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Abstract

Background: Zika virus (ZIKV) is a recently emerged arbovirus, which infection during pregnancy is associated with
a series of congenital malformations, collectively denominated Congenital Zika Syndrome (CZS). Following infection,
ZIKV RNA has a median duration period of 10 days in plasma and up to 6 months in semen in immunocompetent
adult individuals. Moreover, ZIKV is able to replicate and persist in fetal brains and placentas, consequently, infection is
associated with pregnancy loss, albeit the pathogenic mechanisms are still unknown.

Case presentation: Here we report a CZS case of an infant born during the ZIKV outbreak in northeast Brazil, the child
presented recurrent episodes of seizures with prolonged presence of ZIKV RNA on the central nervous system
(CNS) and blood. ZIKV RNA was identified and partially sequenced from a sample of cerebrospinal fluid (CSF)
obtained from the infant with 6 months of life, and later from another sample after the infant completed
17 months of life. Commonly congenital infections were discarded based on STORCH (syphilis, toxoplasmosis,
rubella, cytomegalovirus and herpes simplex virus) negative laboratory results. Presence of specific ZIKV antibodies on
both mother and children confirmed the association of severe microcephaly and ZIKV infection, diagnosed after birth.

Conclusions: Altogether, our data raise the possibility that CZS cases may result in prolonged viral presence, these
findings could be useful for therapy and diagnostic recommendations.
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Background
Zika virus (ZIKV) was firstly isolated from rhesus ma-
caques in the Zika forest of Uganda in 1947 [1]. The
virus is mainly transmitted by infected Aedes mosqui-
toes, however other modes of infection have been re-
ported, such as sexual and perinatal transmission [2].
Infections are usually not detected (asymptomatic), al-
though 20% of the infected individuals progress to a
clinically apparent febrile illness with commonly re-
ported symptoms including mild fever, rash, arthralgia,
headache, and conjunctivitis [3]. Additionally, severe
neurologic manifestations such as Guillain-Barre
Syndrome (GBS) in adults and the newly described

Congenital Zika Syndrome (CZS), a wide spectrum of
congenital malformations in fetuses and newborns, have
been described [4]. ZIKV attracted a lot of attention after
a large outbreak in Brazil in 2015, which was associated
with an increased number of microcephaly cases (a con-
genital malformation where the head circumference is
smaller than 2 standard deviations below the mean for
the same age and sex) [5].
ZIKV immunopathogenesis is not completely under-

stood. As reported for other viruses of the same family,
ZIKV infection is usually self-limited, resulting in viral
clearance in approximately 1 week after infection, al-
though prolonged viremia has been documented, espe-
cially in pregnant women and in the semen of infected
men [6-9]. ZIKV is highly neurotropic and replicates in
the central nervous system (CNS). In fact, in situ
hybridization screening demonstrated the presence of
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ZIKV RNA in brains of fetuses from pregnancy losses
[10] and different experimental approaches identified
ZIKV in the CNS of infected animals at different times
post-infection [11, 12]. Interestingly, a recent study dem-
onstrated that in blood, ZIKV is rapidly controlled, how-
ever, the virus is able to persist for long periods in the
CNS (up to 42 days in cerebrospinal fluid (CSF) of ex-
perimentally infected Rhesus monkeys) [13].
ZIKV infection can be diagnosed through viral RNA de-

tection by the use of Real-Time Reverse-Transcriptase–
Polymerase-Chain-Reaction (rRT-PCR) assays. The
presence of anti-ZIKV IgM antibodies is also an indication
of recent infection, although the complete kinetics of IgM
production have not yet fully described [14]. Moreover,
the presence of anti-Zika IgM antibodies in the CSF of
microcephaly-diagnosed neonates is a confirmatory test in
cases where Zika infection during pregnancy is suspected
[15]. Experimentally, ZIKV is able to infect human neural
progenitor cells (NPC), impairing their development [16].
In mice, ZIKV infection results in cell-cycle arrest, apop-
tosis, and inhibition of NPC differentiation, which results
in cortical thinning and microcephaly [17, 18]. Altogether,
these findings confirm that ZIKV is able to directly infect
the CNS and several independent publications have dem-
onstrated the role of ZIKV in microcephaly development
[19]. However, the clinical evolution of the infants diag-
nosed with microcephaly, due to the direct infection of
the CNS during pregnancy, has not yet been assessed.

