Semi-synthesis of β-keto-1,2,3-triazole derivatives from ethinylestradiol and evaluation of the cytotoxic activity

Thayane M. Queiroz ${ }^{\text {a }}$, Erika V.M. Orozco ${ }^{\text {a }}$, Valdenizia R. Silva ${ }^{\text {b }}$, Luciano S. Santos ${ }^{\text {b }}$, Milena B.P. Soares ${ }^{\mathrm{b}}$, Daniel P. Bezerra ${ }^{\mathrm{b}}$, André L.M. Porto ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, Santa Angelina, São Carlos, SP, 13563-120, Brazil
${ }^{\mathrm{b}}$ Fundação Oswaldo Cruz, Centro de Pesquisa Gonçalo Moniz, R. Waldemar Falcão, 121, Candeal, Salvador, BA, 40296-710, Brazil

ARTICLE INFO

Keywords:

Organic chemistry
Pharmaceutical chemistry
Toxicology
β-keto-1,2,3-triazoles
Ethinylestradiol
Click reaction
Hepatocellular carcinoma
Breast adenocarcinoma

Abstract

In this study, we report our contribution to the application of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction for the synthesis of β-keto-1,2,3-triazole derivatives 3a-f from ethinylestradiol and their application in the inhibition of two human cancer cells lines: human breast adenocarcinoma (MCF-7) and human hepatocellular carcinoma (HepG2). The β-keto-1,2,3-triazole derivates $\mathbf{3 a - f}$ exhibited moderate cytotoxic activity for the HepG2 cells with IC ${ }_{50}$ values of $29.7 \mu \mathrm{M}(\mathbf{3 a}), 16.4 \mu \mathrm{M}(\mathbf{3 b}), 17.8 \mu \mathrm{M}(3 \mathbf{c}), 20.4 \mu \mathrm{M}(3 \mathbf{d}), 28.1 \mu \mathrm{M}(3 \mathbf{e})$ and $28.2 \mu \mathrm{M}(3 f)$. The semi-synthetic β-keto-1,2,3-triazoles derivatives 3a-f were all characterized by FT-IR, NMR, HRMS and $[\alpha]_{D}$.

1. Introduction

Steroids are organic compounds that contain a tetracyclic ring system. They are present in a wide variety of plants, animals and fungi [1, 2]. Members of this class of compounds differ in their oxidation state, chains and functional groups that are attached to the tetracyclic core [3, 4].

Steroidal compounds are widely used as anti-inflammatory, immunosuppressive, anabolic and contraceptive agents [1, 2, 5, 6]. They have also been used against leishmaniasis and to treat breast and prostate cancer [2, 6]. Due to their wide variety of biological activities, many natural steroidal compounds, together with synthetic and semi-synthetic steroids, are routinely prepared and evaluated as drug candidates [1, 7].

Addition or replacement of one or more carbon atoms in a steroidal compound by nitrogen atoms changes its chemical and biological properties [8]. Thus, 1,2,3-triazole scaffolds are of interest for drug development because they do not readily undergo metabolic degradation [4, 7]. These compounds have a wide variety of biological activity including antimicrobial, antiviral, antiepileptic and anti-HIV activity, and they are also active against leishmaniasis [8, 9].

Among the methodologies used in the synthesis of 1,2,3-triazole compounds is the Huisgen 1,3-dipolar cycloaddition. This reaction occurs between azides and terminal alkynes through a concerted
mechanism. However, the Huisgen reaction has some drawbacks, such as long reaction time and high temperatures, as well as the formation of 1,4disubstituted and 1,5-disubstituted regioisomers [10].

In 2002, Sharpless's and Meldal's groups independently discovered the copper-catalyzed azide-alkyne cycloaddition (CuAAC) for the synthesis of 1,2,3-triazole compounds. The reaction can be performed under mild conditions with high regioselectivity and yield. This reaction became also known as the click reaction [11, 12, 13, 14]. Deobald's group reported the application of the copper-catalyzed azide-alkyne cycloaddition reaction in the synthesis of 1,2,3-triazole compounds containing steroids, saponins and digitalis analogues [7]. Conner and co-workers reported the application of the click reaction in the synthesis of 17α-($2 H-2,3,4$-triazolyl)-estradiol from ethinylestradiol and their interactions in Cytochrome P450 [15].

Recently, Liu's group synthesized a new estradiol derivate, ${ }^{18} \mathrm{~F}$-17-(1-(2-(dimethyl((trifluoro-14-boranyl)methyl)-14-azanyl)ethyl)-1H-1,2,3-triazol-4-yl)-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene-3,17-diol as a potential Positron Emission Tomography (PET) imaging agent for estrogen receptor-positive breast cancer [16]. Additionally, the synthesis of 1,2,3-triazole derivates possessing a carbonyl group at β-position is also known. For example, Mareddy and co-workers synthesized a new class of 1,2,3-triazole derivates

[^0]from nimesulide as potential inhibitors of phosphodiesterases 4 (PDE 4B). Synthesis of these compounds was carried out via of the copper-catalyzed azide-alkyne cycloaddition reaction [17].

In this study, we report our contribution to the application of the copper-catalyzed azide-alkyne cycloaddition reaction for the semisynthesis of β-keto-1,2,3-triazole derivatives 3a-f from ethinylestradiol 2 and their application in the inhibition of growth of two human cancer cells lines: human breast adenocarcinoma (MCF-7) and human hepatocellular carcinoma (HepG2).

2. Experimental

2.1. General

Deuterated chloroform $\left(\mathrm{CDCl}_{3}, 99.8 \%\right.$ with 0.5% tetramethylsilaneTMS), deuterated methanol ($\mathrm{CD}_{3} \mathrm{OD}, 99.9 \%$), deuterated dimethylsulfoxide (DMSO- $d_{6}, 99.9 \%$) and deuterated acetone (acetone- $d_{6}, 99.9 \%$) were purchased from Sigma-Aldrich. Ethyl acetate and hexane were purchased from Synth. Sodium azide was purchased from Merck. The reagents 2-bromo-1-phenylethanone (98\%), 2-bromo-1-(4-methoxyphenyl)ethanone (97\%), 2-bromo-1-(4-chlorophenyl)ethanone (98\%), 2-bromo-1-(4-bromophenyl)ethanone (98\%), 2-bromo-1-(4-fluorinephenyl)ethanone (98\%), 2-bromo-1-(3-fluorinephenyl)ethanone (98\%), (+)-sodium L-ascorbate (98%) and ethinylestradiol ($\geq 98 \%$) were purchased from Sigma-Aldrich.

