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bstract

The steps to produce, purify and control an immunogenic Brazilian conjugate vaccine against group C meningococcus (MenCPS–TT) using
ydrazide-activated tetanus toxoid were developed. The conjugation methodology reduced the reaction time easily allowing scale-up. One
reeze-dried pilot vaccine lot purified by tangential filtration, showed satisfactory quality control results including safety and stability. The
ilot vaccine was immunogenic in mice in a dose-dependent fashion generating a 10–20-fold rise in IgG response in mice. The vaccine also

nduced high bactericidal titers. Vaccine concentrations of 1 and 0.1 �g showed higher avidity indices, suggesting induction of immunologic
emory. These results support initiation of Phase I clinical studies with the MenCPS–TT conjugate vaccine.
2007 Elsevier Ltd. All rights reserved.
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. Introduction

Neisseria meningitidis (the meningoccocus) is one of the
ost important pathogens as causes of meningitis and other

linical manifestations. Meningococcal disease is primar-
ly caused by only five meningococcal groups (A, B, C,

and W-135) among 13 groups described, with a realis-
ic prospect of disease elimination given the development
f effective vaccines [1]. However, native polysaccharide
PS) meningococcal vaccines are poorly immunogenic in
nfants. In addition, some polysaccharides like group C may

nduce immunological tolerance after inoculation of repeated
oses in adults and children [2–5]. These vaccines have
een replaced by PS–protein conjugates in order to improve
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he immunogenicity in infants and young children induc-
ng memory responses [2,6–8]. Several conjugate vaccines
gainst groups A and C meningococci have been immuno-
enic and well tolerated in infants [9,10]. The impact of
onjugate vaccine on disease and nasopharyngeal carriage
f group C meningococci has been considerable, with effi-
acy over 90% and 67% reduction in carriage resulting in an
mportant herd immunity effect (around 65%) [11]. Meningo-
occal C conjugate vaccines have been introduced in many
ational immunization programs in countries such as United
ingdom, Ireland, Spain, Netherlands, Belgium, Australia

nd Canada [12–20].
The incidence of meningococcal disease in Brazil is
–3/100,000 inhabitants mainly due to group B (60%) fol-
owed by group C (40%) [21,22]. Despite the significant rate,
razil has produced only polysaccharide vaccines against
roups A and C since 1976. The country does not produce
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eningococcal C conjugate vaccines for routine immuniza-
ion and control meningococcal disease caused by this group.

Several multi-step conjugation methods have been
mployed for covalently linking polysaccharides to proteins.
ne of them is reductive amination that is currently used

o prepare licensed conjugate vaccines against Haemophilus
nfluenzae type b, N. meningitidis and Streptococcus pneu-
oniae [23–26].
Here, we describe the development of a Brazilian

onjugate vaccine against group C (MenCPS–TT). The
enCPS–TT vaccine was produced by reductive amina-

ion, using hydrazide-activated tetanus toxoid (TT) as a
arrier protein. Current methodology was modified to reduce
ime of reaction easily allowing scale-up [27,28]. Conjugate
mmunogenicity in mice was demonstrated by the detection
ntibodies including avidity indice and bactericidal activity.
he results support initiation of Phase I clinical studies with

he MenCPS–TT conjugate vaccine.

. Materials and methods

.1. Meningococcus group C polysaccharide (MenCPS)
nd tetanus toxoid (TT)

Native MenCPS was produced by Bio-Manguinhos,
undação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil. It was
btained from bacterial mass of N. meningitidis 2135 strain
ultivated in Frantz medium and purified as described previ-
usly [29,30]. Sialic acid content of MenCPS was measured
y resorcinol method [31]. MenCPS identity, structure and
urity were evaluated by one-dimensional proton nuclear
agnetic resonance spectroscopy (1H NMR 1D) at 500 MHz

t 37 ◦C using a Bruker Avance/500. The analyses were
one without water-suppression. Dry samples (10 mg) were
issolved in deuterated water (D2O 99.96% D, Cambridge
sotope Laboratories Inc.) [32–34]. TT was provided by Insti-
uto Butantan, São Paulo, SP, Brazil. It was produced and
urified according to the specifications of DTP vaccine [35].
he antigenic purity of the TT used in these studies was
892 Lf/mg protein nitrogen, which is appropriate to be used
n conjugation processes [33]. The protein content was eval-
ated by Bradford method [36].

