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Abstract

Oropouche Virus is the etiological agent of an arbovirus febrile disease that affects thousands

of people and is widespread throughout Central and South American countries. Although iso-

lated in 1950’s, still there is scarce information regarding the virus biology and its prevalence

is likely underestimated. In order to identify and elucidate interactions with host cells factors

and increase the understanding about the Oropouche Virus biology, we performed microRNA

(miRNA) and target genes screening in human hepatocarcinoma cell line HuH-7. Cellular

miRNAs are short non-coding RNAs that regulates gene expression post-transcriptionally

and play key roles in several steps of viral infections. The large scale RT-qPCR based

screening found 13 differentially expressed miRNAs in Oropouche infected cells. Further vali-

dation confirmed that miR-217 and miR-576-3p were 5.5 fold up-regulated at early stages of

virus infection (6 hours post-infection). Using bioinformatics and pathway enrichment analy-

sis, we predicted the cellular targets genes for miR-217 and miR-576-3p. Differential expres-

sion analysis of RNA from 95 selected targets revealed genes involved in innate immunity

modulation, viral release and neurological disorder outcomes. Further analysis revealed the

gene of decapping protein 2 (DCP2), a previous known restriction factor for bunyaviruses

transcription, as a miR-217 candidate target that is progressively down-regulated during Oro-

pouche infection. Our analysis also showed that activators genes involved in innate immune

response through IFN-β pathway, as STING (Stimulator of Interferon Genes) and TRAF3

(TNF-Receptor Associated Factor 3), were down-regulated as the infection progress. Inhibi-

tion of miR-217 or miR-576-3p restricts OROV replication, decreasing viral RNA (up to 8.3

fold) and virus titer (3 fold). Finally, we showed that virus escape IFN-β mediated immune

response increasing the levels of cellular miR-576-3p resulting in a decreasing of its partners

STING and TRAF3. We concluded stating that the present study, the first for a Peribunyaviri-

dae member, gives insights in its prospective pathways that could help to understand virus

biology, interactions with host cells and pathogenesis, suggesting that the virus escapes the

antiviral cellular pathways increasing the expression of cognates miRNAs.
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Author summary

Oropouche Virus causes typical arboviral febrile illness and is widely distributed in tropi-

cal region of Americas, mainly Amazon region, associated with cases of encephalitis.

500,000 people are estimated to be infected with Oropouche worldwide and some states in

Brazil detected higher number of cases among other arboviruses such as Dengue and Chi-

kungunya. As much as climate change, human migration and vector and host availability

might increase the risk of virus transmission. Despite its estimated high prevalence in

Central and South America populations, the literature concerning the main aspects of

viral biology remain scarce and began to be investigated only in the last two decades.

Nonetheless, little is known about virus-host cell interactions and pathogenesis. Virus

infection regulates cellular pathways either promoting its replication or escaping from

immune response through microRNAs. Knowing which microRNAs and target genes are

modulated in infection could give us new insights to understand multiple aspects of infec-

tion. Here, we depicted candidate miRNAs, genes and pathways affected by Oropouche

Virus infection in hepatocyte cells. We hope this work serve as guideline for prospective

studies in order to assess the complexity regarding the orthobunyaviruses infections.

Introduction

Oropouche Virus (OROV) is the etiological agent of Oropouche fever, an arthropod-borne

viral disease characterized by symptoms like fever, headache, myalgia, arthralgia, malaise, pho-

tophobia, nausea, vomiting, dizziness, skin rash, and in few cases encephalitis and meningitis

[1–7]. It was first described in Trinidad in 1955 [8] and the first Brazilian strain was isolated

from a dead pale-throated three-toed sloth (Bradypus tridactylus) near a highway construction

campsite in Belém, Pará state, northern Brazil [9]. It is estimate that more than 500,000 people

were infected in at least 30 outbreaks in South and Central America between 1961 and 2009 [8,