2.2. General procedure for the synthesis of 2-azido-1-phenylethanone derivatives (1a-f)

In a round-bottomed flask (100 mL) was added 2-bromo-1-phenylethanone 1a (5.02 mmol), sodium azide (15.38 mmol) and acetone (30 mL). The reaction mixture was kept under magnetic stirring (450 rpm) at room temperature for 5 h and monitored by TLC. After the reaction finished, the acetone was evaporated under reduced pressure and water was added to the crude reaction. Then, the mixture was extracted with EtOAc ($2 \times 30 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under reduced pressure. The same reaction conditions were applied in the synthesis of the 2 -azido-1-phenylethanones $\mathbf{1 b}$-f. These compounds were purified by column chromatography on silica gel eluted with solution of hexane and EtOAc (8:2). The 2-azido-1-phenylethanones 1a-f were characterized by ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, FTIR and mp (see Supplementary material). The spectroscopy data of the compounds 1a-f are in accordance to the literature. $[18,19]$.

2-azido-1-phenylethanone (1a): Molecular formula: $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}$; MM: $161.16 \mathrm{~g} \mathrm{~mol}^{-1}$; yield: 87%, yellow liquid; IR (silicon plate) $\nu\left(\mathrm{cm}^{-1}\right)$: 3062, 2900, 2096, 1692, 1597, 1449, 1214, 752, 686; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 4.56(\mathrm{~s}, 2 \mathrm{H}), 7.50(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.63(\mathrm{tt}, 1 \mathrm{H}, J$ $=7.6$ and 1.2 Hz), 7.91 (dd, $2 \mathrm{H}, J=8.6$ and 1.2 Hz); ${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, CDCl_{3}) $\delta(\mathrm{ppm}): 55.0,128.1,129.1,134.3,134.5,193.3$.

2-azido-1-(4-methoxyphenyl)ethanone (1b): Molecular formula: $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}$; MM: $191.19 \mathrm{~g} \mathrm{~mol}^{-1}$; yield: 89%, cream solid; $\mathrm{mp} 61-64{ }^{\circ} \mathrm{C}$; IR (KBr) $\nu\left(\mathrm{cm}^{-1}\right): 3032,2905,2124,1686,1599,1516,1466,1271$, 1238, 1179, 826; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 3.88$ (s, 3H), 4.50 (s, 2H), $6.95(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 7.88(\mathrm{~d}, 2 \mathrm{H}, J=9.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 54.7,55.7,114.3,127.5,130.4,164.4,191.8$.

2-azido-1-(4-chlorophenyl)ethanone (1c): Molecular formula: $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClN}_{3} \mathrm{O}$; MM: $195.61 \mathrm{~g} \mathrm{~mol}^{-1}$; yield: 84%, yellow solid; $\mathrm{mp} 59-62{ }^{\circ} \mathrm{C}$; IR (silicon plate) $\nu\left(\mathrm{cm}^{-1}\right): 3089,2907,2098,1690,1592,1571,1489$, 1216,$814 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 4.53(\mathrm{~s}, 2 \mathrm{H}), 7.48(\mathrm{~d}, 2 \mathrm{H}$, $J=8.6 \mathrm{~Hz}), 7.85(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): 55.0, 129.5, 129.6, 132.8, 140.8, 192.2.

2-azido-1-(4-bromophenyl)ethanone (1d): Molecular formula: $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrN}_{3} \mathrm{O}$; MM: $240.06 \mathrm{~g} \mathrm{~mol}^{-1}$; yield: 78%, orange solid; $\mathrm{mp} 65-68$ ${ }^{\circ} \mathrm{C}$; IR (KBr) $\nu\left(\mathrm{cm}^{-1}\right): 3086,2903,2114,1694,1585,1485,1219,814 ;$ ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 4.52(\mathrm{~s}, 2 \mathrm{H}), 7.64(\mathrm{~d}, 2 \mathrm{H}, J=8.7$ $\mathrm{Hz}), 7.77(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 54.9$,
129.5, 129.6, 132.5, 133.2, 192.4 .

2-azido-1-(4-fluorophenyl)ethanone (1e): Molecular formula: $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{FN}_{3} \mathrm{O}$; MM: $179.15 \mathrm{~g} \mathrm{~mol}^{-1}$; yield: 80%, yellow solid; mp $57-60{ }^{\circ} \mathrm{C}$; IR (KBr) $\nu\left(\mathrm{cm}^{-1}\right): 3062,2900,2096,1692,1597,1449,1214,907,752 ;$ ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 4.53(\mathrm{~s}, 2 \mathrm{H}), 7.17$ (ddd, $2 \mathrm{H}, J=2.3$, 8.7 and 9.1 Hz), 7.94 (ddd, $2 \mathrm{H}, J=4.6,5.3$ and 9.1 Hz), ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 54.9,116.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=22.1 \mathrm{~Hz}\right), 130.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=\right.$ $9.5 \mathrm{~Hz}), 131\left({ }^{4} J_{\mathrm{CF}}=3.1 \mathrm{~Hz}\right), 166.4\left({ }^{1} J_{\mathrm{CF}}=256.8 \mathrm{~Hz}\right), 191.8$.

2-azido-1-(3-fluorophenyl)ethanone (1f): Molecular formula: $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{FN}_{3} \mathrm{O}$; MM: $179.15 \mathrm{~g} \mathrm{~mol}^{-1}$; yield: 70%, orange solid; mp $59-62{ }^{\circ} \mathrm{C}$; IR (KBr) $\nu\left(\mathrm{cm}^{-1}\right): 2978,2908,2096,1692,1593,1488,1342,1216$, 1090, 730; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 4.54$ (s, 2H), 7.33 (tdd, $1 \mathrm{H}, J=1.0,2.6$ and 8.2 Hz), 7.46-7.52 (m, 1H), 7.61 (ddd, $1 \mathrm{H}, J=1.6$, 2.6 and 9.1 Hz), $7.67(\mathrm{ddd}, 1 \mathrm{H}, J=1.0,1.6$ and 7.7 Hz$)$); ${ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 55.1,115.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=22.5 \mathrm{~Hz}\right), 121.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=\right.$ $21.5 \mathrm{~Hz}), 123.8\left(\mathrm{~d},{ }^{6} J_{\mathrm{CF}}=3.3 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=7.8 \mathrm{~Hz}\right), 136.5\left(\mathrm{~d},{ }^{5} J_{\mathrm{CF}}\right.$ $=6.4 \mathrm{~Hz}), 164.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=249.4 \mathrm{~Hz}\right), 192.2$.

2.3. General procedure for the semi-synthesis of β-keto-1,2,3-triazole derivatives 3a-f from ethinylestradiol 2

In a round-bottomed flask (10 mL) was added 2-azido-1-phenylethanone (0.3 mmol) 1a, ethinylestradiol 2 (0.33 mmol) and acetone (1 mL). Then, a solution of sodium ascorbate ($20 \mathrm{~mol} \%$) and copper sulfate (10 $\mathrm{mol} \%$) in distilled water (1 mL) was added to the mixture. The reaction mixtures was kept under magnetic stirring (450 rpm) at room temperature for 24 h and monitored by TLC. After the reaction went to completion, water was added to the crude reaction. Then, the mixture was extracted with EtOAc ($2 \times 30 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under reduced pressure. The same reaction conditions were applied in the synthesis of the β-keto-1,2,3-triazoles 3a-f. These compounds were purified by column chromatography on silica gel eluted with solution of hexane and EtOAc (3:7). The β-keto-1,2,3-triazole derivatives 3a-f were characterized by ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, FTIR, HRMS, mp and $[\alpha]_{D}$ (see Supplementary Material).