.2. MenCPS activation

Different batches of native MenCPS (10 mg/mL) in water
ere treated with sodium periodate (23.4 mM) overnight at
◦C in the dark for generating aldehyde groups [23]. Glyc-
rol was added to quench the excess sodium periodate. The
ctivated PS was purified by diafiltration against water and
oncentrated by tangential flow ultrafiltration (Centramate

ystem, Pall BioPharmaceuticals) [28]. The identity and
resence of aldehyde groups in the polysaccharides were
valuated by 1H NMR 1D spectroscopy using the same con-
itions described above [32,34]. The aldehyde group content

a
p
d
r
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f activated-MenCPS was measured by a formaldehyde assay
sing the Purpald reagent [37].

.3. Protein activation

TT (3.5 mg/mL) was activated by introduction of
ydrazine groups by carbodiimide (EDAC) methodology
fter treatment with hydrazine dihydrochloride in 50-fold
xcess at room temperature and under acidic conditions (pH
.1) [27]. The hydrazide-activated tetanus toxoid (TTH) was
urified by diafiltration against 0.02 M PBS pH 7.4 and
oncentrated by tangential flow ultrafiltration (Centramate
ystem, Pall BioPharmaceuticals) [28].

.4. Conjugation procedures

Activated-MenCPS (50 mg/mL) was covalently linked to
TH (60 mg/mL) in the presence of 1 M sodium cyanoboro-
ydride (1 M; 10 mL) overnight (method derived from [23]).
he reaction was stopped by addition of 0.5 M adipic
cid dihydrazide (ADH; 50 mL) to block unreacted alde-
yde groups. Conjugation was analyzed by size exclusion
hromatography (SEC) using a TSK-G® 4,000 PWxl col-
mn (with ultraviolet detection at 280 and 206 nm), and
y 1H NMR 1D spectroscopy using the same conditions
escribed above, however, the analysis were done with water-
uppression [32,34]. The mixtures were diafiltrated against
.02 M PBS pH 7.4, to remove unconjugated polysaccharides
nd concentrated by tangential flow ultrafiltration (Centra-
ate System, Pall BioPharmaceuticals) [28]. Total sugar

nd protein contents in the intermediate products and the
nal conjugates were determined by resorcinol and Bradford
ethods, respectively [31,36]. The amount of free polysac-

haride was evaluated by HPAEC-PAD after precipitation
ith DOC according to Lei et al. [38].

.5. Pilot lot vaccine preparation

In order to evaluate the immunogenicity of MenCPS–TT
onjugate in mice and also to determine its stability after
torage, one lot corresponding to 27,000 human doses
10 �g/0.5 mL; Lot 40) was used to fill vials containing five
uman doses. The vials were freeze-dried and stored at 4 ◦C.

.6. Quality control assays

The quality control assays required by WHO for meningo-
occal C conjugate vaccines were conducted. The final
roduct was assayed for determination of saccharide content
fter dialysis against water to remove all sucrose residues
nd avoid any interference in the resorcinol assay. The resid-
al moisture was done by Karl-Fisher methodology [39]

nd the amount of sucrose by size-exclusion chromatogra-
hy (Shodex SC1011-sugar 8 column) with refractive index
etection. The purified bulk conjugate was tested for bacte-
ial and mycotic sterility, pyrogen “in vivo” and “in vitro”
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“Limulus amebocyte lysate”; LAL; [40]), abnormal toxic-
ty in mice and reactogenicity in rabbits were used for the
haracterization of the pilot vaccine lot [33].

