interleukin, and presenilin signaling, as well as cytokine-cytokine receptor interactions,
direct-damage responses (DDR), cell cycle, and DNA damage (Fig. 4C). Of note, 23 of

FIG 4 TB-related differential expression and gene set enrichment analysis reveal a strong impact of active disease on sncRNA reprogramming. Analyses
were performed on the basis of the 48 sncRNA that passed the filters of statistical significance (multiple group: P-adj, �0.05) and differential expression
in the pairwise comparisons of TB versus LTBI, LTBItt, and ExC (P value of �0.05 and |LFC| value of �0.5). (A) Venn diagram illustrating distinct and
overlapping differential expression patterns in the three possible pairwise comparisons (ExC versus TB, n � 24 sncRNA; LTBI versus TB, n � 19; LTBItt
versus TB, n � 26). (B) Heat map based on the average logarithmic values of the normalized expression data with clustering analysis of the 48 sncRNA
DE in TB. (C) Gene set enrichment analysis based on the 35 TB-related miRNA. A total of 104 pathways were significantly enriched, and the 15 with the
lowest P values (P � 1.4 � 10�3) are shown. IL 4, interleukin 4.
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these 35 miRNAs were predicted to affect pathways associated with B lymphocytes
(CD19� cells).

ROC analysis revealed a substantially higher number of potential biomarkers for
active TB than for LTBI in that 26 sncRNA (21 miRNA, 4 piRNA, and 1 snoRNA; Fig. 1D;
see also Table S5) were identified as potential biomarkers. A much greater contribution
of miRNA (81.5%) followed by piRNA (14.8%) and snoRNA (3.7%) was observed, which
was similar to the initial distribution of sncRNA classes (Fig. 1D). Of these, six sncRNA
were highly accurate markers (AUROC value of �0.9) in the differentiation between the
TB group and the non-TB (NTB) groups (Fig. 5A and C). miR-589-5p [AUROC � 0.91] and
let-7a-5p [AUROC � 0.90] distinguished between TB and ExC and let-7a-5p [AUROC �

1.0], miR-185-5p [AUROC � 1.0], miR-155-5p [AUROC � 0.98], SNORD104 [AUROC �

0.96], and miR-196b-5p [AUROC � 0.92] between TB and LTBItt. In contrast, there was
no single highly accurate biomarker for the discrimination between TB and LTBI
(Fig. 5B), as the highest AUROC values were 0.86 (let-7a-5p) and 0.85 (miR-196b-5p).

FIG 5 Identification of a 4-sncRNA biosignature for TB. (A to C) Biomarker screening using dispersion plots showing ratio
of means and AUROC for the paired comparisons of TB versus ExC (A), LTBI (B), and LTBItt (C). Each dot represents one
sncRNA species, the corresponding sncRNA class is identified by the fill color. sncRNA with high discriminatory potential
(AUROC value of �0.90, vertical dotted line) in the comparisons between TB versus ExC and LTBItt were selected for a
multivariate ROC curve analysis (shown in Fig. 5D; see also Fig. S4). (D) Plot of the predictive accuracy determined using
support vector machine (SVM) models with increasing numbers of features. The most accurate biomarker combination
model consisted of 4 sncRNA (highlighted in red). (E) The 4 features (let-7a-5p, miR-196b-5p, miR-589-5p, and SNORD104)
with the highest selection frequency in the SVM models (Fig. S4) were included in a predictive class probability analysis
to classify samples as TB or non-TB (NTB). The classification boundary for TB is at the center of the x axis (x � 0.5, vertical
dotted-line), values of �0.5 classify a sample as TB, and values closer to 1 indicate a greater probability. Each dot represents
an average prediction of one sample after cross-validations, along with the confusion matrix obtained. Samples are
distributed along the y axis by balanced subsampling.
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Identification of a 4-sncRNA biosignature for TB. Considering the absence of a
single accurate biomarker for the distinction between TB and LTBI, a predictive accu-
racy analysis based on support vector machine (SVM) models was then used to test
whether a combination of sncRNA would yield a more accurate classifier that could
differentiate TB from all NTB cases, including LTBI cases. The highest predicted accuracy
(77.2%) was observed for a classifier consisting of the top 4 sncRNA with the highest
selection frequencies by the SVM models (let-7a-5p, miR-196b-5p, miR-589-5p, and
SNORD104; Fig. S4), which was subsequently evaluated in a predictive class probability
analysis involving all four diagnostic groups (Fig. 5E). This classifier identified 16
individuals as TB. Their main clinical and laboratory data are summarized in Table 3.
Eight of these corresponded to the correctly classified 8 TB cases included in this study
(100% sensitivity), but another 8 stemmed from the LTBI group (Fig. 5E). Of note, 5/8
(62.5%) of these reclassified LTBI (LTBIreclas) cases had abnormalities on CXR that could
be attributed to M. tuberculosis infection (29) (Table 3). Importantly, none of the ExC or
LTBItt cases were classified as TB. In fact, the LTBItt group had the lowest class
probability (average, 6.2% [SD, 6.5]), followed by ExC (17.7% [SD, 14.5]) and LTBI (38.7%
[SD, 26.8]). The mean class probability value determined for the TB group was 84.2%
(SD, 17.2), and the lowest predicted probability was observed for the one patient with
a normal CXR and negative AFB stain and sputum culture, harboring a pleural TB
infection (TB_1 � 50.5%; Table 3).