2-(4-((8R,9S, 13S, 14S,17S)-3,17-dihydroxy-13-methyl-7,8,
9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a] phenanthren-17-yl)-1H-1,2,3-triazol-1-yl)-1-phenylethan-1-one (3a): Molecular formula: $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{3}$; MM: $457.57 \mathrm{~g} \mathrm{~mol}^{-1}$; yield: 92%, white solid; mp 201-204 ${ }^{\circ} \mathrm{C} ;[\alpha]_{D}[23]+34\left(c 0.05, \mathrm{CH}_{3} \mathrm{OH}\right)$; IR (silicon plate) $\nu\left(\mathrm{cm}^{-1}\right): 3346$, 2924, 2855, 1692, 1596, 1498, 1449, 1225, 1180, 1059, 817; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}): 0.77-0.85(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.31-1.48$ (m, 4H), 1.53-1.60 (m, 1H), 1.64-1.67 (m, 1H), 1.82-1.96 (m, 3H), 2.10-2.22 (m, 2H), 2.48-2.55 (m, 1H), 2.74-2.81 (m, 2H), 6.08 (d, 2H, J $=2.9 \mathrm{~Hz}), 6.47(\mathrm{~d}, 1 \mathrm{H}, J=2.6 \mathrm{~Hz}), 6.51(\mathrm{dd}, 1 \mathrm{H}, J=8.4$ and 2.7 Hz$)$, $7.01(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.57(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.69(\mathrm{tt}, 1 \mathrm{H}, J=7.6$ and 1.2 Hz), $7.84(\mathrm{~s}, 1 \mathrm{H}), 8.08$ (dd, $2 \mathrm{H}, J=8.4$ and 1.2 Hz); ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 14.9 .24 .7,27.6,28.7,30.7,34.2,38.4,41.1$, 44.9, 48.5, 49.6, 57.0, 83.2, 113.7, 116.1, 126.0, 127.2, 129.4, 130.1, 132.6, 135.3, 135.7, 138.9, 155.4, 155.9, 193.1. HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 458.2438$, found 458.2439.

2-(4-((8R,9S,13S, 14S,17S)-3,17-dihydroxy-13-methyl-
7,8,7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-17-yl)-1H-1,2,3-triazol-1-yl)-1-(4-methoxyphenyl)ethan-1-one (3b): Molecular formula: $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4}$; MM: $486.60 \mathrm{~g} \mathrm{~mol}^{-1}$; yield: 83%, white solid; $\mathrm{mp} 250-254^{\circ} \mathrm{C} ;[\alpha]_{D}[23]+32\left(c 0.05, \mathrm{CH}_{3} \mathrm{OH}\right)$; IR $(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right)$: 3194, 2926, 2855, 1688, 1603, 1508, 1460, 1240, 1180, 1055, 826; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta(\mathrm{ppm}): 0.64-0.72$ (m, 1H), 0.94 (s, 3H), $1.24-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.63-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.88(\mathrm{~m}, 3 \mathrm{H}), 1.92-1.98(\mathrm{~m}$, $1 \mathrm{H}), 2.09-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.43(\mathrm{~m}, 3 \mathrm{H}), 2.64-2.77(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}$, 3H), $5.14(\mathrm{~s}, 1 \mathrm{H}), 6.07(\mathrm{~d}, 2 \mathrm{H}, J=2.9 \mathrm{~Hz}), 6.42(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}), 6.48$ (dd, $2 \mathrm{H}, J=8.4$ and 2.6 Hz), $6.98(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.11(\mathrm{~d}, 2 \mathrm{H}, J=9$ $\mathrm{Hz}), 7.8(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 8.96(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta(\mathrm{ppm}): 14.4,23.6,26.1,27.2,29.3,32.6,37.2,39.8,43.2$, 46.8, 47.5, 55.3, 55.7, 81.1, 112.7, 114.2, 114.9, 124.4, 126.0, 127.1, $130.4,130.5,137.2,154.0,154.9,163.8,190.6$. HRMS calcd for
$\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 488.2549$, found 488.2541 . 2-(4-((8R,9S,13S,14S,17S)-3,17-dihydroxy-13-methyl-
$7,8,7,8,9,11,12,13,14,15,16,17-d e c a h y d r o-6 H-c y c l o p e n t a[a] p h e n a n t h r e n-$ 17-yl)-1H-1,2,3-triazol-1-yl)-1-(4-chlorophenyl)ethan-1-one (3c): Molecular formula: $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{ClN}_{3} \mathrm{O}_{3}$; MM: $492.02 \mathrm{~g} \mathrm{~mol}^{-1}$; yield: 89%, white solid; $\mathrm{mp} 225-228{ }^{\circ} \mathrm{C} ;[\alpha]_{D}[23]+104\left(c \quad 0.05, \mathrm{CH}_{3} \mathrm{OH}\right)$; IR (silicon plate) v $\left(\mathrm{cm}^{-1}\right): 3365,2925,2855,1665,1591,1490,1452,1227,1173,1090$, 1013, 847; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}): 0.76-0.84(\mathrm{~m}, 1 \mathrm{H}), 1.06$ $(\mathrm{s}, 3 \mathrm{H}), 1.28-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.51-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.68(\mathrm{~m}, 1 \mathrm{H})$, 1.82-1.99 (m, 3H), 2.10-2.21 (m, 2H), 2.47-2.55 (m, 1H), 2.71-2.81 (m, $2 \mathrm{H}), 6.06(\mathrm{~d}, 2 \mathrm{H}, J=1.7 \mathrm{~Hz}), 6.46(\mathrm{~d}, 1 \mathrm{H}, J=2.6 \mathrm{~Hz}), 6.51(\mathrm{dd}, 1 \mathrm{H}, J=$ 8.4 and 2.7 Hz), $7.01(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.60(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.83(\mathrm{~s}$, $1 \mathrm{H}), 8.06(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 14.9$, 24.7, 27.6, 28.8, 30.7, 34.3, 38.4, 41.1, 44.9, 48.5, 49.6, 56.9, 83.2, $113.7,116.0,126.0,127.2,130.3,131.0,132.5,134.3,138.8,141.6$, 155.5, 155.9, 192.0. HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{ClN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 492.2054$, found 492.2044.

