Hindawi

Stem Cells International

Volume 2019, Article ID 2693189, 13 pages
https://doi.org/10.1155/2019/2693189

Review Article

Hindawi

Advances in Hepatic Tissue Bioengineering with Decellularized

Liver Bioscaffold

Frik Aranha Rossi,"” Luiz Fernando Quintanilha,"* Carolina Kymie Vasques Nonaka,’

and Bruno Solano de Freitas Souza

2,3,5

!Escola de Ciéncias da Savide-Universidade Salvador-UNIFACS, Salvador, BA, Brazil
2Sdo Rafael Hospital, D’Or Institute for Research and Education (IDOR), Salvador, BA, Brazil

*Gongalo Moniz Institute, Fiocruz, Salvador, BA, Brazil

*Faculdade de Tecnologia e Ciéncias-FTC, Salvador, BA, Brazil
*National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, R], Brazil

Correspondence should be addressed to Bruno Solano de Freitas Souza; bruno.souza@bahia.fiocruz.br

Received 7 December 2018; Revised 8 February 2019; Accepted 17 March 2019; Published 6 May 2019

Guest Editor: Yun-Wen Zheng

Copyright © 2019 Erik Aranha Rossi et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The burden of liver diseases continues to grow worldwide, and liver transplantation is the only option for patients with end-stage
liver disease. This procedure is limited by critical issues, including the low availability of donor organs; thus, novel therapeutic
strategies are greatly needed. Recently, bioengineering approaches using decellularized liver scaffolds have been proposed as a
novel strategy to overcome these challenges. The aim of this systematic literature review was to identify the major advances in
the field of bioengineering using decellularized liver scaffolds and to identify obstacles and challenges for clinical application.
The main findings of the articles and each contribution for technique optimization were highlighted, including the protocols of
perfusion and decellularization, duration, demonstration of quality control—scaffold acellularity, matrix composition, and
preservation of growth factors—and tissue functionality after recellularization. In previous years, many advances have been
made as this technique has evolved from studies in animal models to human livers. As the field develops and this
promising technique has become much more feasible, many challenges remain, including the selection of appropriate cell
types for recellularization, route of cell administration, cell-seeding protocol, and scalability that must be standardized prior

to clinical application.

1. Introduction

Liver diseases, including cirrhosis and hepatocellular carci-
noma, remain among the main causes of global mortality
[1]. Despite intense international effort, liver transplantation
continues to be the only available therapeutic option for end-
stage liver disease, which is a procedure with several inherent
limitations [2]. Recent data indicate that the demand for liver
transplants, in some countries, is nearly three times the
number of transplants performed. Furthermore, significant
numbers of patients still die while in the transplant waiting
list, demonstrating the urgent need for the development of
alternative therapies [3, 4].

Recently, whole-organ bioengineering has been proposed
as a promising alternative to overcome the challenges

involved in liver transplantation, including organ shortage
and immune rejection. One approach is to produce a natural
bioscaffold through liver decellularization. This technique
consists of removing liver cells by perfusion with enzymes
and/or detergent solutions, or by physical methods, to
generate extracellular matrix- (ECM-) derived scaffolds while
preserving vascular integrity. This is followed by the intro-
duction of new cells with the appropriate characteristics
and repopulation potential [5]. The efficiency and function-
ality of the bioengineered liver tissue can be tested by
evaluating specific biomarkers. A key advantage of using a
decellularized liver bioscaffold is the preservation of liver-
specific ECM, architecture, and bioactive molecules, thus
providing the necessary signals for hepatocyte engraftment,
survival, and function [6].
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Recent studies have shown promising results in the field
of liver tissue bioengineering, augmenting the speculation
that a fully functional liver tissue could be generated
ex vivo, potentially offering an alternative for liver transplan-
tation [7]. Tissue engineering using a decellularized liver
scaffold is a relatively new technique, which remains under
development despite significant protocol optimizations and
improvements in recent years. The aim of this integrative
literature review was to identify the major advances in the
field of bioengineering using decellularized liver scaffolds
and identify bottlenecks for clinical translation.