Individual normalized counts of the components of this 4-sncRNA TB classifier in the
four diagnostic groups are shown in Fig. 6A, followed by a hierarchical clustering
analysis (Fig. 6B). This analysis revealed that the three miRNAs were contained in one
clade, suggesting common regulatory features that were distinct from regulation of
SNORD104 (Fig. 6A). Both panel A and panel B of Fig. 6 clearly show the heterogeneity
in expression in the NTB subgroups, which agrees well with the reported results
(Fig. 5D) indicating that a combination of several biomarkers was necessary to achieve
clinically relevant accuracy of TB detection.

Classification tree analysis. To assess the contribution of each of the four members
of the sncRNA classifier, we performed a classification tree analysis comprising all 49
samples (Fig. 6C). Whereas 100% sensitivity for TB was achieved by let-7a-5p alone,
adding each of the other 3 sncRNA resulted in increasing specificity, which reached a
final value of 97.6% in the last branch, i.e., after addition of miR-589-5p. Of note, the
three CXR-negative LTBIreclas subjects were classified as non-TB already in the first step,
suggesting that they share an sncRNA pattern which is not as strongly suggestive of TB
as that of the other 5 LTBIreclas.

Additional transcriptomic evidence of advanced LTBI in LTBIreclas subjects with
abnormal CXR. Since mRNA expression data were available for the same samples, we
then tested whether the 4-sncRNA classifier could be validated by two established
mRNA biomarkers for TB, NPC2 (30) and BATF2 (31). Expression of both mRNAs was
higher in the CXR-abnormal LTBIreclas subjects than in the LTBI subjects that had been
classified as LTBI by logistic regression (Fig. 5E, yellow symbols; n � 13; P value of
�0.05), and it also tended to be higher (P � 0.06) than in the three CXR-negative
LTBIreclas subjects (Fig. 7). In addition, BATF2 expression levels did not differ significantly
between the CXR-abnormal LTBIreclas and the 8 TB cases. Taken together, these results
indicate that the 5 CXR-abnormal LTBIreclas subjects have transcriptomic features
suggestive of an intermediate state between latent and active TB.

Transcriptional profiles of let-7a-5p, miR-196b-5p, miR-589-5p, and SNORD104
during progression to active TB and after successful treatment. To test from a
different angle whether DE of the 4 components of the sncRNA classifier was associated
with active disease, their expression levels were plotted for the two TB patients from
whom a blood sample was available after completed treatment. In both patients,
expression of all four sncRNA tended to normalize after treatment (Fig. 8). Of note, for
one case we also had a sample obtained during LTBI, and the expression change that
had occurred after progression to TB was in the expected direction for all members of
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the classifier, i.e., downregulation for let-7a-5p, miR-196b-5p, and SNORD104, but
upregulation for miR-589-5p.

Similar expression profiles of let-7a-5p, miR-196b-5p, miR-589-5p, and SNORD104
in peripheral whole blood in TB and in M. tuberculosis-infected PBMC. To test
whether the observed changes in expression of let-7a-5p, miR-196b-5p, miR-589-5p,
and SNORD104 in TB (Fig. 4B and 5C) could be related to infection of human host cells
by M. tuberculosis (or to exposure of the cells to the pathogen or its antigens), we
measured their expression levels in a cellular infection model using primary human

FIG 6 Heterogeneity in sncRNA expression supports the use of combinations of biomarkers to improve accuracy for TB detection. An expression profile of the
4 sncRNA (let-7a-5p, miR-196b-5p, miR-589-5p, and SNORD104) constituting the proposed TB classifier identified in Fig. 5E (see also Fig. S4) is illustrated. (A)
Dot plots based on the normalized expression values (the same data are used for Fig. 5A and for panel C of this figure). The solid horizontal lines represent
the median; the dotted lines represent the cutoff value used for the data shown in panel C. (B) Heat map created using normalized sncRNA expression
values that were median centered, log transformed, and scaled by the Pareto method in order to facilitate visual comparability among expression profiles with
different expression ranges. The dendrogram was generated by hierarchical clustering analysis by sncRNA species, with group assignments held constant. The
colored bar along the top of the heat map indicates the z-scores. (C) Decision tree analysis based on let-7a-5p, miR-196b-5p, miR-589-5p, and SNORD104.
Sensitivity of 100% was achieved for TB by let-7a-5p alone, and sequential addition of the other three sncRNA led to increasing specificity
(maximum � 97.6%). The arrows indicate the direction of the transcription modulation during active TB.