2-(4-((8R,9S, 13S, 14S, 17S)-3,17-dihydroxy-13-methyl-
$7,8,7,8,9,11,12,13,14,15,16,17-$ decahydro-6H-cyclopenta[a]phenanthren-17-yl)-1H-1,2,3-triazol-1-yl)-1-(4-bromophenyl)ethan-1-one (3d): Molecular formula: $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{BrN}_{3} \mathrm{O}_{3}$; MM: $536.47 \mathrm{~g} \mathrm{~mol}^{-1}$; yield: 90%, white solid; mp 230-234 ${ }^{\circ} \mathrm{C} ;[\alpha]_{D}[23]+42\left(c 0.05, \mathrm{CH}_{3} \mathrm{OH}\right)$; IR (KBr) $v\left(\mathrm{~cm}^{-1}\right)$: 3136, 2928, 2864, 1688, 1584, 1499, 1454, 1288, 1229, 1069, 993, 816; ${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone $-d_{6}$) $\delta(\mathrm{ppm}): ~ 0.76-0.85(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H})$, 1.27-1.47 (m, 4H), 1.51-1.61 (m, 2H), 1.84-1.95 (m, 3H), 2.08-2.21 (m, 2 H), 2.44-2.54 (m, 1H), 2.66-2.87 (m, 2H), 6.11 (s, 2H), 6.51 (d, 1H, $J=$ $2.6 \mathrm{~Hz}), 6.56(\mathrm{dd}, 1 \mathrm{H}, J=8.4$ and 2.7 Hz$), 7.03(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.79$ (d, $2 \mathrm{H}, J=8.8 \mathrm{~Hz}$), $7.85(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , acetone- d_{6}) δ (ppm): 14.9, 24.4, 27.3, 28.4, 30.1, 33.8, 38.5, 40.7, 44.5, 48.1, 49.0, 56.4, 82.7, 113.6, 115.9, 124.8, 127.0, 129.3, 130.9, 132.0, 133.0, 134.5, 138.4, 155.2, 156.0, 191.9. HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{BrN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 536.1549$, found 536.1543 .

2-(4-((8R,9S, 13S, 14S, 17S)-3,17-dihydroxy-13-methyl-
$7,8,7,8,9,11,12,13,14,15,16,17$-decahydro-6H-cyclopenta[a]phenanthren-17-yl)-1H-1,2,3-triazol-1-yl)-1-(4-fluorinephenyl)ethan-1-one (3e): Molecular formula: $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{FN}_{3} \mathrm{O}_{3}$; MM: $475.56 \mathrm{~g} \mathrm{~mol}^{-1}$; yield: 65%, white solid; mp 232-235 ${ }^{\circ} \mathrm{C} ;[\alpha]_{D}[23]+52\left(c 0.05, \mathrm{CH}_{3} \mathrm{OH}\right)$; IR $(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right)$: 3279, 2926, 2857, 1695, 1599, 1506, 1456, 1288, 1234, 1055, 1001, 828; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}): 0.77-0.85(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}$, $3 \mathrm{H}), 1.28-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.51-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.68(\mathrm{~m}, 1 \mathrm{H})$, $1.85-2.00(\mathrm{~m}, 3 \mathrm{H}), 2.09-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.47-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.81(\mathrm{~m}$, $2 \mathrm{H}), 6.06(\mathrm{~d}, 2 \mathrm{H}, J=1.7 \mathrm{~Hz}), 6.46(\mathrm{~d}, 1 \mathrm{H}, J=2.6 \mathrm{~Hz}), 6.51(\mathrm{dd}, 1 \mathrm{H}, J=$ 2.7 and 8.4 Hz), 7.01 (d, $1 \mathrm{H}, J=8.4 \mathrm{~Hz}$), 7.30 (ddd, $2 \mathrm{H}, J=2.3,8.7$ and 9.1 Hz); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}): 14.9,24.7,27.6,28.7$ $30.8,34.3,38.4,41.1,44.9,48.5,49.6,56.8,83.2,113.7,116.0,117.1$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{CF}}=22.4 \mathrm{~Hz}\right), 126.0,127.1,132.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=9.5 \mathrm{~Hz}\right), 132.3,132.5$, $138.8,155.4,155.9,167.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=254.6 \mathrm{~Hz}\right), 191.6$. HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{FN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 476.2344$, found 476.2343.

2-(4-((8R,9S,13S,14S,17S)-3,17-dihydroxy-13-methyl-
$7,8,7,8,9,11,12,13,14,15,16,17-$ decahydro-6H-cyclopenta[a]phenanthren-17-yl)-1H-1,2,3-triazol-1-yl)-1-(3-fluorinephenyl)ethan-1-one (3f): Molecular formula: $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{FN}_{3} \mathrm{O}_{3}$; MM: $475.56 \mathrm{~g} \mathrm{~mol}^{-1}$; yield: 63%, white solid; mp 225-228 ${ }^{\circ} \mathrm{C} ;[\alpha]_{D}[23]+26\left(c 0.05, \mathrm{CH}_{3} \mathrm{OH}\right)$; $\operatorname{IR}(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right)$: 2926, 2856, 1704, 1589, 1498, 1447, 1286 1255, 1057, 1004, 872; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}): 0.78-0.84(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H})$, $1.32-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.86-2.00(\mathrm{~m}$, $3 \mathrm{H}), 2.09-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.80(\mathrm{~m}, 2 \mathrm{H}), 6.08(\mathrm{~d}$, $2 \mathrm{H}, J=2.0 \mathrm{~Hz}), 6.46(\mathrm{~d}, 1 \mathrm{H}, J=2.6 \mathrm{~Hz}), 6.51(\mathrm{dd}, 1 \mathrm{H}, J=2.7$ and 8.4 $\mathrm{Hz}), 7.02(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.45(\mathrm{tdd}, 1 \mathrm{H}, J=0.8,2.6$ and 8.4 Hz$)$, $7.59-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.79$ (ddd, $1 \mathrm{H}, J=1.6,2.5$ and 9.4 Hz), $7.84(\mathrm{~s}, 1 \mathrm{H})$, 7.92 (ddd, $1 \mathrm{H}, J=1.0,1.4$ and 7.8 Hz); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ (ppm): 13.5, 23.3, 26.2, 27.3, 29.3, 32.8, 37.0, 39.7, 43.5, 47.0, 48.1, $55.7,81.8,112.3,114.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=23 \mathrm{~Hz}\right), 114.6,120.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=21.7\right.$ $\mathrm{Hz}), 123.9\left(\mathrm{~d},{ }^{6} J_{\mathrm{CF}}=3.0 \mathrm{~Hz}\right), 124.6,125.7,130.8\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=7.7 \mathrm{~Hz}\right)$, $131.1,136.5\left(\mathrm{~d},{ }^{5} J_{\mathrm{CF}}=6.6 \mathrm{~Hz}\right), 137.4,154.1,163.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=244.1 \mathrm{~Hz}\right)$, 190.6. HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{FN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]{ }^{+} 476.2344$, found
476.2343.