.7. Immunization procedures

Immunogenicity of the lyophilized pilot vaccine lot (Lot
0) was evaluated in dose–response studies. Swiss mice
15–22 g, 15 animals per group) were immunized intra-
uscularly with 0.1, 1 and 10 �g/dose (0.2 mL) of vaccine

Lot 40) or plain polysaccharide (5 �g/dose) with Al(OH)3
1 mg/dose) as adjuvant, three times with 15-day interval.
lood was collected by retro-orbital vein puncture before
ach dose and 20 days after the third dose. Sera were isolated
nd stored at −20 ◦C until use.

.8. ELISA assay

Serum samples were assayed by ELISA for IgG antibod-
es against MenCPS as previously described by Gheesling
t al. [41]. Briefly, Immulon plates type II (Dynex) were
oated overnight at 4 ◦C with 100 �L of 5 �g/mL MenCPS in
BS pH 7.4 co-mixed with methylated human serum albumin
5 �g/mL). After washing four times with 200 �L wash-
ng buffer (Tris Buffer Saline; TBS with 0.05% Tween 20),
ntiserum samples and in-house standard serum at a serial
wofold dilution starting from 1/5000 were added to each
ell. After overnight incubation, the plates were washed four

imes and incubated with 100 �L goat anti-mouse IgG whole
olecule conjugated with alkaline phosphatase (1/3000 dilu-

ion in PBS pH 7.4) for 2 h. After washing p-nitrophenyl
hosphate (1 mg/mL) was added and plates were incubated
or 30 min. Absorbance was read at 405 nm. ELISA titers
ere calculated using arbitrary unit of ELISA in reference

o a standard serum (1000 U/mL) and expressed by Ln-
ransformed values (Ln U/mL).

.9. Antibody avidity-measurement

The avidity of conjugate-specific IgG antibodies in sera,
aken at different intervals after vaccination, was studied
sing the ammonium thiocyanate elution method as described
42]. In brief, MenCPS coated (5 �g/mL) microplates were
ncubated overnight at 4 ◦C with a dilution of each serum sam-
le predetermined to give an absorbance between 0.8 and 1.0.
o each well different dilutions of ammonium thiocyanate
anging 0–0.75 M were added. The plates were then incu-
ated for 15 min at room temperature, followed by a washing
ycle. The assay then continued as described above. The IgG
vidity index (AI) corresponding to ammonium thiocyanate
oncentration needed to reduce the absorbance by 50% and
t was calculated as described below according to Goldblatt

42]:

I = (log 50 − log A) × (B − A)

log B − log A
+ A

i

b

25 (2007) 7261–7270 7263

here AI is the avidity index, log of 50 = 1.70, A the lowest
oncentration of ammonium thiocyanate that gives reduction
f absorbance lower than 50%, and B is the highest con-
entration of ammonium thiocyanate that gives reduction of
bsorbance higher than 50%.

.10. Serum bactericidal activity assay (SBA)

Twofold dilutions of sera were incubated with 50–70
olony forming units (cfu) per well of log phase meningo-
occi grown on Tryptic Soy Agar (TSA). Each well contained
omplement from male guinea pigs, previously shown to
ack detectable intrinsic bactericidal activity. The plates were
ncubated at 37 ◦C for 30 min and the number of cfu was
ounted. The bactericidal antibody activity (SBA) titers are
xpressed as the reciprocal serum dilution yielding ≥50%
illing as compared to the number of target cells present
efore incubation with serum and complement [43].

.11. Stability of MenCPS–TT conjugate vaccine

The lyophilized vaccine stability was evaluated in real
ime at 0, 11 and 22 months of storage at 4 ◦C, after filling and
reeze-drying, by SEC profile. IgG titers were also detected
y ELISA as a vaccine stability parameter after 6 and 15
onths of storage before each dose and 1 month after the third

ose and after 26 months of storage only 1 month after the
ast dose. ELISA was performed as described above to detect
gG antibodies against MenCPS in mouse sera obtained after
mmunization with the pilot vaccine lot (1 �g/dose).