FIG 7 Expression of BATF2 (A) and NPC2 (B) mRNA suggests an elevated risk of progression to TB in
LTBIreclas with abnormal chest radiograph. Dot plots based on the normalized expression values indicate
that expression in the CXR-abnormal LTBIreclas subjects (n � 5) tends to be intermediate between LTBI
(n � 13, classified as NTB by logistic regression [Fig. 5E]) and TB (n � 8). y axis � normalized mRNA
expression values in whole blood. P values: *, �0.05; ***, �0.001 (T-test, one-tailed).
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peripheral blood mononuclear cells (PBMC) and M1-type and M2-type macrophages
(Fig. 9). Compared to DE in TB (e.g., Fig. 6A), expression changes were most similar in
infection of PBMC in that SNORD104, let-7a-5p, and miR-196b-5p were all downregu-
lated and that a slight tendency of miR-589-5p upregulation was observed (Fig. 9A). In
addition, the three miRNA clustered together in one clade, as had been observed in
peripheral blood (compare Fig. 9B and 6B). Expression changes in differentiated
macrophages agreed only in terms of significant downregulation of SNORD104 in M2
and a tendency toward downregulation of SNORD104 in M1. Let-7a-5p was downregu-
lated in PBMC and upregulated in M1 macrophages but was not DE in M2 macrophages
(Fig. 9A), indicating that its regulation patterns may differ by cell type. Taken together,
these results demonstrate that, compared to whole blood (from which the sncRNA
expression profiles of the study cohort had been obtained), expression of the 4-sncRNA
classifier was most similar in PBMC, i.e., in the blood fraction most closely related to
whole blood.

External validation. Two previously published microarray-based miRNA data sets
were available for external validation of the three miRNA contained in our 4 sncRNA TB
classifier. These studies were conducted in Gambia (GEO data set GSE39163) and
Germany (GSE34608). Let-7a-5p (AUROC value � 1.0) demonstrated excellent discrim-
ination between HD and TB among Europeans (GSE34608), while miR-196b-5p and
miR-589-5p performed better in the Gambian population (GSE39163) but with lower
AUROC values (0.67 and 0.73) (Table 4). All these miRNA showed expression changes in
the same direction as in the Brazilian population.

DISCUSSION

We have conducted the first comprehensive, integrative small RNAseq analysis of
peripheral blood samples from individuals with different stages of M. tuberculosis
infection and compared the relative biomarker potential of the four major sncRNA
classes, i.e., miRNA, piRNA, snoRNA, and snRNA. The final population of potential
biomarkers contained somewhat lower contributions from miRNA (71.9% in the bio-
marker data set versus in the original data set [Fig. 1D; see also Table S5 in the
supplemental material]) and higher contributions from piRNA (21.9% versus 11.8%) and
snoRNA (6.3% versus 4.4%) than the original population of detected sncRNA but
contained no snRNA. While it has been known for some time that expression and
activity patterns of the noncoding RNAome (sncRNAome) exhibit considerable plastic-
ity in biology and disease, our study was the first to formally assess the biomarker
potential of the four major sncRNA classes in an important human infectious disease,
and the results reveal the previously underappreciated potential of piRNA and snoRNA

FIG 8 Temporal changes in the levels of expression of let-7a-5p, miR-196b-5p, miR-589-5p, and
SNORD104 indicate a trend of normalization after completed anti-TB therapy in two TB cases. Two rCt
progressed to active pulmonary TB during this study. Follow-up blood samples were additionally
collected as follows: during LTBI (n � 1), upon progression to active pulmonary TB (n � 2), and after
anti-TB treatment (TBtt; n � 2). The raw reads from these samples were normalized following the same
methods and standards used in the cross-sectional study. The arrows indicate the direction of the
transcription modulation during active TB.
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as biomarkers for patient classification and (pending a better understanding of their
physiological functions) as tools for new insights into pathophysiological mechanisms.