2.4. Fourier transform infrared analysis (FTIR)

The FTIR spectra of the purified compounds were recorded on a Shimadzu IRAffinity-1 spectrometer model. Analyses were performed using KBr for solid samples and silicon plates for liquid samples. The transmittance was measured in cm^{-1} in the $4000-600 \mathrm{~cm}^{-1}$ region.

2.5. Nuclear magnetic resonance (NMR)

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ nuclear magnetic resonance (NMR) spectra of the purified compounds were recorded on an Agilent Technologies 400/54 Premium Shielded (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR at 400 and 100 MHz) or Agilent Technologies 500/54 Premium Shielded (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ at 500 and 125 MHz) spectrometer. The samples were solubilized in acetone- d_{6}, $\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}$ or DMSO- d_{6}, and the chemical shifts were reported in ppm relative to an internal standard, TMS. Coupling constants (J) were expressed in hertz (Hz).

2.6. High resolution mass spectrometry (HRMS)

The HRMS spectra were recorded on a micro Tof-QII hybrid quadrupole/time-of-flight (QqToF) mass spectrometer, from Daltonics (Bremen, Germany), equipped with an electrospray ionization (ESI) source. ESI source conditions used in the positive ionization mode included a capillary voltage of 4.0 kV , drying gas flow rate of $8.0 \mathrm{~L} / \mathrm{min}$, nebulizing gas pressure set at 4 bar and source temperature set at $200^{\circ} \mathrm{C}$. Data acquisition was performed using full MS mode (quadrupole m / z range was set from 50 to 3000 Da) at 1.0 Hz rate. Data processing was performed with software (version 4.2), also from Bruker Daltonics.

2.7. Absolute configuration

The optical rotations $\left([\alpha]_{D}^{T}\right)$ of the β-keto-1,2,3-triazoles 3a-f were measured at $23^{\circ} \mathrm{C}$ with a JASCO P2000 polarimeter equipped with a 589 nm -lamp Na in 1 dm cuvette. The samples were prepared with 1 mg of the purified compound diluted in 2.0 mL of $\mathrm{CH}_{3} \mathrm{OH}(0.05 \mathrm{~g} / 100 \mathrm{~mL})$.

2.8. Cytotoxic assay

Cancer cell lines, MCF-7 (human breast adenocarcinoma) and HepG2 (human hepatocellular carcinoma) and non-cancer cell line, MRC-5 (human lung fibroblast), were obtained from the American Type Culture Collection (ATCC) [20]. The cells were cultured in cell culture bottles ($75 \mathrm{~cm}^{3}, 250 \mathrm{~mL}$ volume) in RPMI 1640 medium and supplemented with 10% fetal bovine serum. The cells were maintained in incubators under a $5 \% \mathrm{CO}_{2}$ atmosphere at $37{ }^{\circ} \mathrm{C}$. Cellular growth was monitored daily using an inverted microscope. The medium was changed whenever the cell growth reached the necessary confluence for nutrient renewal. For the maintenance of adherent cells, trypsin (0.25\%) was used detach the cells from the surface of the bottles. Cell cultures were mycoplasma negative, as assessed by incubation with Hoechst (Mycoplasma Stain Kit, Cat, MYC1, Sigma-Aldrich, St. Louis, MO, USA).

Cell viability was quantified using alamar blue assay, as previously described [21]. Initially, the cells were plated in 96 -well plates ($100 \mu \mathrm{~L}$ per well of a solution of 0.3×10^{6} cells per mL for cells in suspension and 0.7×10^{5} cells per mL for adhered cells). After 24 h of incubation, the compounds 3a-f solubilized in DMSO were added to the cells and incubated for 72 h . Doxorubicin (purity $>95 \%$, Laboratórios IMA S.A.I.C., Buenos Aires, Argentina) was used as a positive control and the negative control received the same amount of DMSO. Then, 4 h before the end of the incubation period, $20 \mu \mathrm{~L}$ of stock solution ($0.312 \mathrm{mg} \mathrm{mL}^{-1}$) of alamar blue (resazurin) was added to each well. Absorbance was measured at wavelengths of 570 nm (reduced) and 595 nm (oxidized) using a plate reader. IC_{50} values were determined from the non-linear regression of the
percentage of inhibition $\times \log$ of the concentration, using the program Prisma version 5.0 (GraphPad Software).

3. Results and discussion

3.1. Semi-synthesis of β-keto-1,2,3-triazole derivatives 3a-f from ethinylestradiol 2

To obtain the optimal reaction conditions for 1,3-dipolar cycloaddition of 2 -azido-1-phenylethanone 1a with ethinylestradiol 2, the reaction was performed in a mixture of organic solvent and $\mathrm{H}_{2} \mathrm{O}(1: 1)$ in the presence of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%)$ and sodium ascorbate ($20 \mathrm{~mol} \%$) (Scheme 1).

The first reaction condition tested was the organic solvent. The reaction was performed at room temperature for 14 h (Table 1, entries $1-4)$. Using the $\mathrm{H}_{2} \mathrm{O}$ and isopropanol (1:1) system, compound 3a was obtained with a 38% yield (Table 1, entry 1). A mixture of ethanol and $\mathrm{H}_{2} \mathrm{O}(1: 1)$ produced the desired product 3 a with a 56% yield (Table 1, entry 2). However, when the reaction was performed in THF and $\mathrm{H}_{2} \mathrm{O}$ (1:1) or acetone and $\mathrm{H}_{2} \mathrm{O}$ (1:1), product 3a was obtained with 72% and 83% yields, respectively (Table 1, entries 3 and 4). Therefore, the acetone and $\mathrm{H}_{2} \mathrm{O}$ solution was chosen as the solvent for the reaction because it afforded a higher reaction yield and good solubility of 2-azido-1-phenylethanone 1a and ethinylestradiol 2 among the reaction conditions studied.

To evaluate the influence of temperature on this reaction, a study was performed using three temperature conditions ($26^{\circ} \mathrm{C}, 40^{\circ} \mathrm{C}$, and $50^{\circ} \mathrm{C}$) (Table 1, entries 5-7). When the reaction was performed in a mixture of acetone and $\mathrm{H}_{2} \mathrm{O}(1: 1)$ at room temperature for 6 h , the β-keto-1,2,3triazole derivative 3a was obtained with a 70% yield (Table 1, entry 5). When the reaction was performed at $40^{\circ} \mathrm{C}$ or $50^{\circ} \mathrm{C}$ for 6 h , compound $3 \mathbf{a}$ was obtained with 66% and 63% yields, respectively (Table 1, entries 6 and 7). Investigation of the temperature effects on the reaction revealed that the increase in temperature has no significant influence on the yield of product 3a.