10, 11, 12], placing Oropouche fever as one of the most prevalent arboviral disease in some

states of Brazil, after Dengue, Chikungunya and Yellow Fever. However, the virus pathogenesis

is still obscure, and Oropouche fever is still considered a neglected disease. During urban out-

breaks, the virus is mainly transmitted by its major transmission vector, the midge Culicoides
paraensis [3, 9, 13]. Other insect species, like mosquitoes of the genus Aedes and Culex, might

also be potential vectors [9]. OROV is classified in the order Bunyavirales, Peribunyaviridae
family, Orthobunyavirus genus, as Bunyamwera Virus, La Crosse Virus and the recently dis-

covered Schmallenberg Virus [14]. The order Bunyavirales is the largest virus order, contain-

ing several viruses implicated in the etiology of relevant human diseases, such as La Crosse

Virus (LACV) and Oropouche Virus (Orthobunyavirus), Rift Valley Fever Virus (RVFV)

(Phlebovirus), Crimean-Congo Fever Virus (CCFV) (Orthonairovirus) and the rodent-borne

Hantaan Virus (HTNV), Andes Virus (ANDV) and Sin Nombre Virus (SNV) (Orthohanta-
virus). OROV has a tri-segmented negative strand RNA genome with a small segment (S) that

encodes the nucleocapsid protein N and a non-structural protein NSs; a medium (M) segment

that encodes the glycoproteins Gc and Gn and another non-structural protein, NSm, and a

large (L) segment that encodes the viral RNA-dependent RNA polymerase (RdRP) [15].

Despite its relevance as a human pathogen and its high prevalence in South America, little is

known about OROV replicative cycle, pathogenesis and virus-host interactions. A recent

study demonstrated that the OROV entry in HeLa cells is dependent on clathrin-coated pits

[16]. Another report showed the relevance of MAVS, IRF-3 and IRF-7, components of the
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innate immune response, in restricting OROV infection in knockout mice models and non-

myeloid cells [17]. Despite that, the virus pathogenesis and the cellular pathways regulated by

OROV infection are not known in detail. Gene expression and post-transcriptional regulation

is mediated by short non-coding RNAs (microRNAs, miRNAs or miR) that plays important

roles during virus replication.

MicroRNAs span between 19–22 nucleotides in length and their first description was made

in nematodes [18, 19], though now they have been identified in several phyla of plants and ani-

mals [20], and even in viral genomes [21]. In mammals, they can be generated from intronic

and exonic regions of protein-coding genes or intergenic regions [22]. They can be found as

single miRNA genes or in clusters that encodes long precursor molecules, the pri-miRNA,

ranging from hundred to thousand nucleotides in length [23, 24]. Pri-miRNAs begins to be

edited in the nucleus by the enzyme Drosha into pre-miRNAs, shorter 70 nucleotides long

molecules with hairpin structures [25, 26]. Those pre-miRNAs are exported from the nucleus

into the cytoplasm by proteins such as exportin 5 and RAN-GTP [27], and are further pro-

cessed by Dicer into a 22 nucleotides long double-stranded RNA (commonly referred as

miRNA:miRNA�) [28, 29]. The double-stranded RNA is loaded into an Argonaute-driven

RNA induced silencing complex (RISC), which selects one strand and binds to a target mRNA

(commonly in the 3’-untranslated region, or 3’-UTR region) [30, 31] by base complementarity.

The miRNA interaction with its target mRNA induces gene silencing by degradation (when

full complementarity between the miRNA and the target sequence occurs) [32], or transla-

tional inhibition (in case of partial complementarity) [33, 34]. Since the seed sequence (the

minimal complementarity site between miRNA and mRNA) is usually 7–8 nucleotides long, a

single miRNA could regulates expression of several genes, as well as a single gene could be reg-

ulated by many miRNAs [35, 36].