SNORD104, also known as U104, is predicted to direct 2=-O-methylation to 28S rRNA
(32). The 2=-O-methylation process induces ribosomal heterogeneity, mainly by driving
protection from hydrolysis and modification of strand flexibility (33). Monaco et al. (33)
proposed that changes in the expression levels of subclass C/D snoRNAs (SNORD104 is

FIG 9 M. tuberculosis-induced expression changes of the components of the 4-scnRNA classifier in peripheral
blood mononuclear cells resemble those seen in whole blood of TB cases. Relative let-7a-5p, miR-196b-5p,
miR-589-5p, and SNORD104 expression levels were evaluated in peripheral blood mononuclear cells (PBMC) and
in blood-derived M1 and M2 macrophages (n � 5 donors) after 18 h of infection with M. tuberculosis H37Rv or mock
infection. U6 was used as an internal control and was stably expressed across all samples (Friedman test, P � 0.94).
Fold change was calculated using t � 0 h as reference. *, Wilcoxon matched-pair signed rank test P value of �0.05.
(A) Dot plots with the individual fold changes, a different color was assigned to each donor. Small bars � median.
(B to D) Heat maps based on mean fold change (FC) values and row clustering of M. tuberculosis-infected PBMC (B)
and M1 (C) and M2 (D) macrophages. The colored bars along the top of the heat map indicate mean FC values.
As in whole blood from TB cases (see Fig. 6A and B), let-7a-5p, miR-196b-5p, and SNORD104 were downregulated
in PBMC, whereas in macrophages only expression of SNORD104 (M2) changed in the same direction as in whole
blood.
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included in this subclass) “likely” play the role of a regulatory mechanism in the
translation of specific mRNAs, due to the induction of more “specialized ribosomes”
(34). Pathophysiologically relevant changes in host snoRNA expression have been
observed in cells and human body fluids during cancer and viral infections (reviewed
in reference 21). However, snoRNA regulation has thus far hardly been explored in
bacterial infections; together with the current study, SNORD104 dysregulation has been
described previously in an investigation of another important mycobacterial infection.
Its downregulation was observed in the blood of leprosy patients suffering from
reversal reactions (35), representing a pathological immune reaction with granuloma-
tous inflammation in which T-cell-mediated immunity is increased and the disease
presentation shifts toward the tuberculoid pole (36). Recent evidence has additionally
indicated that many snoRNA (including SNORD104) are cleaved into shorter (�22-nt)
“miRNA-like” functional forms (reviewed in reference 37). The SNORD104-derived
miRNAs are highly abundant in activated mature lymphocytes and were previously
reported to target ribosomal protein S3 (RPS3), an essential NF-�B binding partner (38).
We have detected its downregulation upon M. tuberculosis infection in blood-derived
PBMC and in M2 macrophages but not M1 macrophages. M1 phenotypes are described
to exhibit better bactericidal activity and to promote granuloma formation, while M2
phenotypes would inhibit these processes (39). These results indicate that the down-
regulation of SNORD104 observed in peripheral blood in our study is biologically
relevant and suggest that its role (or that of the miRNAs derived from it) in TB
pathogenesis merits further investigations. piRNAs were DE in both LTBI and TB, and
piR00905 and piR_018570 had AUROC values of �0.8 (“excellent classification” accord-
ing to a common scoring scheme [40]) for differentiation between LTBI and LTBItt and
between TB and ExC, respectively. Among other functions, complexes of piRNA with
PIWI proteins have been implicated in locus-specific DNA methylation processes (41).
Epigenetic changes in host cells caused by M. tuberculosis infection have been sug-
gested to be a possible bacterial evasion mechanism (42, 43), which might explain the
different piRNA signatures identified here. Another plausible explanation is that piRNA
are simply dysregulated upon cellular stress (44). However, very little is known about
the full spectrum of piRNA functions beyond the original concept that they interfere
with replication of endogenous retroviruses in germ line cells. It is possible that,
similarly to miRNA, they regulate a broad spectrum of biological processes, and
dedicated in-depth studies on their role in M. tuberculosis infection, as well as in
infectious diseases in general, will, therefore, be of great interest.

Does sncRNA expression identify a subgroup of LTBI cases? During latency, the
site of infection is relatively shielded from the peripheral circulation and M. tuberculosis
is considered less metabolically active (45). It was therefore not unexpected that we
identified only three biomarker candidates for the detection of LTBI versus ExC, all of
which had only moderate discriminatory potential (Table S5). Remarkably, expression of
the LTBI-related miR-409-3p transcript correlated negatively with TST and IGRA re-
sponses and could be related to the IFN-� response pathway, which is pivotal in the
control of M. tuberculosis infection (46). This suggests that, even though miR-409-3p
downregulation was not seen in all LTBI subjects, it may be pathophysiologically
important in a subgroup whose clinical characteristics (e.g., ability to contain or resolve

TABLE 4 Validation of the 3 miRNA components of the proposed classifier for active TB by reanalysis of two external studiesa

miRNA
component

Present study (Brazil) GSE34608 study (Germany) GSE39163 study (Gambia)

AUROC
ExC (n � 14) vs
TB (n � 8)

Direction of
regulation

AUROC
LTBI (n � 21) vs
TB (n � 8)

Direction of
regulation

AUROC
HD (n � 8) vs
TB (n � 8)