Case presentation
In September 2015, a middle age woman (44 years old)
resident from Recife, northeast Brazil, gave birth to a
male in a local public hospital. At birth, the neonate had
2580 g, 45.5 cm in length and head circumference of
29.5 cm (suspected case of microcephaly). The child was
born after a 38 weeks single-gestation period (full-term),
during the first trimester of pregnancy the mother re-
ported a febrile episode followed by headache, joint pain,
and rash, the symptoms described did not last more
than 3 days and no other symptoms were reported, den-
gue virus (DENV) IgM serology was negative. At
20 weeks of the gestational age, a prenatal intrauterine
ultrasound was performed and the diagnosis was con-
sistent with congenital microcephaly. After birth, during
the first month of life, a complete brain imaging examin-
ation of the infant evidenced the findings consistent with
severe microcephaly, following the protocol of the
Brazilian Ministry of Health for Microcephaly Investiga-
tion. Brain imaging (magnetic resonance) demonstrated
the presence of lissencephaly, decreased brain parenchy-
mal volume, decreased cortical mantle and white matter
together with hypoplasia of the corpus callosum.
Computed tomography and transfontanellar cranial
ultrasound evidenced the presence of multiple brain

calcifications, colpocephaly and gliosis in the left cere-
bellar hemisphere were also documented (Fig. 1a-i).
Serological tests were performed on the mother (18 days
after she gave birth), the results for STORCH laboratory
screen (syphilis, toxoplasmosis, rubella, cytomegalovirus
and herpes simplex virus), Parvovirus B19 IgM and
chikungunya virus (CHIKV) IgM were all negative
(Fig. 2), no ZIKV serological (ELISA or PRNT50) or mo-
lecular tests (rRT-PCR) were performed during pregnancy
since these tests were not available at that time, being im-
plemented in Brazil only later in 2016.
Laboratory STORCH tests were also performed in the

child with 1 month of life, the results were all negative,
including chikungunya IgM and anti-Epstein-Barr virus
(EBV) IgM (Fig. 2). No Zika virus serology or molecular
tests were performed on the child and no samples were
stored for later investigations. After 1 month of life, a
detailed neurological examination in the infant evi-
denced upper and lower limb spasticity (mainly on
upper limbs), extreme irritability, continuous cry and
head circumference measurement of 31 cm was consist-
ent with severe microcephaly (< 3 SD on the Fenton
growth chart).
With approximately 6 months of life, the child was

admitted to a local hospital after presenting several
recurrent seizure episodes. Electroencephalographic
(EEG) examination evidenced the presence of focal
frontal epileptiform discharges. At the hospital, a blood
and a cerebrospinal fluid (CSF) samples were collected.
Laboratory results of serum and CSF confirmed the
presence of ZIKV viral RNA on both samples, analyzed
by rRT-PCR following a well-established laboratory
protocol [20]. Additionally, rRT-PCR for chikungunya
(CHIKV) and ELISA tests were all negative in serum and
CSF as follows anti-ZIKV IgM, anti-DENV I, M and IgG,
anti-CHIKV IgM and IgG (Fig. 2). To confirm ZIKV infec-
tion a plaque reduction neutralization test (PRNT50) was
performed from the CSF sample, a ZIKV positive
neutralization titer of 99 confirmed the previous infection,
no neutralizing DENV antibody titers were observed
(Table 1 and Fig. 2).
The interesting presence of ZIKV RNA previously iden-