.12. Statistical analysis

For analysis, SBA titers were logarithmically transformed
Ln). The significance of differences in antibody levels
mong groups and their SBA titers were assessed by using
multifactor analysis of variance (ANOVA) followed by the

east significant difference (LSD) procedure for comparison
f groups versus control. The avidity indices were com-
ared for each vaccine concentration by the non-parametric
ruskall–Wallis test. Pearson correlation coefficients were
etermined in the correlation analyses. Mann–Whitney
-test was used for comparison between the IgG antibod-

es induced at 6, 15 and 26 months of vaccine storage.
tatgraphics® Plus Version 4.1 software (USA) was used in
ll statistical calculations. Limit for statistical significance
as set at p < 0.05.

. Results

.1. Detection and structural characterization of

ntermediary compounds and MenCPS–TT conjugates

The identity of native MenCPS produced as described
y WHO requirements was evaluated by NMR spectroscopy
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Fig. 1A). The peaks in the 5.0–5.2 ppm range correspond to
he H-7 and H-8 residues of O-acetylated N-acetyl MenCPS.
he chemical shifts observed in the range of 3.3–4.2 ppm
re related to H-4, H-5, H-6, H-9, H-9′, H-7′ and H-8′
esidues of deacetylated MenCPS (Fig. 1A). The peaks
elated to equatorial H-3 are observed in the range com-
rised between 2.5 and 2.8 ppm and the chemical shift
bserved in the 1.5–1.8 ppm range correspond to axial H-
. The peaks corresponding to N-acetyl and O-acetyl have
hemical shift at 2.00 and 2.20 ppm, respectively. The peaks
t 1.2 and in the 3.3–4.2 ppm range are relative to chemical
hifts of the CH3 and CH2 groups (ethanol), respectively. It
an be observed that the peak of HDO is at 4.6 ppm. The
H NMR spectra contains all the important species whose
esonances have been assigned to individual atoms in the
epeating unit and are consistent with the published structure
32,44–46]

The activation of native MenCPS with sodium perio-
ate is illustrated in Fig. 2 [(1) MenCPS activation]. The
H NMR spectra of activated-MenCPS presents the same
ssignments described above for the native polysaccharide,
howing that the polysaccharide structure remains unchanged
ollowing sodium periodate treatment (Fig. 1B). However,
hemical shifts around 8 ppm are present, corresponding
o the novel end groups formed during periodate oxida-
ion. These chemical shifts can be observed as a signal
t 8.4 ppm with low intensity, consistent with the aldehy-
ic group. In addition, two small peaks relative to CH3
nd CH2 groups (ethanol) are seen at 1.2 and 3.3–4.2 ppm
ange and a new peak with chemical shift at 5.0 ppm cor-
esponding to hydrated aldehyde (Fig. 1B). The aldehyde
roups present in the activated-MenCPS were measured with
he Purpald reagent [37]. Three lots of activated-MenCPS
50 mg/mL) showed similar amounts of aldehyde groups,
bove 220 nM, which were more than 10-fold higher than
he amount present in two lots of native MenCPS (less than
0 nM), showing again the successful introduction of func-
ional groups to react with amino groups present in the
TH.