Direction of
regulation

AUROC
LTBI (n � 8) vs
TB (n � 8)

Direction of
regulation

let-7a-5p 0.90 2 0.86 2 1.0 2 0.52 —
miR-196b-5p 0.88 2 0.85 2 0.56 — 0.67 2
miR-589-5p 0.91 1 0.67 1 0.63 1 0.73 1
aSymbols: 2 � downregulation; 1 � upregulation. Abbreviations: HD � healthy donor; ExC � exposed control; LTBI � latent TB infection; TB � tuberculosis;
AUROC � area under the ROC curve; — � no differential expression.
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latent infection) remain to be defined. Although there are no other studies on sncRNA
as biomarkers for LTBI, our data raise the possibility that the blood sncRNA pool may
not be the optimal source for biomarkers for use in screening exposed populations for
latently infected individuals per se and may be more useful for characterizing subpopu-
lations.

What is the significance of the IPT-associated sncRNA? The inclusion of individ-
uals who have completed IPT is another unique feature of our study. In the set of
sncRNA that were DE in LTBItt, only a single one was DE with respect to ExC, suggesting
that several months after completion of IPT there was little if any evidence of changes
in the sncRNAome that might reflect direct effects of the INH treatment. Rather, the
data suggest that the sncRNA that were DE with respect to LTBItt more likely represent
markers for the immune reaction accompanying resolution of the latent infection. Of
note, all 4 members of the TB signature constitute highly accurate individual biomark-
ers for the differentiation of TB versus LTBItt, suggesting that they may prove useful in
detecting progression to TB after IPT.

Implications of the 4-sncRNA classifier. Analysis of our 4-sncRNA (let-7a-5p,
miR-196b-5p, miR-589-5p, and SNORD104) biosignature for TB led to “reclassification”
of 8 LTBI individuals as TB cases. Five of them were found to show clinical/imaging
characteristics of progression to TB, and their “TB-like” features were further substan-
tiated by increased expression of previously validated mRNA biomarkers for TB. South
African individuals detected with subclinical TB (as defined by a positive IGRA associ-
ated with imaging abnormalities in the lung parenchyma such as infiltrates, fibrotic
scars, and nodules) were found to be significantly more likely to develop symptomatic
active TB in a 6-month prospective study (47). Considering that the infected subjects
may present with different features of the disease (the so-called spectrum of TB [45])
during progression from latent to active TB, individuals identified by our classifier could
then be given additional treatment and/or enrolled in more-intense follow-up pro-
grams. All 8 potential TB cases detected among LTBI patients by our classifier were
subjected to IPT, and a longer-term follow-up was not envisaged in the study protocol.
It was, therefore, not possible to ascertain whether any of them progressed to TB. It
remains to be tested whether this 4-sncRNA classifier can be replicated in larger
prospective trials focusing on progression from LTBI to TB, which should also enroll
subjects with different genetic backgrounds and other pulmonary pathologies as
disease controls. Considering the current limitations in detecting subgroups within the
heterogeneous spectrum of TB, our report highlights that the observed reprogramming
of sncRNA populations yielded small RNA biomarkers that can be used to identify
difficult-to-diagnose TB cases regardless of level of lung injury (as seen on CXR images),
bacterial load, or clinical symptoms. How practical would it be to implement this or a
similar classifier(s) in clinical practice? Its sensitivity of 100% and specificity of 97%
exceed the requirements of the World Health Organization target product profile for
community-based diagnostic tests to identify individuals at risk of active TB (sensitivity
of �95% and specificity of �80% [48]). Currently, the required technology (and thus
the expected cost) would likely restrict its use to those medical facilities with a relatively
high level of technology. However, this scenario might change in the near future with
the development of more cost-effective point-of-care technologies for RNA amplifica-
tion (49).

Value of the external validation. We validated the miRNA components of the
classifier by interrogating two data sets from different ethnicities. In particular, let-7a-5p
turned out to be a perfect biomarker for TB in the European data set, whereas
miR-196b-5p and miR-589-5p performed slightly better in the Gambian cohort
(Table 4). One possible explanation for this observation is that the southeastern
Brazilian gene pool (from which most of our study participants were drawn) is highly
enriched in elements of both European and African origin (50). Differential expression
of the three miRNA components of the classifier during TB has also been documented
in previous publications using different models of M. tuberculosis infection and patient
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samples (Table 5) (51–55). Even though expression of let-7a-5p in CD4� T cells (52)
(Table 5) and M1 macrophages (Fig. 9) was regulated in the opposite direction from the
downregulation observed by us in whole blood, those results do suggest that all three
miRNA are strongly associated with host responses to M. tuberculosis infection.