Another condition tested was the reaction time (Table 1, entries 4, 5, and 8). When the reaction time was decreased from 14 to 6 h , the chemical yield decreased from 83% to 70% (Table 1, entries 4 and 5). The reaction was performed for 24 h and its chemical yield increased to 92% (Table 1, entries 4 and 8).

The optimized reaction conditions were used to synthesize the five different β-keto-1,2,3-triazole derivatives 3b-f (Scheme 2). High isolated yields were obtained for compounds 3a (92\%), 3b (83\%), 3c (89\%), and 3d (90\%). Good isolated yields were obtained for compounds $\mathbf{3 e}$ (65%) and $\mathbf{3 f}$ (63%), as reported in Table 2. Compounds 3a-3f were isolated using column chromatography containing silica gel as a stationary phase and characterized using Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR), high resolution mass spectrometry (HRMS), optical rotation $[\alpha]_{D}$, and melting point (mp).

Compound 3a was purified as a white solid (mp 201-204 ${ }^{\circ} \mathrm{C}$). The molecular formula $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{3}$ was established using HRESIMS data (m / z for $458.2438[\mathrm{M}+\mathrm{H}]^{+}$, establishing an index of hydrogen deficiency (IDH) of 15. The IR spectrum of compound 3a showed an absorption band at $3200 \mathrm{~cm}^{-1}$ for a hydroxyl group and an absorption band at 1691 cm^{-1} for a carbonyl group. It was also showed a C-H stretching band at $2926 \mathrm{~cm}^{-1}$ and a C-H asymmetrical band at $2840 \mathrm{~cm}^{-1}$.

Table 1
Optimization of the 1,3-dipolar cycloaddition reaction conditions using 2-azido-1-phenylethanone 1a and ethinylestradiol 2 in the presence of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ and sodium ascorbate.

Entry	Solvente- $\mathrm{H}_{2} \mathrm{O}$ $(1: 1)$	Temperature ($\left.{ }^{\circ} \mathrm{C}\right)$	Yield $^{\mathrm{a}}(\%)$	Reaction time (h)
$1^{\text {b }}$	Isopropanol	26	38	14
$2^{\text {b }}$	Ethanol	26	56	14
$3^{\text {b }}$	THF	26	72	14
$4^{\text {b }}$	Acetone	26	83	14
$5^{\text {c }}$	Acetone	26	70	6
$6^{\text {c }}$	Acetone	40	66	6
$7^{\text {c }}$	Acetone	50	63	6
$8^{\text {d }}$	Acetone	26	92	24

${ }^{\mathrm{a}}$ Isolated yield.
${ }^{\text {b }} \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%)$, sodium ascorbate ($10 \mathrm{~mol} \%$), reaction time of 14 h .
${ }^{c} \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%)$, sodium ascorbate ($10 \mathrm{~mol} \%$), reaction time of 6 h .
${ }^{\mathrm{d}} \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%)$, sodium ascorbate ($10 \mathrm{~mol} \%$), reaction time of 24 h .

The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 3a showed a singlet at $\delta_{\mathrm{H}} 7.84$ for the vinyl hydrogen. Additionally, three aromatic signals were integrated for four protons with chemical shifts at $\delta_{\mathrm{H}} 7.57,7.69$, and 8.08, which confirms the aromatic moiety vicinal to carbonyl. The signals at δ_{H} $6.47,6.51,7.01$, and 7.69 were integrated for three protons, which confirms the aromatic moiety from ethinylestradiol.

The ${ }^{13} \mathrm{C}$ NMR spectrum of compound 3a showed a signal at $\delta_{\mathrm{C}} 57.0$ for the methylene carbon vicinal to triazole nucleus. The characteristic signal at $\delta_{\mathrm{C}} 83.2$ results from the carbinolic carbon vicinal to the triazole nucleus. The presence of ten signals from $\delta_{\mathrm{C}} 126.0-155.9$ for twelve carbons, with two of these signals having double intensity, confirm the two aromatic moieties. The signals at $\delta_{\mathrm{C}} 126.0$ and 155.4 are a result of the carbons from triazole nucleus and the typical signal at $\delta_{\mathrm{C}} 193.1$ is a result of the carbonyl carbon of a ketone. The spectra of all compounds 3a-f were similar, except for some signals in the aromatic regions that resulted from different 2-azido-1-phenylethanones substitutions on the aromatic ring.

3.2. Cytotoxic activity

The synthesized compounds 3a-f were evaluated against two human cancer cell lines, MCF-7 and HepG2, and one non-cancer cell line, MRC-5. Table 3 shows the IC_{50} data and the respective 95% confidence interval obtained by non-linear regression using the GraphPad Prism version 5.0 program. Doxorubicin was used as a positive control for the cytotoxicity assay, with an IC_{50} value of $1.9 \mu \mathrm{M}$ for MCF-7 cells, $0.2 \mu \mathrm{M}$ for HepG2 cells and $2.4 \mu \mathrm{M}$ for MRC-5 cells.

As shown in Table 3, the β-keto-1,2,3-triazole compounds 3a-f exhibited moderate cytotoxic activity against the cancer cell line HepG2 with IC_{50} values of $29.7,16.4,17.8,20.4,28.1$ and $28.2 \mu \mathrm{M}$, respectively. The IC_{50} values found for the cancer cell line MCF-7 were $>54.6,43.6$, 44.4, $46.1,39.3$ and $>52.5 \mu \mathrm{M}$, respectively, while no cytotoxic activity against the non-cancer cell line MRC-5 was found at the experimental concentrations tested.

This is an unpublished study describing the evaluation of cytotoxic activity in semi-synthetic β-keto-1,2,3-triazole derivates 3a-f from ethinylestradiol 2. In the literature there are few studies describing the

Scheme 1. The 1,3-dipolar cycloaddition reaction using 2-azido-1-phenylethanone 1a and ethinylestradiol 2.

Scheme 2. The 1,3-dipolar cycloaddition reaction using 2-azido-1-phenylethanones 1a-f and ethinylestradiol 2.

Table 2
Yields for the β-keto-1,2,3-triazole derivatives 3b-f obtained by click reaction.

Entry	R	Yield $^{\mathrm{a}}(\%)$
1	$\mathrm{H} \mathrm{(3a)}$	92
2	$p-\mathrm{OCH}_{3}(\mathbf{3 b})$	83
3	$p-\mathrm{Cl}(\mathbf{3 c})$	89
4	$p-\mathrm{Br}(3 \mathrm{~d})$	90
5	$p-\mathrm{F}(3 \mathbf{)}$	65
6	$m-\mathrm{F}(3 \mathbf{f})$	63

${ }^{\text {a }}$ Isolated yield.

Table 3
The IC_{50} values obtained for cytotoxic activity in human cancer cell lines versus non-cancer ${ }^{a}$ for the β-keto-1,2,3-triazole compounds 3a-f.