The reaction of TT activation introducing hydrazine
roups in the protein is illustrated in Fig. 2 [(2) Protein acti-
ation]. The activated-TT reacted with activated-MenCPS
enerating a meningococcal group C conjugate vaccine using
new high efficiency conjugation methodology [Fig. 2;

3) Conjugation reaction]. Several MenCPS-TT conjugate
atches were produced at different scales (from 200 to
0,000 human doses) by modified reductive amination in
resence of sodium cyanoborohydride. The success of this
rocedure was apparent from the SEC profile of the conju-
ation reaction product, which displayed a high molecular
eight product clearly differentiated from the starting pro-

ein and polysaccharide (Fig. 3). The formation of conjugate

s also clearly demonstrated due to the disappearance of the
ssignments at 8.4 ppm present in the activated-MenCPS cor-
esponding to aldehyde groups, after the conjugation step
Fig. 1C). The NMR spectra of MenCPS–TT also show

Fig. 1. Five-hundred megahertz 1H NMR spectra of (A) native, (B) activated
and (C) conjugated MenCPS.



I.A.F.B. Silveira et al. / Vaccine 25 (2007) 7261–7270 7265

TT act

t
v
a
a
(

F
j

r

Fig. 2. Reaction schemes of native MenCPS and
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ated molecule. In addition other assignments at 6.00–8.00
nd 1.8–0.5 ppm corresponding to the protein aromatic
nd aliphatic amino acids were incorporated, respectively
Fig. 1C). The peak in the 4.4–4.7 ppm range corresponds to

ig. 3. Size-exclusion chromatography (SEC) profiles of MenCPS–TT con-
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esidual H2O present in the molecule even after doing water-
uppression.

The MenCPS–TT conjugate batches showed sugar:protein
atios from 0.3 to 0.5. The activated-MenCPS and TTH and

enC–TT conjugates were evaluated for all residual reagents
resent after the purification processes using several differ-
nt methods, according to requirements [33]. All results were
atisfactory, showing the efficiency of tangential flow ultra-
ltration in the removal of reagents, by-products (data not
hown) and unconjugated polysaccharide (average content
f 11.3%).

.2. Quality control assays of the MenCPS–TT
onjugate vaccine

The pilot vaccine lot (Lot 40) was evaluated using the

uality control assays required by WHO for meningococ-
al C conjugate vaccines. All assay results were satisfactory
ncluding LAL test that showed less than 29.55 EU/�g, sug-
esting the conjugate vaccine has very low endotoxin and
ould be biologically safe (Table 1).
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Table 1
Quality control assays used in analysis of lyophilized MenCPS–TT vaccine
(Lot 40)

Final product controls

Residual moisture 1.15%
Sucrose (HPLC) 32.45 mg/mL
Polysaccharide 19.11 �g/mL
Polysaccharide:protein ratio 0.3
Sterility Approved
Pyrogen “in vivo” Approved
LAL <29.55 EU/�g
Abnormal toxicity Approved
Reactogenicity (rabbits) Approved

Tests required by WHO [33] for final product of meningococcal group C
conjugate vaccines: Identity (serological test, NS); sterility; meningococcal
p
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olysaccharide content; residual moisture; pyrogen content; adjuvant content
NS); preservative content (NA); general safety test (abnormal toxicity); pH
NS). NS, not shown; NA, not applicable.

.3. Immunogenicity of MenCPS–TT conjugate vaccine

Serum samples of mice immunized with three different
oncentrations of the pilot vaccine lot (Lot 40) were analyzed
or specific IgG antibodies, avidity and serum bacterici-
al activity. Low levels of IgG antibodies were detected by
LISA in the pre-vaccination sera in all groups. The IgG

iter of the serum samples obtained from mice immunized
ith plain MenCPS showed no increase with subsequent

njections. In contrast, all concentrations of conjugate vac-
ine elicited significant antibody rise after the first injection.
n addition, the second injection with 1 and 10 �g/dose
licited a boosting effect (above a four- to eightfold rise)
s compared to plain MenCPS (Table 2; p < 0.05). The third
ose of any vaccine leads to twofold increase of IgG titers
ithout significant differences of the second dose (Table 2;
> 0.05).