Comparison with other classifiers for TB. Our report lends further support to the
use of diagnostic classifiers consisting of two or more molecules. Other studies have
identified multi-miRNA classifiers for TB by using either sera (6-miRNA classifier [56] or
15-miRNA classifier [57]) or whole blood (4-miRNA classifier [15]). These classifiers had
lower sensitivities (�91%) than our classifier (100%) and specificities ranging between
78.57% (57) and 91.8% (56). It may appear surprising that there is no common miRNA
signature among these classifiers (including ours). Differences in study populations,
clinical status in the TB spectrum (since a binary nature is an old-fashioned concept),
blood fractions assayed, preanalytic protocols, transcriptomic assay (microarray or
RNAseq), sequencing depth, and statistical methods and stringency may all affect the
composition of the identified signatures. Clearly, this variance strongly suggests the
need for unified study protocols and analytic workflows in future studies.

Limitations and strengths. This exploratory study was clearly limited by the small
group sizes (in particular, by the sizes of the treated LTBI and TB groups), although it
did not differ much from previous similar studies in this regard (15, 43, 55). Clearly,
additional validation is required before advancing specific sncRNA biomarkers along
the pathway to clinical application. The major strengths of this study are the fact that
it was conducted in a real-life TB transmission setting, the availability of detailed clinical
data, the use of both TST and IGRA to define as LTBI only the doubly positive cases, and
the inclusion of subjects with LTBI who had completed prophylactic treatment. In
addition, we were able to validate aspects of the 4-sncRNA classifier by comparison
with published data sets, a cellular infection model, and expression of two previously
validated mRNA biomarkers.

In summary, this first report on expression changes of all four major classes of
sncRNA in M. tuberculosis infection suggests that, in addition to miRNA, both piRNA and
snoRNA also play important roles in the host response to M. tuberculosis infection and
that multi-sncRNA classifiers may prove useful for the identification of specific sub-
groups of humans with M. tuberculosis infection.

MATERIALS AND METHODS
Study design. Participants were recruited between March 2010 and August 2013 in the context of

a close-contact study conducted in the TB Control Program of Clementino Fraga Filho University Hospital

TABLE 5 Summary of previous studies in which the 4 components of the proposed sncRNA classifier for active TB were observed to be
differentially expressed during M. tuberculosis infectiona

Component of
the 4-sncRNA
classifier for TB Specimen

Type of clinical
specimen/cell examined Test groups

Direction of
regulation Reference

let-7a-5p Human U937 macrophages Macrophages recombinantly
expressing the
M. tuberculosis
antigen Hsp16.3

Wild type vs Hsp16.3
recombinant

2 Meng et al. 2014 (51)

Peripheral blood CD4� T cells Control vs TB — Fu et al. 2014 (52)
LTBI vs TB 1

Peripheral blood PBMC Control vs TB 2 Fu et al. 2019 (53)

miR-196b-5p Peripheral blood Serum Control vs TB 1 Zhang et al. 2014 (54)

miR-589-5p Peripheral blood Serum Control vs DS-TB — Wang et al. 2016 (55)
Control vs MDR-TB 1
DS-TB vs MDR-TB 1

SNORD104 None (no available studies)
aSymbols: 2 � downregulation; 1 � upregulation; — � no DE. Abbreviations: LTBI � latent tuberculosis infection; TB � tuberculosis; DS-TB � drug-sensitive TB;
MDR-TB � multidrug-resistant TB; DE � differential expression.
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(CFFUH) (58). A subset of the blood samples had been analyzed previously for mRNA expression (30), and
NPC2 was identified as a biomarker for TB. The study protocol was approved by the Ethics Committee of
the Oswaldo Cruz Foundation and CFFUH under registration codes 560-10 and 183-10, respectively.
Verbal and written informed consent was obtained before inclusion of patients in the study.

Study site. The CFFUH is a tertiary health care unit and a reference center for TB located in Rio de
Janeiro (RJ), which has the second highest TB incidence (63.5/100,000 inhabitants) among the Brazilian
states, representing a rate twice as high as the national average (33.5/100,000 inhabitants) (59).