MiRNAs have already been described influencing disease progression, pathogenicity and

replicative cycle of several viruses, being either inhibitory or stimulatory of the infection [37,

38]. The liver-specific miRNA-122 stimulates HCV translation, stabilizing and protecting the

5’-UTR of viral RNAs from degradation, leading to an accumulation of the same in the cyto-

plasm [39–42]. In resting CD4+ T lymphocytes, HIV-1 viral production is impaired by cellular

miRNAs that contribute to establish the viral latency [43]. Another miRNA, miR-29a, targets

HIV-1 RNA to accumulate in RNA processing bodies (P-bodies), inhibiting virus infection

through translation suppression [44]. Even different strains of the same virus can elicit differ-

ent miRNA regulation responses, as demonstrated for the highly-pathogenic avian-derived

Influenza A H7N7 strain and the low-pathogenic swine-derived Influenza A H1N1 strain [45],

suggesting that miRNA signature profiles could raise clues about pathogenicity variation.

Concerning miRNA regulation by bunyaviruses, a study with pathogenic and non-patho-

genic strains of hantaviruses demonstrated the variation on miRNA profile among the differ-

ent specie-specific viruses and cell types [46]. Another study with the Hantavirus Respiratory

Syndrome (HPS)-causing agent, Andes Virus (ANDV), identified down-regulation of miR-

126 expression, a miRNA that acts as regulator of SPRED1 [47]. Increased expression of

SPRED1 was suggested to be one of the mechanisms that augment endothelial cells permeabil-

ity, leading to HPS. A recent study with PBMC of patients presenting acute hemorrhagic fever

caused by the Crimean-Congo Hemorrhagic Fever Virus (CCHFV) showed the deregulation

of several miRNAs, some of them associated with innate immunity and viral escape mecha-

nisms [48]. The only study with phleboviruses described the association between miR-142-3p

and the endocytic vesicle protein VAMP3, suggesting a control mechanism for the intracellu-

lar trafficking of Uukuniemi Virus (UUKV) [49].

Due to the scarcity of information regarding the regulation of bunyaviruses by miRNA and

the increasing necessity of better understanding of virus-host interactions of relevant emerging
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pathogens, we aimed to evaluate and identify the cellular miRNA profile and target genes

induced by OROV infection in vitro. We demonstrated that miRNAs miR-217 and miR-576-

3p, differentially expressed during infection, could be regulating crucial pathways, like innate

immunity response, mainly in upstream proteins of interferon-β induction pathway (adaptor

and kinase proteins, as well as transcription factors), protein shutoff and apoptosis.

Methods

Cell lines, virus and infection

Cell lines Vero (ATCC, CCL-81), U87-MG (ATCC, HBT-14) and HeLa (ATCC, CCL-2) were

maintained in DMEM (Gibco) supplemented with 10% v/v Fetal Bovine Serum (FBS) (Gibco)
and 1% v/v of penicillin-streptomycin (10.000 U/ml-10.000 μg/ml) (Gibco) at 37˚C and 5%

CO2. HuH-7 cells were maintained in DMEM without sodium pyruvate (Gibco) supplemented

with 10% v/vHyClone serum (GE Life Sciences), 1% v/v antibiotics, 1% 200 mM L-Glutamine

(Gibco) and 1% v/v non-essential aminoacids (Gibco) at 37˚C and 5% CO2. Jurkat (ATCC,

TIB-152) and THP-1 (ATCC, TIB-202) were maintained in RPMI-1640 medium (Gibco) sup-

plemented with 10% v/v FBS, 1% v/v antibiotics and 1% v/v sodium bicarbonate (Gibco) at

37˚C and 5% CO2. OROV strain BeAn19991 was originally obtained from the Evandro Chagas

Institute and propagated by serial passages in Vero cells by routine methods using DMEM.

The OROV stock used in the present experiments was propagated in HeLa cells and titrated to

2 x 106 PFU/ml. Infections were performed at MOI 1 during 1 h at 37˚C and 5% CO2 in

medium without FBS, under biosafety level 3 conditions at a BSL-3 laboratory at Universidade

Federal do Rio de Janeiro.