The serum bactericidal activity of the elicited antibodies
as determined using guinea pig complement (see Table 2).
erum samples after the first injection were negative. All ani-
als immunized with the conjugate vaccine (Lot 40) showed
etectable SBA values (above 1:8) after the second injection
ith significantly higher titers for the groups immunized with
and 10 �g/dose, correlated to protective titers (p < 0.05). As

een for ELISA titers, the third dose of vaccine elicits a 2–5.5-

1
t
t
m

able 2
otal IgG and serum activity bactericidal (SBA) of antibodies from mice immunized
tudies)

Dose

Pre Post 1st dose

IgG SBA IgG SB

onjugate (0.1 �g/dose) 1.05 2.00 4.15* 2.
onjugate (1 �g/dose) 0.65 2.00 4.18* 2.
onjugate (10 �g/dose) 0.10 2.00 3.48* 2.
lain MenCPS 0.55 2.00 1.66 2.

he IgG titers are expressed as Ln U/mL values. SBA titers are expressed as the re
alculations.
NOVA (LSD test; *p < 0.05).
ig. 4. Avidity of antibodies anti-MenCPS (IgG) after mice immunization.
vidity Index (AI) calculated by the ammonium thiocyanate concentration
eeded to reduce the absorbance by 50%. *Kruskall–Wallis test (p < 0.05).

old increase in the SBA titers in comparison to the second
ose (Table 2; p > 0.05).

In most pre-bleeds, antibody titers are below the detection
imit. Therefore, avidity indices (AIs) cannot be calculated
or those samples (Fig. 4). Groups immunized with the pilot
accine (Lot 40) show a significant increase in the IgG avid-
ty after the third dose in mice immunized with 0.1 and 1 �g
Fig. 4). Twenty days after the last injection, the median
vidity indices of these two groups are 1 and 1.28, respec-
ively (p < 0.05). Although the group immunized with 10 �g
nduced high IgG and SBA titers, the AI is lower than those of
he other concentrations. These results demonstrate affinity

aturation of IgG antibodies mainly after the third injection
f conjugate vaccine at lower dosages.

To investigate the relationship between the IgG antibodies
etermined by ELISA and SBA titers and AI, Pearson coeffi-
ients were determined. We found high correlation between
LISA and SBA (r = 0.91) while the correlation between
igh-avidity ELISA and SBA was lower (r = 0.70).

.4. Stability of MenCPS–TT conjugate vaccine

The SEC profiles of lyophilized vaccine stored at 4 ◦C for

1 and 22 months after filling and freeze-drying were similar
o that analyzed at time 0 in regard of the depolymerization of
he polysaccharide (Fig. 5). Likewise, titers of IgG in sera of

ice immunized with vaccine stored at 4 ◦C for 6, 15 and 26

with different amounts of MenCPS–TT conjugate vaccine (dose–response

Post 2nd dose Post 3rd dose

A IgG SBA IgG SBA

00 6.57* 21.86 7.44 48.50
00 7.89* 82.14* 9.04 451.94
00 7.45* 49.52* 8.69 103.97
00 1.99 4.00 2.00 2.00

ciprocal serum dilution yielding ≥50% killing and log-transformed for the
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Fig. 5. Stability of lyophilized MenCPS–TT vaccine (Lot 40) storage at 0,
11 and 22 months at 4 ◦C after filling and freeze-drying by size-exclusion
chromatography (SEC) profiles (206 nm).

Fig. 6. Stability of lyophilized MenCPS–TT vaccine storage at 6, 15 and 26
months at 4 ◦C after filling and freeze-drying as measured by ELISA (total
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gG) of serum from mice immunized. (a and b) IgG titers measured before
ach dose and 1 month after the third dose; (c) IgG titers measured only 1
onth after the third dose. Mann–Whitney W-test; *p > 0.05.

onths after filling and freeze-drying were not significantly
ifferent (Mann–Whitney W-test; p = 0.69) (Fig. 6). These
esults suggest that the vaccine is stable for more than 2 years.