β-keto-1,2,3-triazoles	$\mathrm{IC}_{50}(\mu \mathrm{M})$		
	$\mathrm{MCF}-7$	HepG2	MRC-5
3a	>54.6	29.7	>54.6
3b	43.6	$24.1-36.5$	
	$30.5-62.3$	16.4	>52.5
3c	44.4	$12.7-21.2$	
	$31.4-62.8$	$13.1-24.3$	>50.8
3d	46.1	20.4	
	$29.8-71.1$	$15.0-27.7$	
3e	39.3	28.1	
	$32.2-47.9$	$20.3-38.7$	
3f	>52.5	28.2	
		$18.7-42.7$	
Doxorubicin	1.9	0.20	2.4
	$1.4-2.5$	$0.1-0.3$	$1.9-3.0$

Data are presented as IC_{50} values in $\mu \mathrm{M}$ and 95% confidence interval obtained by nonlinear regression from at the least three independent experiments performed in duplicate, measured by alamar blue assay after 72 h of incubation. Cancer cell lines: MCF-7 (human breast adenocarcinoma) and HepG2 (human hepatocellular carcinoma). Non-cancer cell line: MRC-5 (human lung fibroblast). Doxorubicin was used as a positive control.
synthesis and evaluation of cytotoxic activity of 1,2,3-triazole compounds from steroids. Recently, Ortiz and co-workers reported the synthesis of two pregnane derivates with a triazole (3ß-hydroxy-21-(1H-1,2,4-triazol-1-yl)pregna-5,16-dien-20-one) or imidazole (3β-hydroxy-21-(1H-imidazol-1-yl)pregna-5,16-dien-20-one) ring and their application in inhibiting three human cancer cells lines: prostate cancer (PC-3), breast cancer (MCF7) and lung cancer (SK-LU-1). The results showed that the 3β-hydroxy-21-(1 H -1,2,4-triazol-1-yl)pregna-5,16-dien-20-one compound exhibited cytotoxic activity for the PC-3, MCF7 and SK-LU-1 cancer cell lines with IC_{50} values of 17,360 and $230 \mu \mathrm{M}$, respectively [4].

Also there are studies in the literature describing the synthesis and evaluation of biological activity of other 1,2,3-triazole derivates [22, 23, 24, 25]. The coumarin-1,2,3-triazole-dithiocarbamate hybrids were designed, synthesized and evaluated for their inhibitory activity towards lysine specific demethylase 1 (LSD1). Several of these compounds presented potent activity against LSD1 [26]. Kuntala's group synthesized novel benzoxepine-1,2,3-triazole hybrids and applied them as antibacterial and anticancer agents. Some of these compounds showed
antibacterial activity against gram-positive and gram-negative species. These compounds also showed cytotoxicities against lung and colon cancer cell lines [27].

The 1,2,3-triazole-nimesulide hybrids were designed, synthesized and evaluated as anticancer agents. Several of these compounds showed growth inhibition of A549 (lung cancer), HepG2 (liver cancer), HeLa (cervical cancer) and DU145 (prostate cancer) cancer cell lines [28]. Neeraja and co-workers synthesized $1 H-1,2,3$-triazolyl-substituted 1,3, 4 -oxadiazole derivates containing structural features of ibuprofen/naproxen as antibacterial agents. Several of these compounds showed good to reasonable antibacterial activities when tested against three gram-positive (Staphylococcus aureus, Staphylococcus epidermidis and Bacillus subtilis) and three gram-negative (Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli) species.

The 2-(4-((5-(1-(4-isobutylphenyl)ethyl)-1,3,4-oxadiazol-2-ylthio) methyl)-1 H -1,2,3-triazol-1-yl)-N-(2-nitrophenyl)acetamide compound showed promising activities across both the species [29].

Our results demonstrated that compounds $\mathbf{3 a - f}$ were active against HepG2 cell proliferation. Therefore, the β-keto-1,2,3-triazole compounds 3a-f may be promising for the development of novel therapeutic alternatives to treat cancer. However, new derivatives can be synthesized that may provide better results.

4. Conclusions

Synthesis of the six β-keto-1,2,3-triazole derivatives 3a-f were obtained with good isolated yields (63-92\%) were obtained through optimization of the 1,3 -dipolar cycloaddition reaction in the presence of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ and sodium ascorbate using different 2 -azido-1-phenylethanones $\mathbf{1 a - f}$ and ethinylestradiol 2 . These compounds were investigated against two human cancer cells lines, MCF-7 and HepG2. Compounds 3af showed moderate cytotoxic activity against the HepG2 cancer cells.

Declarations

Author contribution statement

Thayane M. Queiroz: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Erika V.M. Orozco: Conceived and designed the experiments; Analyzed and interpreted the data. Valdenizia R. Silva, Luciano S. Santos: Performed the experiments; Analyzed and interpreted the data. Milena B.P. Soares, Daniel P. Bezerra: Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data. André L.M. Porto: Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Funding statement

Thayane M. Queiroz was supported by a fellowship provided by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/ Proc. 1732109). Erika V.M. Orozco was supported by a fellowship
provided by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/140824/2015-4). André L.M. Porto was supported by a grant 2014/18257-0 and grant 2016/20155-7, São Paulo Research Foundation (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Proc. 302528/2017-2). This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. The author also acknowledge the Chromatography Group (Instituto de Química de São Carlos - USP), including Dr. Guilherme M. Titato for the QqToF analysis (grant 2004/09498-2, São Paulo Research Foundation).

Competing interest statement

The authors declare no conflict of interest.

Additional information

Supplementary content related to this article has been published online at https://doi.org/10.1016/j.heliyon.2019.e02408.