tified at 6 months of life prompted us to investigate ZIKV
persistence in a second sample collected with the age of
1 year and 5 months (here denominated 17 months for a
better understanding). Given the risk of an invasive lum-
bar puncture, only a blood sample was collected from the
child following a regular visit to the pediatrician, on the
same occasion, a blood sample from the mother was also
requested. On child serum, after 17 months of life, ZIKV
rRT-PCR was still positive. Serology was negative for the
tested arboviruses as follows anti-ZIKV IgM, anti-DENV
IgM and IgG, anti-CHIKV IgM and IgG (Fig. 2).
A plaque reduction neutralization test (PRNT50) was
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again performed on child serum, ZIKV positive
neutralization dilution titer of 527.9 reinforced our previ-
ous result of ZIKV infection, and again no neutralizing
DENV antibody titers were observed. Moreover, the
presence of a high titer of ZIKV neutralization antibodies

(titer of 972) on mother’s serum confirms Zika virus infec-
tion (Table 1 and Fig. 2). On mother’s serum the presence
of positive DENV neutralization titer is not surprisingly
since dengue virus is endemic in Brazil, especially in the
northeast region.

Fig. 1 Brain Imaging after birth. a MRI Sagittal T1 weighted image: hypogenesis of the corpus callosum, enlarged cisterna magna, and ventriculomegaly.
b MRI Axial T2 weighted image: simplified frontal gyral pattern, ventriculomegaly. c Axial T1 weighted image: pachygyria/lissencephaly in the frontal lobe,
ventriculomegaly. d, e, f MRI Axial T1 weighted image: simplified frontal gyral pattern, ventriculomegaly, cerebellum hemisphere hypoplasia. g, h, i Axial
non-contrast CT image: multiple bilateral calcifications in the junction between cortical and subcortical white matter, ventricular enlargement
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It’s intriguing the presence of ZIKV RNA for such a
long time and since samples were stored with RNA pre-
servative solution viral isolation was not attempted.
Thus, to further confirm the presence of ZIKV on child
CSF and serum we performed genome sequencing direct
from blood and CSF positive samples, employing a pre-
viously published protocol [21]. We obtained two partial
ZIKV genomes from samples CSF-six-months and
serum-17-months of 6653 and 5292 base pairs, respect-
ively, corresponding to 60.6 and 48.9% of genomic
coverage (Fig. 3). Phylogenetic analysis showed that
these two draft genomes belong to the Asian genotype
and clustered closely with a ZIKV isolate from Paraíba/
Brazil (Fig. 4), located around 120 km from where the
mother gave birth. Since six-months-CSF sample differs
from Paraiba_01 ZIKV strain by two single nucleotide

polymorphisms (SNPs) in the envelope gene (E) and
serum-17-months sample differs from Paraíba_01 by
three SNPs, these results are consistent with a single
ZIKV infecting strain. The child is being followed in a
local hospital. Clinical evolution consists mainly in de-
layed neuropsychomotor development, dysphagia (diffi-
culty swallowing), visual impairment, and double spastic
hemiplegia. Treatment consists of clobazam (antiepilep-
tic drug). After almost 2 years of life, the child presents
controlled structural epilepsy.

Sample collection and processing
CSF and blood were collected through standard proce-
dures. Anti-dengue and anti-chikungunya virus IgM and
IgG antibodies were detected by commercially available
capture ELISA kits (Anti-Dengue Virus ELISA IgM/IgG

Fig. 2 Clinical and laboratorial timeline of a persistent Zika virus Severe Microcephaly case. The panel shows the clinical and laboratory results of
pregnancy and birth, mother and child samples (as designated on figure) were tested accordingly to Brazilian Ministry of Health protocol for Congenital
Zika Syndrome investigation, as described in material and methods. Principal clinical findings are shown in the bottom. STORCH denotes a group of
laboratory tests comprising syphilis, toxoplasmosis, rubella, cytomegalovirus infection, and herpes simplex viruses; maximum interval denotes the results
from two consecutive samples with positive laboratory result for ZIKV on rRT-PCR protocol. PRNT plaque reduction neutralization test