2. Methods

2.1. Search Strategies. This is an integrative review of the
literature, adapted from the PRISMA (Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses)
guide. The databases SciELO (http://www.scielo.org), PubMed
(http://www.ncbi.nlm.nih.gov/pubmed), and LILACS (http://
lilacs.bvsalud.org) were searched between December 2017
and March 2018. An additional search using references con-
tained in the main selected articles was also conducted.
Searches were performed using the descriptive terms “liver,”
“recellularization,” and “decellularization” based on the
medical terms of the National Library of Medicine
(https://meshb.nlm.nih.gov/search). The Boolean expres-
sion “AND” was used in order to find the registries in which
“liver” was associated with at least one other descriptive
term listed.

2.2. Study Selection. Initially, literature searches were per-
formed independently by the authors of the current study,
which were followed by analysis of the identified article titles
and abstracts in order to confirm that the publication
contained detailed descriptions of protocols for hepatic tissue
decellularization (with or without recellularization and
in vivo transplant). Selected articles were then read in their
entirety in order to compose the current study. The inclusion
criteria were as follows: experimental studies, published in
the past ten years, aiming to produce a natural bioscaffold,
and through liver decellularization. The included articles
describe methods capable of sustaining adequate liver
repopulation, viability, and function of the bioengineered
tissue. No language restriction was applied. The following
exclusion criteria were considered: review articles, letters,
and conference abstracts.

Relevant information, such as journal impact factors,
publishing year, proposed methods, results, and innovations,
was also considered. Some of the investigated studies are
described with greater details in Results, while others are
used in table formats with described information regarding
their main contributions.

3. Results

3.1. Literature Searches and Inclusion Assessment. Compiling
the results from searches performed in all databases, 1238
articles were found. By analyzing titles and abstracts, we
identified articles that were repeated in more than one
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database, while others did not fit with the criteria established
for this study. Finally, 20 articles were included in the review
(Figure 1). The articles were published in English between
2010 and 2018, in international journals. All articles used
either one method or a combination of different strategies:
perfusion with chemicals, enzymatic reagents, or physical
methods. A general scheme for the procedures performed
in the production of bioengineered liver tissue is presented
in Figure 2. Quality criteria generally acceptable and utilized
in the studies are also summarized (Figure 3).

3.2. General Overview of Methods. The experiments were
conducted mainly in the rat liver [8-19], as well as in mouse
[20], pig [21-24], sheep [19], ferret [11], minipig [25], and
human [26, 27] liver tissues. Perfusion was performed
through the hepatic vasculature system, which consists of
four major vessels, the portal vein (PV), hepatic artery
(HA), inferior vena cava (IVC), and superior vena cava
(SVC). While PV is the most common route for perfusion
decellularization [8, 10-12, 16, 18, 20, 22, 25], perfusion via
IVC [9, 13, 24, 26, 27], SVC [15], HA [21], or utilizing PV
and HA simultaneously [19, 23] has been also performed.
For characterization of the bioscaffold, the studies fre-
quently used H&E staining [8-23, 25-27], evaluation of
matrix composition by immunostaining or by other methods
[8-14, 17-27], and ultrastructural analysis by electron
microscopy [10-14, 16-22, 25-27]. Confirmation of acellu-
larity and elimination of nuclear DNA were also evaluated,
which are crucial to reduce graft immunogenicity. Two
studies applied nondestructive imaging methods for the
evaluation of the scaffold’s structure: ultrasound [16] and
3D-computed tomography scanning [23]. Eight studies
evaluated and quantified the preservation of growth factors
in a decellularized bioscaffold [12, 13, 15, 17, 18, 22, 24, 27].
Four studies did not perform the recellularization step
[5, 12, 23, 24]. Regarding the cell types used in the recel-
lularization step, seven studies used primary hepatocytes
[8, 10, 13-15, 18, 27], three studies used liver progenitor
cells [9, 11, 19], and six studies used immortalized hepatocytes
and/or nonparenchymal cell lines [16, 17, 21, 22, 26, 27].
Two studies investigated the potential use of mesenchymal
stem cells (MSCs)—either undifferentiated or stimulated to
undergo hepatic differentiation—as an extrahepatic source
for recellularization alone or in association with hepatocytes
[15, 20]. Four studies performed an additional in vivo valida-
tion step by transplanting the bioengineered liver tissue into
experimental animals [8, 14, 21, 26]. The main findings of
such studies are described chronologically and summarized
in Table 1.