. Discussion

Chemical conjugation of bacterial polysaccharides to

arrier proteins has proven to be an effective approach
o improve the immunological response against capsular
olysaccharides and in prevention of diseases caused by
ncapsulated bacteria like N. meningitidis, H. influenzae

c
B
c
I
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ype b and S. pneumoniae. In this study we described
he development, characterization and the immunogenicity
f a Brazilian meningococcal C conjugate vaccine using
ydrazide-activated tetanus toxoid as a carrier.

Reductive amination has been used to yield effective
rotein–polysaccharide conjugates whose structure is called
neoglycoproteins” in which there is only one reactive site
n the carbohydrate polymer and no cross-linking of the
rotein [26]. Jennings and Lugowski [23] used for the first
ime the methodology to produce meningococcal conjugates
gainst groups A, B and C. However, in our approach the
reatment of polysaccharide with periodate overnight resulted
n controlled depolymerization to generate saccharides with
eactive aldehyde groups at both terminals [28]. Many effec-
ive conjugate vaccines prepared using this methodology are
urrently licensed [26]. However, reductive amination has a
erious disadvantage related to the coupling reaction time.
t has shown inefficiency, taking from 2 to 3 days to com-
lete conjugation [23–26]. We obtained MenCPS conjugates
fter overnight reaction of an aldehyde-activated group C
olysaccharide with a hydrazide-activated TT. This rapid rate
f reaction is mainly due the introduction of highly reac-
ive hydrazide groups to the carboxyl groups in the protein
arrier [27,28]. The introduced hydrazide groups react more
avorably with the aldehyde groups on the activated polysac-
haride than the epsilon amino groups of proteins due to the
ow pKa of the hydrazide groups [27]. Also, the amino groups
n TT are compromised and de-populated with the detoxifi-
ation procedure of tetanus toxin to toxoid after treatment
ith formaldehyde. In addition, due to defined structure of

he molecules, the steps of MenCPS activation and conjuga-
ion could be monitored by NMR spectroscopy, which has
roven a structurally sensitive and reproducible technique to
ontrol the identity of bacterial polysaccharides used in vac-
ine manufacture [46]. A meningococcus group A conjugate
accine was developed using the same conjugation method-
logy provided by expertise from CBER/FDA as result of a
artnership between WHO and PATH to promote vaccination
ampaign in Africa [27,47].

Accordingly, methods for the manufacture of
olysaccharide–protein conjugate vaccines wherein the
eaction proceeds at a rapid rate, with reduced production of
ndesired by-products, and with high yields of conjugated
olysaccharide, are desirable. In this way, a reproducible
rocedure for the production of commercial volumes
as developed including purification optimization. The
ownstream processing proposed here led to lower levels
f reaction by-products and unconjugated polysaccharides.
he average amount of free polysaccharide was 11.3%.
he WHO requirements have not established a maximal
alue allowed for these vaccines [33]. But this rate would
e acceptable considering the established limits for Hib

onjugate vaccines (maximal of 20% free PRP, [48]).
euvery et al. [49] produced a PSC–TT conjugate using
arbodiimide methodology with 10% of free polysaccharide.
n other studies Cuello et al. found an average content of
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ree polysaccharide of 21% for meningococcal group C
onjugates [50]. This is an important aspect since tolerance
as been shown after repeated injections of polysaccharide
accines against meningococcal group C in adults and
hildren [3,5].

In order to evaluate the efficiency of the conjugation
he sugar:protein ratios were calculated. The conjugate
atches produced showed low levels of carbohydrate load-
ng as described for other studies using reductive amination
51–53]. In the near future the acceptable limits of the
ugar:protein ratio could be established along the produc-
ion process with larger batches and also be used to evaluate
onsistency of production [34].

The pilot freeze-dried vaccine (Lot 40) was evaluated by
he quality control assays required by WHO for meningococ-
al C conjugate vaccines. All assays gave satisfactory results
uggesting that the conjugate vaccine composition is safe.
he stability of this vaccine stored for different times at 4 ◦C
as evaluated by SEC profile and through mice immuniza-

ion by measurement of IgG titers. The vaccine has remained
table for more than 2 years after filling and freeze-drying.
he real time stability assessment of MenCPS–TT conjugate
accine is in progress.