Table 1 Plaque Reduction Neutralization Test (PRNT) for Zika virus (ZIKV) and dengue virus (DENV1–4) in maternal serum, child serum
and cerebrospinal fluid (CSF) specimens collected at different ages of the neonate with Congenital Zika Syndrome

Sample Age at
testing

PRNT50 Titer

ZIKV DENV-1 DENV-2 DENV-3 DENV-4

Mother (serum) 17 monthsa 972 < 20 < 20 689.5 262.7

Neonate

Serum 17 months 527.9 < 20 < 20 < 20 < 20

CSF 6 months 99 < 20 < 20 < 20 < 20
aAge of the child at the time of sample collection

Brito et al. BMC Infectious Diseases  (2018) 18:388 Page 4 of 9



and Anti-CHIKV IgM/IgG from EuroImmun AG, Lue-
beck - Germany), following manufacturers instructions.
Serotype-specific anti-DENV and anti-Zika antibodies
were assessed by plaque reduction neutralization test
(PRNT). The antibody titer was determined as the
serum dilution that inhibited 50% of the tested virus in-
oculum (PRNT50). Anti-Zika IgM antibodies were de-
tected by Capture Enzyme-Linked Immunosorbent
Assay (MAC-ELISA). Viral RNA was extracted by the

use of a QIAamp Viral RNA kit (Qiagen, Hilden -
Germany), following manufacturers instructions and
rRT-qPCR reactions were performed from purified RNA
serum samples accordingly to Lanciotti et al.[20], with
modifications. Briefly, reactions were performed with the
kit GoTaq® Probe 1-Step RT-qPCR System (Promega,
Fitchburg, USA) in a 20 μl final volume, primers and
probes employed were as follows: Zika 1087 5’-CCGC
TGCCCAACACAAG-3′, Zika1163c 5’-CCACTAACG

Fig. 3 ZIKV partial genomes obtained from samples. Read mapping pattern on the PE243 reference genome. Blue rectangles show coverage
depth higher than 100 reads. The most external ring is the annotation of mature peptides (black and grey) and untranslated regions (red) of the
ZIKV genome
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TTCTTTTGCAGACAT-3′ and Zika 1087 VIC (probe)
5’-AGCCTACCTTGACAAGCAGTCAGACACTCAA-3′.
Samples with a Ct value < 38 in duplicate wells were
considered to be positive for ZIKV. For sequencing,
total RNA extracted as above was converted to cDNA
and amplified, PCR products were then quantified and
libraries were prepared with Nextera XT Library Prep
Kit (Illumina, San Diego - USA), MiSeq Reagent Kit V3
of 150 cycles was used to sequence employing a
paired-end strategy. Mapped reads were visualized and

majority rule consensus genomes were extracted with
Integrated Genome Viewer (IGV) and carefully checked
on the mapping results. Phylogenetic reconstruction
was performed on an alignment of the coding region of
all ZIKV genomes available by maximum likelihood. All
sequences were aligned with Mafft v 7.

Discussion
Here, we reported a case of an infant diagnosed with se-
vere microcephaly presenting virus persistence for