3.3. Evolution of Decellularization Methods. The goal of the
liver decellularization step is to provide an acellular scaffold
while maintaining the original chemical and biological
components of the tissue, thus providing an adaptable
environment for cultured cell maturation and functionality.
However, the use of physical, chemical, and biological
methods, in combination or separately, can potentially cause
disruption of original tissue characteristics. In the latest
years, several technical advances have occurred, allowing
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F1GURE 1: Fluxogram of the literature review demonstrating articles that were identified and selected at each step.
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FIGURE 2: General concept and steps for the generation of bioengineered liver tissue. Organs that are nonviable for transplantation may
serve as the basis for the generation of a scaffold that can then be repopulated with liver cells for subsequent transplantation in patients

with liver disease.

for the generation of a well-preserved decellularized liver
bioscaffold.

The first report of the generation of a decellularized liver
bioscaffold was published in 2010, by adaptation of a previ-
ous study that performed heart tissue decellularization [28].
Uygun and colleagues used sodium dodecyl sulfate (SDS),
an anionic detergent that causes cell lysis and solubilizes

cytoplasmic components, for decellularization of liver tissue.
The procedure was performed in Lewis rats, over a duration
of 72 hours. Following protocol conclusion, immunostaining
assays revealed the maintenance of the native matrix charac-
teristics, composed primarily of collagens type I and IV,
fibronectin, and laminin- 1. Additionally, matrix acellularity
was confirmed by DAPI staining. Staining with Allura Red
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Quality criteria for decellularized liver bioscaffold

Absence of nuclear material

Absence of DNA material

Presence of growth factors

Presence of extracellular
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FIGURE 3: Quality control criteria for the evaluation of successful decellularization.

demonstrated that the microvasculature was also preserved
[8]. The extended duration of the procedure, however, could
limit scalability and the preservation of growth factors bound
to the ECM, which was not evaluated.

In another study from 2010, Shupe and colleagues pre-
sented a simpler and efficient decellularization technique
and achieved consistent results in a less time-consuming
process by combining perfusion with Triton X-100 and
0.1% SDS, resulting in the DNA removal, assessed by DAPI
staining. Immunostaining was performed in order to demon-
strate the presence of type IV collagen in the matrix. Laminin
was also present in the venous reminiscent basal membrane
and in the surrounding acellular remnants of the hepatic
cords [29].

At this point, the described protocols had long durations,
which may compromise the scaffold quality, due to the loss of
key liver ECM components, such as matrix-bound growth
factors. De Kock and colleagues presented a simple and rapid
method for decellularization of whole rat livers, achieving a
drastic reduction in the procedure duration, which lasted
for only 60 minutes. De Kock’s study was performed in
Sprague-Dawley rats, by perfusing the liver for 30 minutes
with 1% Triton X-100 solution followed by 30 minutes with
1% SDS solution at 37°C and 30 ml/min flow rate, a 30-fold
higher flow rate, compared to the previous protocols. A
translucent, acellular scaffold was obtained, with acellularity
confirmed by scanning electron microscopy, which demon-
strated the absence of cells in the newly decellularized liver
matrix. Similar to the above-mentioned protocols, mainte-
nance of most ECM proteins (type I and IV collagens,
fibronectin, and laminin) was observed, indicating the pres-
ervation of the structure and components of the basement
membrane. In addition, the authors demonstrated the pres-
ence of vascular endothelial growth factor (VEGF) directly
attached to the ECM, in association with large blood vessels
and sinusoidal spaces. The absence of positive staining for
hematoxylin indicated that the decellularization process
was successful and efficiently achieved a drastic reduction
in the procedure time [12].

Based on a previously described protocol [30], Gessner
and colleagues used the VC for removing fluids and the
portal vein to perfuse the detergents. A delipidation buffer

(36 U/l of phospholipase A2 in 1% sodium deoxycholate)
was infused until the tissue became transparent. Addition-
ally, in order to maintain the biological and chemical charac-
teristics of the tissue, the authors perfused the liver with a
high-salt buffer, which favors the maintenance of collagen
in an insoluble state, while also preserving cytokines and
growth factors bound to them. DNase and RNase were used
to remove any nucleic acid that remained in the framework.
Scanning electron microscopy (SEM) images showed tissue
preservation at comparable levels to normal liver tissue.
Notably, the protocol also was associated with increased
maintenance of the microvasculature integrity as evaluated
by ultrasound, without the need to use dyes, which is relevant
for future translational studies [16].