The assessment of immune responses to these conju-
ate vaccines has included a fourfold rise in antibody titer
etween pre- and post-immunizations sera with increased
vidity of group C specific antibody [47,54,55]. It has been
idely accepted since the studies of Gotschlich et al. [29]

hat serum bactericidal antibody levels correlate with immune
rotection against group C meningococcal disease. Based
n efficacy estimates and the proportion of responders in
arious clinical trials of meningococcal C conjugate vac-
ines, it has been demonstrated that a SBA titer of 1:8 is
he minimal titer required for short-term protective immunity
54,55]. The MenCPS–TT conjugate vaccine produced with
ur approach was immunogenic in mice in a dose-dependent
ashion. All concentrations of MenCPS–TT conjugate were
ble to generate a 10–20-fold rise in IgG response higher
han plain polysaccharide with a significant boosting effect
fter the second injection. This IgG response clearly showed
-cell dependent immune response after coupling the plain
olysaccharide to an immunogenic protein carrier. It also
howed a proper functional activity with bactericidal titers
uch higher than 1:8 for all vaccinated animal groups (0.1,
and 10 �g/dose), while the plain MenCPS induced no

ignificant titers. A 695-fold increase of SBA titers after
hree doses (1 �g/dose) was observed in comparison to pre-
mmune sera. Despite this fact, in both assays the third dose
f vaccine did not elicit a statistically significant increase in
he ELISA and SBA titers in comparison to the second dose
p > 0.05). Cuello et al. [56] studied a MenCPS conjugate
noculating 2 �g/dose in mice and found a 256-fold increase

f SBA titers after two doses. Ritcher et al. [57] observed
n increase of the SBA titers higher than 256-fold using a
ice immunization schedule with two doses of a MenCPS

onjugate (2.5 �g/dose). In other study it was observed that
25 (2007) 7261–7270

wo doses of a MenCPS conjugate (2.5 �g/dose) induced
threefold higher bactericidal response as compared with

era of the animals immunized with the plain polysaccharide
58].

Avidity maturation is a marker of induction of immuno-
ogic memory and it has been shown that higher avidity
nticapsular antibodies are more active than lower avidity
ntibodies in eliciting complement-mediated bacterioly-
is [42,54,55,59]. It is important to compare high-affinity
ntigen–antibody binding in presence of chaotropic agent as
mmonium thiocyanate after determination of the appropriate
erum dilution to give fixed absorbance. We use the approach
escribed by Goldblatt [42] and cited by others [60,61]. The
nimal group immunized with 1 �g/dose of conjugate vac-
ine showed higher AI after repeated injections of conjugate
accine followed by that one which received 0.1 �g/dose.
lthough the group immunized with 10 �g/dose has shown
igh IgG and SBA titers the AI was lower than the others, sug-
esting that the excessive amount of antigen located on the
ollicular dendritic cells may reduce the competition and per-
it production of antibodies with lower affinity maturation

62].
The correlation coefficient (r) between the standard

LISA, SBA and the high-avidity ELISA were calcu-
ated including pre- and post-vaccination serum samples.
he standard ELISA showed a marginally higher correla-

ion with SBA than the avidity ELISA. It is possible that
onjugate vaccines in our animal model induce predomi-
antly high-avidity antibodies as already published using
uman antibodies [63,64]. However, other studies found bet-
er correlation between SBA and the high avidity ELISA
uggesting that not all the specific human or mice IgG anti-
odies induced by group C conjugate vaccines mediate SBA
41,42,52,60].

Altogether, these results support the production of a
enCPS–TT conjugate vaccine batches under Good Man-

facturing Practices for Phase I clinical trial.
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