Virus titration

Virus titration was performed by plaque assay in Vero cells plated at 3 x 105 cells/well in 12

well plates 1 day prior to infection. After 1 h incubation with the virus, cells were replenished

by DMEM supplemented with 1% v/v FBS, 1% v/v antibiotics and 1% v/v carboxymethyl cellu-

lose (CMC) (Sigma-Aldrich), and incubated at 37˚C and 5% CO2 during 4 days. Cells were

fixed with 4% formaldehyde for 20 min at room temperature, washed in Phosphate Buffered

Saline (PBS) (Gibco) and stained with 20% v/v ethanol-violet crystal solution for 15 min.

THP-1 PMA treatment

In order to induce monocyte-to-macrophage differentiation, THP-1 cells were stimulated with

100 nM phorbol 12-myristate 13-acetate (PMA) (Sigma-Aldrich) in standard RPMI medium

for 24 h or 3 days followed by 5 days incubation at RPMI medium without PMA. Fresh RPMI

medium was provided to cells after treatment and before infections. THP-1 derived macro-

phages cells were infected as described above, at 24 h or 8 days post PMA treatment.

Flow cytometry and immunofluorescence staining

Cells (105 cells/sample) were fixed with 4% paraformaldehyde for 20 min and permeabilized in

1% v/v Triton X-100 PBS solution. Blocking was performed in 5% v/v Donkey Serum (Sigma-
Aldrich) PBS solution for 1h at 37˚C. OROV infected and uninfected cells were incubated with

mouse polyclonal anti-OROV antibody at 1:300 dilution in blocking solution at 37˚C for 30

min. Cells were then washed thrice in PBS and incubated with 2 μg/ml Donkey anti-mouse
AlexaFluor 488 secondary antibody (Thermo Fisher Scientific) at 37˚C for 30 min. After incuba-

tion with the secondary antibody, cells were washed and resuspended in PBS. Flow cytometry
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was performed in Accuri C6 cytometer (BD Biosciences). At least 10,000 gated events were

counted per experimental replica at FITC channel.

Cell viability assay

HuH-7 were plated at 2 x 104 cells/well density on 96-well plate and incubated at 37˚C and 5%

CO2 for 12 h. After that, cells were infected as described above. Cell viability was evaluated by

CellTiter-Blue (Promega) according to manufacturer’s instructions. The fluorescence was mea-

sured at SpectraMax Paradigm Multi-Mode Detection Platform (Molecular Devices).

RNA isolation and quality assessment

Total cellular RNA for microarray and target mRNA RT-qPCR analysis was isolated usingMir-
Vana kit (Thermo Fisher Scientific) according to manufacturer’s instructions. RNA quantification

and quality was assessed by 2100 Bioanalyzer using RNA 6000 Nano kit (Agilent Technologies).
Only samples with a RNA Integrity Number (RIN)� 9.0 were used for microarray. Extraction

of RNA for miRNA validation with specific primers was performed using PureLink RNA Mini

Kit (Thermo Fisher Scientific) and quantification and integrity were assessed in NanoVue Spec-

trophotometer (GE Life Sciences). All RNAs were treated with DNase (TURBO DNA-free Kit,

Thermo Fisher Scientific) before RT-qPCR experiments to avoid DNA contamination.

MiRNA screening

In order to evaluate the expression profile of miRNAs, an array using Taqman chemistry was

performed as follows: 12 h after infection, six independent replicas of mock-infected or Oro-

pouche infected (4 x 106 cells/replica at MOI 1) HuH-7 cells were trypsinized (Trypsin 0.25%,

Gibco) and the total cellular RNA was extracted and quantified as described above. cDNA was

generated using TaqMan MicroRNA Reverse Transcription Kit (Thermo Fisher Scientific) with

100 ng of RNA per sample according to manufacturer’s instructions. The cDNA was preampli-

fied using Megaplex PreAmp Primers (Thermo Fisher Scientific) and Taqman PreAmp Master

Mix (Thermo Fisher Scientific) as instructed by manufacturer. The qPCR reaction was performed

using Taqman OpenArray Human MicroRNA Panels (Thermo Fisher Scientific), Taqman Open-

Array Real-Time Master Mix and the OpenArray Accufill system OpenArray real-time robotics

(Thermo Fisher Scientific). This platform is able to quantify 754 human inventoried miRNAs.