Participants and diagnostic groups. According to the Brazilian Ministry of Health (BMH) guidelines,
the screen to detect LTBI among recent contacts comprises a clinical evaluation by a physician
specializing in pulmonary diseases, a chest X-ray (CXR), and a tuberculin skin test (TST). Additionally, as
part of the close-contact study (58), blood was collected for short-term (st) and long-term (lt) IGRA.
st-IGRA was performed by stimulating whole blood with the M. tuberculosis antigen ESAT6:CFP10
(expressed as a fusion protein) for 22 h, whereas lt-IGRA involved stimulating peripheral blood mono-
nuclear cells (PBMC) with this antigen for 5 days. Subjects reporting cough, hemoptysis, fever, weight
loss, dyspnea, or chest pain were classified as showing symptoms consistent with TB. The pulmonologist
evaluated the CXR using the American Thoracic Society criteria for the radiographic diagnosis of TB (29)
and recorded the presence/absence of findings suggestive of TB; radiographic alterations with no clear
diagnosis were classified as representing unspecific abnormalities. LTBI subjects were offered 6 months
of isoniazid (INH) preventive treatment (IPT). Active TB cases were treated with first-line anti-TB agents.
All treatments and clinical evaluations were provided free of charge and on a voluntary basis and were
carried out according to BMH guidelines. Cases were defined as follows. ExC had had recent close contact
with a TB index case patient and had negative TST and IGRA results, indicating the absence of M.
tuberculosis infection. rCt with negative TST results but positive IGRA results (or vice versa) were classified
as indeterminate and were not included in the present RNA analysis. LTBI was defined as (i) the presence
of a TST induration with a diameter of �5 mm measured 72 h after intradermal injection of M.
tuberculosis purified protein derivative (PPD) and (ii) a positive IGRA response (to st-IGRA or lt-IGRA or
both). If indicators of active disease were observed on CXR, (iii) the absence of acid-fast bacilli (AFB) and
negative results of Lowenstein-Jensen (LJ) culture of clinical specimens were also required. Both groups
were followed for 1 year, resulting in the identification of two incident TB cases. LTBItt consisted of LTBI
patients (TST positive [TST�]/IGRA� at enrollment) who had completed a 6-month course of IPT. Their
blood samples were collected �2 months after the end of IPT (TST/IGRA were not repeated). Active TB
was defined as (i) respiratory symptoms suggestive of TB and/or (ii) detection of AFB and/or positive LJ
culture in sputum, bronchoalveolar lavage fluid, or a biopsy specimen followed by (iii) remission of
symptoms upon anti-TB chemotherapy. Their blood samples were obtained before initiation of treat-
ment. Whole blood was collected in PAXgene RNA tubes (PreAnalytiX; SWZ) and stored at �80°C for
�2 years before RNA extraction.

sncRNA libraries. Small (�18-nt) RNA extraction and purification were performed as described
previously (30). A 1-�g volume of RNA was used for cDNA library preparation (TruSeq small RNA sample
preparation kit; Illumina, San Diego, CA) following the manufacturer’s protocols. RNAseq was performed
on an Illumina HiSeq 2500 sequencing system (Illumina, San Diego, CA), generating 50-bp single reads
and �16 million reads passing the filter for each sample.

Preprocessing and differential expression. The FASTQ files were preprocessed (FastQC 0.11.2), and
adaptors were trimmed (Cutadapt 1.7.1) (60), aligned to the human genome (STAR 2.4.1d) (61), counted
(featureCounts 1.4.6) (62), normalized, and evaluated for differentially expressed (DE) transcripts using
DESeq2 (v. 1.16) (63) on the Oasis 2.0 Web platform (64). The DESeq2 normalization metric is based on
the median-of-ratios method, which accounts for sequencing depth and RNA composition (63). Normal-
ized counts were used as input for all analyses. The DE analysis uses shrinkage estimators to infer
dispersions and fold change (FC) data to facilitate interpretation of results (63). The Wald tests were used
to infer P values for the multiple-group or pairwise comparisons after negative binomial generalized
linear model (GLM) fitting, which included adjustments for the potentially confounding covariates age,
sex, and RNAseq batch. This was followed by application of the Benjamini-Hochberg (BH) adjustment to
estimate the false-discovery rate (FDR) among the DE sncRNA (BH-adjusted P values [P-adj]).

Gene set enrichment analysis (GSEA) adapted for miRNA. Enrichment analysis was performed for
pathways and immune-related cell types, using the miRNA Enrichment Analysis and Annotation Web tool
(65).

Reanalysis of public miRNA microarray data sets. Raw (data set GSE39163) or background-
corrected (GSE34608) files were downloaded from the Gene Expression Omnibus (GEO) using the getGEO
function from the GEOquery (v. 2.48.0) (66) R (v. 3.5.1) package (67). Next, expression intensities were
normalized and background corrected (only for data set GSE39163) with the Robust MultiArray Average
(RMA) method (68, 69) implemented in the AgiMicroRna (70) R package. Control probes were then
filtered out, and miRNAs were named according to miRBase v.21 using the miRNAmeConverter (71)
package. Duplicated identifiers (IDs) were removed by keeping the miRNA with the greatest mean
expression level across all samples.

NPC2 and BATF2 mRNA expression. Data for these two mRNAs were extracted from the long RNA
data set, which had been obtained by next-generation sequencing (NGS) from the same total RNA as the
sncRNA data set (30). DESeq2 (v. 1.16) was used to obtain the normalized expression values, including
adjustments for age, sex, and RNAseq batch (unpublished results).