Also, in 2013, Yagi and colleagues presented an impor-
tant improvement of the decellularization technique. The
authors adapted the protocols proposed by Uygun et al. [8]
and Shupe et al. [9] and applied them in larger animal stud-
ies, a crucial step for further clinical translation. The authors
performed the procedure in pig livers, which are of similar
size as those of human livers. After the procedure, DNA
was not detected and the morphological and structural com-
ponents were preserved. Growth factors such as hepatocyte
growth factor (HGF), basic fibroblast growth factor (bFGE),
VEGF, and insulin-like growth factor 1 (IGF-1), essential
for conditioning a healthy niche to hepatic cells, were
evaluated and detected, however in significantly lower levels,
compared to normal liver tissue [22].

Continuing in the development of potential clinical
applications, Struecker et al. [23] presented a technique to
decellularize pig livers in seven hours, a much lower duration
than that which was previously reported in large animal
livers. Using the pressure control method and perfusing
with 1% of Triton X-100 and 1% of SDS through the HA
(120 mmHg) and PV (60 mmHg), the efficiency of the tech-
nique was observed by macroscopic observation, histological
staining (H&E, Sirius Red, and Alcian blue), immunohisto-
chemical staining (for collagen IV, laminin, and fibronectin),
biochemical evaluation (DNA, collagen, and glycosamino-
glycans), and verification of microvasculature integrity by
three-dimensional computed tomography. The authors pro-
posed that the organs decellularized with pressure oscillation
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were more homogeneous during the process and presented
less residual DNA, with no remaining cells and no changes
in ECM [23].

With efforts to get closer to clinical applicability, Mazza
and colleagues performed for the first time, in 2015, the
decellularization of a human liver. The liver tissues were
frozen at -80°C and thawed at 4°C. The perfusion protocol
used by Mazza and colleagues consisted of subjecting the
hepatic tissue to infusions with different solutions, including
distilled water, trypsin/EDTA, SDS, Triton X-100, saline,
peracetic acid, and ethanol in a protocol that lasted for up
to 6 weeks. Histological analysis was performed to demon-
strate acellularity and DNA quantification, while immuno-
histochemical analysis showed that the main components
of the ECM were preserved [26].

Again, in 2017, Maaza et al. improved the decellulariza-
tion technique based on an oscillation of the g-force and high
shear stress [27]. The liver was frozen at -80°C, thawed at 4°C,
cut into 125 mm? cubes, and frozen again at -80°C. The cubes
were then thawed in a water bath (37°C) for 1 hour and
covered with 1% PBS. After being thawed, they were trans-
ferred to 2ml tubes, detergents were added, and different
g-force values were tested. The macroscopic analysis of the
tissues showed a translucent and transparent appearance,
while the H&E staining confirmed the removal of nuclear
material with preservation of the ECM, as demonstrated by
the stains of Sirius Red and Elastin Van Gieson. The DNA
quantification was also measured to be below 50ng/mg,
which is the preferred method for evaluation of contamina-
tion with DNA. Moreover, the protocol time was dramati-
cally reduced from 36 hours to approximately 3 hours [27].

3.4. Recellularization Efforts. The final outcome of a decellu-
larized liver bioscaffold is to serve as the basis for the recellu-
larization, resulting in a viable and functional tissue for
in vitro tests and transplantations. The first reported attempt
to recellularize a liver scaffold was made by Uygun et al. in
2010 [8]. To test the effectiveness of the liver scaffold gener-
ated, a recellularization protocol was tested using four infu-
sions of 5x 10° rat primary hepatocytes through the PV.
The engraftment efficiency was estimated as 95.6%+3.4%.
Initially, the transplanted cells were localized around large
veins, and in the subsequent days, the cells were observed
to be distributed throughout the entire matrix; however,
approximately 20% were found to be undergoing cell death
by apoptosis. During the evaluated time frame, biochemical
analysis demonstrated increased expression levels of UDP
glucuronosyltransferase 1 family, polypeptide Al, glucose
6-phosphatase, albumin, and urea. The expression levels of
cytochrome P450 enzymes were reported to be similar to
those found in normal livers. The study also tested the addi-
tion of microvascular endothelial cells in the repopulated
hepatocyte tissue, which were able to align the vasculature
in three days.