MiRNA array statistical analysis

R statistical language [50] was used for background correction and data exploratory analysis (Rn
intensity cumulative curve and High Resolution Melting—HRM graphs) for each RT-qPCR

reaction. For relative expression quantification, a four parameters sigmoidal curve adjustment

was done using the qpcR functions in R language [51]. Quantification cycle (Cq) was determined

as the relative cycle to second derivative maximum point of adjusted sigmoidal curve (cpD2).

The amplification efficiency was determined at the exponential amplification region, at the

mean point between relative cycles to the first derivative maximum point and second derivative

maximum point of adjusted sigmoidal curve [expR = cpD2-(cpD1-cpD2)], and calculated as the

ratio between the expR corresponding cycle fluorescence and the prior cycle fluorescence. For

each miRNA, the amplification efficiency was determined as the mean of efficiencies calculated

for the corresponding miRNA. Endogenous small-nucleolar RNAs RNU 44, RNU 48 and U6

RNA were candidates for normalization controls selected by the geNorm method [52]. As an

alternative normalization method, the normalization factor was calculated by the geometric

mean of all miRNA expressed in each sample [53]. For normalized expression comparison
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between two sample groups, we performed a non-parametric T-test with 1,000 permutations

[54]. For three or more groups comparison we used a one-way non-parametric ANOVA with

unrestricted permutation (n = 1,000) followed by a non-parametric pairwise T-test mean com-

parison with permutation (n = 1,000) followed by Bonferroni correction [54]. Results were

presented as mean ± S.E.M (standard error mean). Two-tailed p-values in sample groups’ com-

parison lower or equal to 0.01, 0.05 or 0.1 were considered as highly significant, significant and

suggestive, respectively. The relationship between sample profiles was investigated by Bayesian

Infinite Mixtures Model cluster analysis [55] and represented by 2D heatmap with dendrograms

(bi-cluster). For the purpose of display in the heatmap, k-nearest neighbors method (k = 5) was

performed to predict the missing values in uninfected cells for miR-217, miR-26a-2-3p and

miR-92a-5p. After imputation of the missing values, a scaled (Z-score) normalization was per-

formed (subtracted miRNA mean divided by miRNA standard deviation).

Validation of miRNA through primer designed RT-qPCR

Reverse transcription was performed using miRNA 1st-Strand cDNA Synthesis Kit (Agilent
Technologies) and qPCR reactions were made with High-Specificity miRNA QPCR Core Kit

(Agilent Technologies) and forward specific primers for each miRNA investigated. Human U6

RNA forward primer (Agilent Technologies) was used as normalization control. All the experi-

ments were done in four independent replicas for each time point and sample group. The

qPCR reaction was performed in 7500 Real-Time PCR System (Applied Biosystems). The

cycling parameters were set for standard SYBR Green method according to manufacturer’s

instructions as follow: 95˚C– 10 min and 95˚C– 10 sec, 60˚C– 15 sec, 72˚C– 20 sec for 40

cycles. The miRNA forward primers sequences are depicted in S1 Table. Statistical analysis

was performed using non-parametrical Mann-Whitney tests.