Primary cell isolation and in vitro differentiation. Buffy coats from blood of healthy donors (HD)
were provided by a blood bank (Blutbank Springe, Germany), and primary human PBMC were isolated
using Ficoll (Biocoll, Merck) density gradient centrifugation. CD14� monocytes were isolated by mag-
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netically activated cell sorting (MACS) and differentiated for 5 days in serum-free medium to M1-like
macrophages (M1) by adding 80 U/ml of GM-CSF (granulocyte-macrophage colony-stimulating factor;
Miltenyi) or to M2-like macrophages (M2) by adding 100 ng/ml M-CSF (macrophage colony-stimulating
factor; Miltenyi). A total of 1 � 106 cells were plated in triplicate in 24-well tissue culture plates (Falcon)
and cultured in 1 ml of CellGro medium (CellGenix) at 37°C and 5% CO2.

In vitro infections. M. tuberculosis strain H37Rv was grown to mid-log phase in 5 ml of Middlebrook
7H9 (Difco) liquid culture medium supplemented with 0.5% glycerol, 0.15% Tween 80, and 10% oleic
acid-albumin-dextrose-catalase (BD Biosciences). Bacteria were then washed twice with 45 ml
phosphate-buffered saline (PBS; Gibco). Bacterial density was measured with a spectrophotometer at an
absorbance of 600 nm.

Targeted quantification of let-7a-5p, miR-196b-5p, miR-589-5p, and SNORD104 expression.
Total RNA was extracted from cells by the use of Qiazol reagent (Qiagen) and an miRNeasy RNA
extraction kit (Qiagen), using on-column RNase-free DNase (Qiagen) treatment. RNA yield was measured
with a NanoDrop S1000 spectrophotometer (Thermo Scientific), and 50 ng was then reverse transcribed
using a miRCURY LNA RT kit (Qiagen). Quantitative real-time PCR (RT-qPCR) was performed using a
SensiFAST SYBR kit (Bioline). The primers used to amplify let-7a-5p (catalog no. YP00205727), miR-
196b-5p (YP00204555), miR-589-5p (YP00205675), SNORD104 (PPH82094A), and U6 snRNA (U6;
YP00203907) were obtained from Qiagen. RT-qPCR was carried out in a LightCycler 480 instrument
(Roche). Relative expression levels were calculated using the 2(�ΔΔCT) method (72) with U6 as an internal
control. We included the following controls in each PCR run: a synthetic RNA spike-in (to evaluate the
efficiency of reverse transcription and RT-qPCR), a non-cDNA control (to detect primer-dimer formation),
and non-RT RNA (to check for genomic DNA contamination).

Data analysis. The R environment (67), Prism5 software (GraphPad Software, La Jolla, CA), and the
Web-based tools MetaboAnalyst (73) and Clusvis (74) were used for statistical analyses and graphics. For
principal-component analysis (PCA) and generation of heat maps with individual profiles, the expression
values were log transformed, median normalized, and scaled according to the Pareto scaling method
(75). The R package “cluster” (v. 2.0.7-1) (76) was used for hierarchical clustering analysis based on a
scaled Euclidean distance measure (Ward linkage) (77). Heat maps with group expression profiles were
plotted using the average values of the normalized expression data. Univariate and multivariate ROC
curve analyses were performed using R packages easyROC (78) and MetaboAnalyst (73), respectively.
“Potential biomarkers” were defined as those sncRNA having an area under the ROC curve (AUROC) with
a lower-bound 95% confidence interval (CI) value of �0.50 and an asymptotic significance P value of
�0.05. SncRNA with AUROC values of �0.9 were defined as “highly accurate biomarkers.” A support
vector machine (SVM) algorithm was applied with Monte-Carlo cross-validation to select optimal
combinations of biomarkers. Then, the performance of the resulting combinations was cross-validated by
the use of a logistic regression model and a predicted class probability analysis in which values between
0 and 1 represent the chances of being allocated in the disease group for 50 iterations. Decision tree
analysis was performed with the R package rpart (v. 4.1.15) (79) and the results visualized using the Web
tool draw.io (https://www.draw.io/). We used the Mann-Whitney test or Kruskal-Wallis test (with Dunn’s
test) to assess differences in continuous variables between 2 groups or between �2 groups, respectively.
The T-test (one-tailed) was used to assess differential expression of NPC2 (30) and BATF2 (31). We
performed a chi-square test (two-tailed) to evaluate sex distributions across groups. For the in vitro
assays, the Wilcoxon matched test and Friedman test were used for the paired-group and multiple-group
comparisons, respectively. Spearman Rho correlations (two-tailed) were computed to assess correlations
between the quantitative TST/IGRA values and the sncRNA expression values. P values and P-adj values
of �0.05 were considered statistically significant.

Data availability. All data are publicly available through GEO (https://www.ncbi.nlm.nih.gov/geo/)
under accession number GSE131174.
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