Shupe and colleagues tested recellularization with a rat
liver progenitor cell, WB344. After a total of 10° cells were
perfused in tissue through the IVC, the authors were able to
see that these cells could migrate from the vessels, which
had their structure maintained, to the center of the matrix
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[9]. Long-term analyses were not performed. Later, Gessner
et al. reseeded the liver bioscaffold with human hepatoblast-
like cells, Hep3B cells (1.3 x 10® cells). To measure the effi-
cacy of this protocol, SEM was performed and showed
engraftment of these cells in the matrix scaffold. Addition-
ally, the engrafted cells presented proliferation potential
(Ki67 staining) with no evidence of apoptosis. Albumin and
EpCAM were both expressed but in different levels depend-
ing of the localization of the reseeded cells [16].

Yagi and colleagues also were able to achieve some
success in the cell engraftment of a porcine liver scaffold. A
total of 1 x 10° hepatocytes were introduced through PV in
a basal medium supplemented with epidermal growth factor
(EGEF), hydrocortisone, insulin, glucagon, and antibiotics. In
the first 24 hours, the hepatocytes were retained in the portal
vein but gradually migrated and engrafted in the liver
parenchymal in the following days. On the fourth day,
grafted hepatocytes presented similar levels of albumin
expression, when compared to normal livers. The levels of
protein synthesis, as measured by the presence of albumin
and the concentration of urea, were slightly higher than the
culture of hepatocytes grown in collagen-coated plates. How-
ever, long-term functionality of the recellularized liver tissue
was not determined and may not occur, since albumin
expression dropped considerably after the seventh day of
culture [22].

In contrast to the use of parenchymal and nonparenchy-
mal liver cells, Jiang and colleagues used the liver scaffold to
provide an environment to support hepatic differentiation of
mesenchymal stem cells (MSC). This strategy proved to be
better than 2D culture, based on the expression of hepatic-
associated genes, marker proteins, glycogen storage, albumin
secretion, and urea production. Using the liver scaffold to aid
hepatic differentiation of alternative cell sources (for exam-
ple, stem cells) could be a beneficial tool for clinical applica-
tion as this study showed in an experimental model of acute
liver failure induced by carbon tetrachloride [20].

In another study by the same authors using human decel-
lularized liver, Mazza and colleagues applied four cell types in
a sterilized decellularized tissue. Human umbilical vein endo-
thelial cells (HUVECs), human hepatic stellate cell lines
(LX2), human hepatoblastoma cell lines (HepG2), primary
hepatocytes, and stellate cells were used, and several factors
related to the hepatic environment were investigated over
the next 3 to 14 days. Immunostaining confirmed migration,
attachment, and functionality of HUVECs in the liver scaf-
fold. Expression of important growth factors, such as
platelet-derived growth factor beta receptor (PDGFf-R)
and transforming growth factor beta receptor (TGFp-F)
was also evaluated. Functionally, quantitative RT-PCR
revealed higher albumin expression levels when compared
to the 2D culture system. These results allowed the authors
to conclude that the heterogeneous system in a developed
microenvironment in vitro can mimic a physiologically and
anatomically healthy liver and provide the necessary stimuli
for the production of a laboratory-developed organ [26, 27].

Despite the improvements seen in recellularization,
in vitro functional liver tissue has yet to be efficiently
achieved. Additionally, there is no consensus about which
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FIGURE 4: Advances and future challenges for the development of clinically relevant bioengineered liver tissue.

protocol provides the best infusion route, cell type, cell
quantity, and culture procedures. Significant improvements
would be necessary, also including nonparenchymal cells,
such as liver sinusoidal endothelial cells, stellate cells, bili-
ary epithelial cells, and Kupffer cells, in order to improve
tissue functionality.