Target genes bioinformatics prediction

We only consider a putative target for differentially expressed miRNA (miRNA:mRNA inter-

action) the ones predicted in at least 3 out of 6 public databases as follows: TargetScan, (avail-

able at http://www.targetscan.org/index.html)miRTarget2 (available at http://mirdb.org/

miRDB/), PicTar (available at https://pictar.mdc-berlin.de/),miRBase (available at http://www.

mirbase.org/), TarBase (available at http://carolina.imis.athena-innovation.gr/diana_tools/

web/index.php?r=tarbasev8%2Findex) andmiRanda V3.3a. Interaction network tree was

designed using Cytoscape v3.2.1 software (Cytoscape Consortium).

Gene set enrichment analysis (GSEA)

Ontology enrichment analysis [56] was performed for the predicted targets of the differentially

expressed miR-217 and miR-576-3p. The ontologies were enriched mainly to biological pro-

cesses, molecular function, cellular components, and gene interaction/regulation pathways.

Only genes predicted in at least 3 out of 6 databases were considered candidate targets. Gene

Entrez id for the predict ontologies were used in the Gene Ontology Database (GO, available at

http://www.geneontology.org/), KEGG (available at http://www.genome.jp/kegg/) and REAC-

TOME (available at http://www.reactome.org/PathwayBrowser) for this purpose. Only genes

over represented in hypergeometric tests with p-value� 0.001 were considered.

MicroRNA inhibitors transfection

HuH-7 cells were seeded (105 cells/replica) in triplicate into 24 wells plate overnight. Negative

control inhibitor, miR-217 inhibitor and miR-576-3p inhibitor (Integrated DNA Technologies)
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were transfected at a final concentration of 75 nM using 2 μl of Lipofectamine 2000 (Thermo
Fisher Scientific) per replica. Green fluorescent short RNA siGLO (Dharmacon, GE Life Sci-
ences) was used to assess transfection efficiency and establish the miRNA inhibitor concentra-

tion for inhibition experiments. 3 h post-transfection, cells were infected with OROV at MOI

1 and RNA were extracted for miRNA quantification (6 h post-infection) or target gene and

OROV RNA quantification (18 h post-infection) by RT-qPCR. OROV segment S RNA was

quantified using primers and probe [57] with Taqman 2x Universal PCR Master Mix (Thermo
Fisher Scientific) and normalized by GAPDH using PrimeTime primers and probe mix (Inte-
grated DNA Technologies).

Validation of target mRNA through RT-qPCR

Cells were seeded (106 cells/sample) and infected with OROV at MOI 1. The RNA was

extracted at 12 h post infection and reverse transcription was performed using High-Capacity

cDNA Reverse Transcription Kit (Thermo Fisher Scientific) and 1 μg of RNA. Quantitative

PCR was done in six replica per condition using 50 ng/well of cDNA on Custom Taqman

Array Fast plates (96 well) (Thermo Fisher Scientific) using specific primers and probes and

Taqman Fast Universal PCR Master Mix (Thermo Fisher Scientific) according to manufactur-

er’s instructions on 7500 Fast Real-Time PCR System (Thermo Fisher Scientific). Statistical

analysis was done as described for microarray using endogenous 18S, GAPDH, HPRT1 and

GUSB as normalization genes. For target kinetics SYBR Green PCR Master Mix (Applied Bio-
systems) and pre-designed PrimeTime primers (Integrated DNA Technologies) were used

according to manufacturer’s instruction (for primers sequences see S1 Table).

Results

OROV infects hepatocytes and blood cell lines in vitro
In order to expand the knowledge on the range of OROV-permissive cells, blood and hepato-

cyte cell lines were used to evaluate in vitro infection (Fig 1A). T CD4+ lymphocytes (Jurkat),

monocytes (THP-1) and hepatocytes (HuH-7) cell lineages were infected with OROV at MOI 1

and, at 12 h post infection, infectivity was assessed by immunofluorescence using specific anti-

bodies against OROV proteins and virus-positive cells were counted by flow cytometry. At indi-

cated time points, 21% of Jurkat cells were infected, while THP-1 presented no susceptibility to

the OROV infection. THP-1 cells can be induced to differentiate into macrophage by PMA

treatment, becoming permissive to some viral infections, as described elsewhere [58–61]. In

order to assess if THP-1 cells differentiated into macrophages were permissive to OROV infec-

tion, THP-1 cells were treated with PMA for 24 h or for 3 days, followed by incubation in

medium without PMA for 5 more days. Differentiation of THP-1 into macrophage-like pheno-

type was accompanied by microscopy and attachment. At 12 h post infection, 31% and 50% of