Fig. 4 ZIKV whole-genome phylogenetic analysis of the Asian lineage by maximum likelihood. The red shaded clade is on of the large polytomic
tree of epidemic ZIKV where draft genomes obtained in this study clustered (red tree tips). Other large clusters were collapsed for clarity. Numbers
close to nodes are the SH-like node support
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several months after birth. The child was born in 2015,
during the ZIKV outbreak in Brazil, the symptoms re-
ported by the mother during pregnancy are consistent
with ZIKV infection, albeit laboratory confirmation has
not been performed since ZIKV specific detection proto-
cols were only implemented later in Brazil. On the other
hand, after giving birth, a complete laboratory screening
for the most common congenital infections was per-
formed and the results were all negative. At birth, the
neonate was not tested for ZIKV infection, however, the
presence of ZIKV-neutralizing antibodies on a CSF sam-
ple collected 6 months after birth confirms the previous
infection. Based on that, a strong argument between the
clinical signs of severe microcephaly and ZIKV infection
can be implied. In fact, detection of anti-ZIKV IgM anti-
bodies in the CSF is strongly associated with ZIKV con-
genital infection [15]. Moreover, following infection,
ZIKV IgM antibodies increases from 4 to 7 days, persist-
ing for several weeks. On the other hand, neutralizing
antibodies are long-lasting. Here the presence of ZIKV
neutralizing antibodies is a confirmation of ZIKV expos-
ure, albeit the participation of maternally transferred
antibodies should be also considered. During the clinical
interview we did not include data about breastfeeding,
and since dysphagia, including breastfeeding difficulties,
has been documented in several children with CZS [22],
we could not correctly evaluate the role of maternally
transferred antibodies in the child immune response.
After recurrent seizure episodes followed by the need

for hospitalization, the neurologist performed a CSF
sampling from the child with the age of 6 months and
laboratory RT-PCR analysis identified the presence of
ZIKV on CSF. Since birth, the child has been followed
by a team of pediatricians for treatment and early stimu-
lation, thus after 17 months of life, the child had another
sample collected which was tested positive for ZIKV
presence. The maximum interval between consecutive
ZIKV rRT-PCR positive samples from this case was of
331 days, to our knowledge, this is the longest report of
ZIKV persistence in a single individual. Virus persistence
for such a long time has several implications: i) infected
individuals could act as reservoirs contributing to main-
tenance of virus circulation; ii) continuous immune
stimulation, by the presence of ZIKV in different body
tissues, can result in recurrent organ damage with con-
sequent disease worsening; iii) virus persistence on CZS
cases may require differential treatment (e.g., use of
antivirals associated with anti-inflammatory drugs). By
comparing the levels of ZIKV-neutralizing antibodies
from early samples, we could have captured a better pic-
ture of the child’s immunity, unfortunately, we were not
able to access these samples (first month of life). These
findings presented here are certainly not common to all
CZS cases and could be partially explained by i)

re-infection – the infant was born during a highly ZIKV
circulation period and since protection of neonates are
mostly acquired by maternal antibodies transference on
breast milk and especially by the fact the adaptive im-
mune response on early life is still on development
(characterized by higher induction of Th2-cell polarizing
cytokines and suboptimal Th1 responses and B-cell dif-
ferentiation), neonates are more susceptible to different
pathogens [23], thus, the child may have been
re-infected after birth; ii) infection during fetal develop-
ment may lead to tolerization – in this scenario T and B
cell responses are not effective, consequently contribut-
ing to enhanced infection susceptibility.
The ZIKV microcephaly outbreak was first documented

in Brazil in 2015, and although neuro-developmental mal-
formations have been linked to many other different viral
infections, ZIKV pathogenesis is still not fully understood.
However, it is well accepted that infection during the first
trimester of pregnancy may result in congenital malforma-
tions [21]. Zika viral RNA was found on saliva [24], amni-
otic fluid [25], urine [26], cerebrospinal fluid (CSF), blood,
semen and tears [27, 28]. Interestingly, ZIKV can persist
on different body compartments for longer periods. In fact,
experimentally infected rhesus macaques presented ZIKV
viral RNA for several weeks post infection in neuronal,
lymphoid, joint/muscle and male/female reproductive
tissues [13]. Additionally, in cases of human infection, the
virus can persist for more than 6 months on semen [7].

Conclusion
Here, we added more data about ZIKV persistence, even
if it is based on a single case. Clearly, we cannot rule out
the possibility of two independent Zika infections be-
tween the different time points analyzed, albeit both
samples were sequenced and results are consistent with
a single infecting strain. Our results here presented
shows compelling evidence of chronification of infection,
which has not yet been investigated in CZS cases. Based
on that, we propose new studies to better understand
the clinical evolution of the CZS documented cases.
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