References

[1] P.M. Dewick, Medicinal Natural Product: A Biosynthetic Approach, Wiley, New York, 2002.
[2] H.N. Bhatti, R.A. Khera, Biological transformations of steroidal compounds: A review, Steroids 77 (2012) 1267-1290.
[3] A.H. Payne, D.B. Hales, Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones, Endocr. Rev. 25 (2004) 947-970.
[4] A.V.S. Ortiz, E. Bratoeff, M.T.R. Apan, R.G. Becerra, D.O. Rosado, N.N. Martínez, R.C. Bocanegra, D. Barrera, Synthesis and biological activity of two pregnane derivatives with a triazole or imidazole ring at C-21, J. Steroid Biochem. 159 (2016) 8-18.
[5] E. Baydoun, A.T. Wahab, N. Shoaib, M.S. Ahmad, R.A. Massih, C. Smith, N. Naveed, M.I. Choudhary, Microbial transformation of contraceptive drug etonogestrel into new metabolites with Cunninghamella blakesleeana and Cunninghamella echinulata, Steroids 115 (2016) 56-61.
[6] M. Siddiqui, M.S. Ahmad, A.T. Wahab, S. Yousuf, N. Fatima, N.N. Shaikh, A.U. Rahman, M.I. Choudhary, Biotransformation of a potent anabolic steroid, mibolerone, with Cunninghamella blakesleeana, C. echinulata, and Macrophomina phaseolina, and biological activity evaluation of its metabolites, PLoS One 12 (2017) e0171476.
[7] A.M. Deobald, L.R.S. Camargo, D. Alves, J.Z. Schpector, A.G. Corrêa, Click chemistry: An efficient synthesis of heterocycles substituted with steroids, saponins, and digitalis analogues, Synthesis 24 (2011) 4003-4010.
[8] J.S. Yadav, P.T. Reddy, S. Nanda, A.B. Rao, A facile synthesis of (R)-(-)-2-azido-1arylethanols from 2-azido-1-arylketones using baker's yeast, Tetrahedron: Asymmetry 12 (2001) 63-67.
[9] F.C. Silva, M.F.C. Cardoso, P.G. Ferreira, V.F. Ferreira, in: W. Dehaen, V.A. Bakulev (Eds.), Chemistry of 1,2,3-Triazoles, Springer International Publishing, Berlin, 2015, pp. 117-165.
[10] V.V. Rostovtsev, L.G. Green, V.V. Fokin, K.B. Sharpless, A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective "Ligation" of Azides and terminal alkynes, Angew. Chem. 114 (2002) 2708-2711.
[11] J.F. Lutz, 1,3-dipolar cycloadditions of azides and alkynes: a universal ligation too in polymer and materials science, Angew. Chem. Int. Ed. 46 (2007) 1018-1025.
[12] J.E. Hein, V.V. Fokin, Copper catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides, Chem. Soc. Rev. 39 (2010) 1302-1315.
[13] S.G. Agalave, S.R. Maujan, V.S. Pore, Click chemistry: 1,2,3-Triazoles as pharmacophores, Chem. Asian J. 6 (2011) 2696-2718.
[14] K.H. Chang, L. Lee, J. Chen, W.S. Li, Lithocholic acid analogues, new and potent $\alpha-2,3$-sialyltransferase inhibitors, Chem. Commun. 6 (2006) 629-631.
[15] K.P. Conner, P. Vennam, M.D. Krzyaniak, C.M. Woods, M.K. Bowman, W.M. Atkins, 1,2,3-Triazole-Heme interactions in cytochrome P450: functionally competent Triazole-Water- Heme complexes, Biochemistry 51 (2012) 6441-6457.
[16] G. Liu, W. Wang, J. Lin, K. Li, G. Lv, X. Zhao, S. Wang, S. Luo, L. Qiu, Kit-like ${ }^{18}$ Flabeling of an estradiol derivative as a potential PET imaging agent for estrogen receptor-positive breast cancer, J. Radioanal. Nucl. Chem. 312 (2017) 599-607.
[17] J. Mareddy, N. Suresh, A. Jayasree, Y.P. Devi, L.N. Mangamoori, R. Kapavarapu, S. Pal, Synthesis and biological evaluation of nimesulide based new class of triazole derivatives as potential PDE4B inhibitors against cancer cells, Bioorg. Med. Chem. Lett 23 (2013) 6721-6727.
[18] T. Patonay, R.V. Hoffman, A General and efficient synthesis of α-Azido ketones, J. Org. Chem. 59 (10) (1994) 2902-2905.
[19] L.C. Rocha, I.G. Rosset, G.Z. Melgar, C. Raminelli, A.L.M. Porto, A.H. Jeller, Chemoenzymatic resolution of β-Azidophenylethanols by Candida antarctica and their application for the synthesis of chiral benzotriazoles, J. Braz. Chem. Soc. 24 (9) (2013) 1427-1432.
[20] U. Boulevard, V.U. Manassas, American Type Culture Collection (ATCC). htt ps://www.atcc.org/.
[21] S.A. Ahmed, R.M. Gogal, J.E. Walsh, A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H] thymidine incorporation assay, J. Immunol. Methods 170 (1994) 211-224.
[22] A. Lauria, R. Delisi, F. Mingoia, A. Terenzi, A. Martorana, G. Barone, A.M. Almerico, 1,2,3-Triazole in heterocyclic compounds, Endowed with biological activity, through 1,3-Dipolar Cycloadditions, Eur. J. Org. Chem. 16 (2014) 3289-3306.
[23] M. D'hooghe, S. Vandekerckhove, K. Mollet, K. Vervisch, S. Dekeukeleire, L. Lehoucq, C. Lategan, P.J. Smith, K. Chibale, N. De Kimpe, Synthesis of 2-amino-3-arylpropan-1-ols and 1-(2,3-diaminopropyl)-1,2,3-triazoles and evaluation of their antimalarial activity, Beilstein J. Org. Chem. 7 (2011) 1745-1752.
[24] P.V. Babu, S. Mukherjee, D.R. Gorja, S. Yellanki, R. Medisetti, P. Kulkarni, K. Mukkanti, M. Pal, Zebrafish based strategy for the identification of a potential pharmacophore for apoptosis: a greener CuAAC approach for novel 1,2,3-triazoles derived from mefenamic acid, RSC Adv. 4 (2014) 4878-4882.
[25] S.B. Nallapati, B.Y. Sreenivas, R. Bankala, K.V.L. Parsa, S. Sripelly, K. Mukkanti, M. Pal, 1,2,3-Triazoles derived from olanzapine: their synthesis via an ultrasound assisted CuAAC method and evaluation as inhibitors of PDE4B, RSC Adv. 5 (2015) 94623-94628.
[26] X.W. Ye, Y.C. Zheng, Y.C. Duan, M.M. Wang, B. Yu, J.L. Ren, J.L. Ma, E. Zhang, H.M. Liu, Synthesis and biological evaluation of coumarin-1,2,3-triazole-dithiocarbamate hybrids as potent LSD1 inhibitors, Med. Chem. Commun. 5 (2014) 650-654.
[27] N. Kuntala, J.R. Telu, V. Banothu, N.S. Babu, J.S. Anireddy, S. Pal, Novel benzoxepine-1,2,3-triazole hybrids: synthesis and pharmacological evaluation as potential antibacterial and anticancer agents, Med. Chem. Commun. 6 (2015) 1612-1619.
[28] J. Mareddy, N. Suresh, C.G. Kumar, R. Kapavarapu, A. Jayasree, S. Pal, 1,2,3-Triazole-nimesulide hybrid: Their design, synthesis and evaluation as potential anticancer agents, Bioorg. Med. Chem. Lett 27 (2017) 518-523.
[29] P. Neeraja, S. Srinivas, K. Mukkanti, P.K. Dubey, S. Pal, 1H-1,2,3-Triazolylsubstituted 1,3,4-oxadiazole derivatives containing structural features of ibuprofen/ naproxen: Their synthesis and antibacterial evaluation, Bioorg. Med. Chem. Lett 26 (2016) 5212-5217.

[^0]: * Corresponding author.

 E-mail address: almporto@iqsc.usp.br (A.L.M. Porto).