THP-1 treated with PMA for 24 h or 8 days, respectively, were infected with OROV, suggesting

an increasing permissiveness to OROV infection as the cells shift from monocyte to macro-

phage-like phenotypes (Fig 1A). At the same MOI, HuH-7 cells showed to be more permissive

to OROV infection, presenting 90% infected cells at 12 h post-infection (Fig 1A). Based on this

result with HuH-7 cells, and considering previous demonstrations that the liver is an important

replication site during experimental OROV infection in hamster [62, 63] and mouse [64], we

chose the hepatocyte cell line HuH-7 as our in vitromodel for further experiments.

To assess the most suitable conditions to ensure that most cells would be infected at indi-

cated time points, HuH-7 cells were infected with different MOIs and the infectivity was mea-

sured by flow cytometry (Fig 1B). We reached 30% of infectivity at MOI 0.1 with a plateau of

90% in higher concentrations of virus (MOIs 1, 5 and 10), with no further increase of
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infectivity levels (Fig 1B). To assure that cells were still viable for further experiments, we

assessed the cytopathic effect at 6, 12, 18 and 24 h post infection with MOI of 1 using Cell

Titer-Blue (Fig 1C). We did not detect cell death associated to the OROV infection at least 18

h post infection. However, only 44% of cells were viable at 24 h post infection. We also quanti-

fied the virus titer generated in those cells by plaque assay and at 6 h post-infection, the titer in

the supernatant was 6 x 103 PFU/ml (Fig 1C, gray line). As the infection progressed, a peak of

8.6 x 105 PFU/ml could be detected at 18 h post infection, reaching a plateau with no further

increase in viral titer at 24 h post infection (Fig 1C, gray line). Based on these data, we pro-

ceeded using HuH-7 cells infected with MOI 1 in subsequent experiments to evaluate the

virus-host interactions.

Cellular miRNA signature in HuH-7 cells infected with OROV

MiRNAs can be informative of cellular targets modulated by virus infection. In order to iden-

tify candidate cellular pathways differentially expressed in OROV infected cells, we performed

an exploratory screening of 754 human miRNAs through probe-based RT-qPCR. MiRNAs

expression was evaluated in four uninfected (control) and five OROV infected biological repli-

cas at 12 h post infection. We found thirteen miRNAs differentially expressed upon OROV

Fig 1. Oropouche infection in blood and hepatocyte cell lines. Jurkat, THP-1 and HuH-7 cells were infected with OROV at MOI 1. At 12 h post infection, infectivity

was assessed by flow cytometry using polyclonal anti-OROV antibody. (A) Infection in T lymphocyte (Jurkat), monocyte (THP-1) and hepatocyte (HuH-7) cell lines

(x-axis) was performed as described in materials and methods section. Error bars represents standard deviation (SD) of four independent experiments. THP-1

NA = THP-1 not activated; THP-1 (24) = activated for 24 h in PMA; THP-1 (8 d) = activated for 3 days in PMA followed by 5 days without PMA. (B) OROV infection

in Huh-7 cells at different MOIs (x-axis). Infectivity was assessed by flow cytometry. Error bars represents SD. (C) Relative cell viability of HuH-7 cells infected with

OROV (MOI 1) at different time points. Cell viability was assessed by fluorimetric assay. Absolute values of uninfected cells were set as 1 (left y-axis). Black columns

represent uninfected cells and gray columns represent OROV infected cells (MOI 1). Error bars represents SD for five replicates of two independent experiments. Gray

line represents mean virus titer in supernatant measured by plaque assay at indicated time points (right y-axis). �� = p� 0.01.

https://doi.org/10.1371/journal.pntd.0006508.g001
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infection in HuH-7 cells with statistical significance: twelve up-regulated after infection and

only one down-regulated (miR-450b-5p) (Fig 2 and Table 1). The reproducibility of effects in

miRNAs was indicated by small variance noted among biological replicas, as depicted in the

heat map hierarchical dendrogram (Fig 2).