4. Discussion

In recent years, many advances in liver decellularization
protocols have been made, including scaling up of the appli-
cation procedures from small to larger animals. However,
challenges still remain, both involving the decellularization
and, mainly, recellularization steps (Figure 4). Moreover,
successful transplantation and viability of the bioengineered
scaffold will depend largely on reendothelization and integra-
tion to the host vasculature.

Regarding the choice of the detergent used in the decellu-
larization step, these reviewed studies demonstrated that SDS
is more effective for DNA removal but can also alter signifi-
cantly the matrix composition [25, 31, 32]. Therefore, the
use of Triton X-100 has been associated with the improved
function of the bioengineered liver tissue. While different
routes have been tested for the perfusion with the selected
solutions in the decellularization step, there is evidence to
suggest that HA cannulation, associated with oscillating
pressure, may be more efficient [33]. However, there con-
tinue to exist protocol efficiency limitations and thus a need
to standardize the minimal acceptable level of quality control
when evaluating the decellularized liver bioscaffold.

An important issue not always commented on by the
studies is the protocols for decontamination and sterilization
of the bioscaffold. It should be noted that the ideal method
choice should take into consideration the possibility of such
methods to alter matrix characteristics, which were previ-
ously shown for high gamma irradiation in a porcine dermal
bioscaffold. There is evidence to suggest that the combina-
tion of peracetic acid with gamma irradiation and ethylene
oxide gas may sustain the mechanical properties of the
scaffold [34].

Regarding the recellularization step, the ideal cell types to
be used for production of a bioengineered liver are not estab-
lished. Studies have focused in using hepatocytes, which, in
order to be obtained for clinical applications, would require
human livers, which are scarce. Therefore, extrahepatic
sources for liver repopulation would be highly desired. So

far, a few studies have used MSCs, but those cells have limited
plasticity and their ability to generate fully functional hepato-
cytes is questionable [15, 20]. These cells could be associated
with other cell types to increase graft survival due to their
immunomodulatory and trophic paracrine actions [35].
Other potential sources would be hepatocyte-like cells
derived from human embryonic or induced pluripotent stem
cells (iPSCs), which have been successfully applied and
seeded into a decellularized porcine liver bioscaffold [36].
Also, the association with cholangiocytes, endothelial cells,
and other nonparenchymal liver cells would be required for
adequate function of the engineered liver. All of those cell
types could be potentially generated from pluripotent stem
cells [37, 38].

Beyond the cell-type choice, the recellularization protocol
has yet to be standardized to uniformly repopulate the
scaffold, and therefore, there is still much need for optimiza-
tions. Reendothelization is a critical step that should be
further improved in order to prevent coagulation and graft
loss after in vivo transplantation, since the exposure of liver
ECM to blood triggers coagulation. Based on this, it may be
necessary to use more than one access point for perfusion
with endothelial cells, as previously demonstrated [7].

Importantly, reendothelization of the whole-porcine liver
was achieved, with vascular patency and absence of coagula-
tion in vivo [39]. The association with extracellular matrix
components can also increase the efficiency of reendotheliza-
tion. Recently, immortalized endothelial cells were utilized in
a proof-of-concept study that demonstrated that the asso-
ciation with gelatin enhances reendothelization of a decel-
lularized liver scaffold [40]. The attachment of endothelial
cells was also improved by conjugation with a biopolymer,
REDV-ELP, which was able to increase reendothelization
of a rat decellularized liver bioscaffold [41]. Although
these results are promising, both studies use immortalized
endothelial cells, and since primary liver endothelial cells
cannot be obtained and cultured easily, iPSC-derived
endothelial cells could be useful as alternative cell sources
in further studies.

Finally, the present study provided an integrative litera-
ture review which has limitations, including the diversity of
study designs and the variability of the reported protocols
and outcome measurements. Moreover, all of the studies
reported positive results, which could possibly be explained
by publication bias, leading negative or neutral results to
not be published.
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5. Conclusion

As the result of international efforts, the literature demon-
strates that clear progress has been achieved in the liver
decellularization technique. The recellularization/reendothe-
lization steps, however, still require considerable further
development. Nevertheless, the advances to date have made
it possible to develop a bioartificial liver much more real-
istically, aiming at future clinical applications in the hepa-
tology field.
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