The differential expression of the miRNAs in OROV infected cells was classified into three

groups: up-regulated, down-regulated and infection-dependent miRNAs (selectively expressed

miRNAs). MiRNAs miR-324-3p (1.73x), miR-1227 (1.95x), miR-362-3p (1.85x), miR-99b-3p

(2.21x), miR-19b-1-5p (4.11x), miR-628-3p (2.77x), miR-26a-1-3p (42.47x), miR-576-3p

(2.49x) and miR-27a-5p (108x) were up-regulated, in OROV-infected cells relative to unin-

fected cells. MiR-450b-5p was down-regulated 4.65 times in infected cells compared to unin-

fected cells. The induction of miR-26a-2-3p and miR-217 were inconsistent and observed only

in three out of five infected replicas. From the thirteen selected miRNAs from the screening,

only miR-576-3p and miR-26a-1-3p sustained significance (p� 0.05, p� 0.01, respectively)

after Bonferroni correction according to the method used in this study. Nonetheless, some

miRNAs presented borderline limits of significance (p = 0.0595), namely, miR-1227, miR-19b-

1-5p and miR-450b-5p (Table 1).

In order to validate the miRNAs that were significantly deregulated in the array (miR-26a-

1-3p and miR-576-3p) and to verify the expression of the miRNAs only detected in infected

cells in the expression profile array (miR-217, miR-26a-2-3p and miR-92a-1-5p), we designed

specific primers for each miRNA and checked its expression by RT-qPCR (Fig 3). Our valida-

tion experiments showed the same tendency of the miRNAs panel with an increasing expres-

sion of both miR-217 (Fig 3A) and miR-576-3p (Fig 3B) during infection, reaching a peak of

expression at 6 h post-infection (about 5.5 fold increase for both miRNAs). The kinetics of

expression of miR-217 suggests an early induction during infection compared to miR-576-3p,

since miR-217 was up-regulated 2.26 times as early as 3 h post-infection while miR-576-3p was

only up-regulated 1.44 at the same point. However, at later stages of infection, miR-217 expres-

sion was already closer to uninfected expression levels (up-regulated only 1.7 at 12 h post-

infection), whereas miR-576-3p was still up-regulated 2.83 times in infected cells, indicating a

slightly different kinetics for those miRNAs.

To confirm the robustness of our analysis, we further validated the expression of three

other less stable star miRNAs: the highly significant miRNA miR-26a-1-3p and two miRNAs

detected only upon infection, miR-26a-2-3p and miR-92a-1-5p (Fig 3C). Those three miRNAs

were up-regulated 5.3, 4.5 and 6.3 fold, respectively, at 12 h post-infection in comparison with

uninfected cells (p� 0.01). Altogether, these results with specific primers to each miRNA cor-

roborate with our large-scale panel data, identifying miRNAs that are modulated during

OROV infection showing the same tendency with different approaches. Star miRNA nomen-

clature corresponds to passenger strands less favorable to processing by RISC with lower likeli-

hood to regulate gene expression [65, 66]. As most of those miRNAs are previously annotated

as star miRNAs (as example of miR-26a-1-3p previously annotated as miR-26a-1�) and some

prediction database algorithms use proved interaction as criteria for prediction, we only

selected miR-217 and miR-576-3p, both mature strand miRNAs, for further target prediction

analysis (one detected only in infected cells and the other one up-regulated significantly upon

infection in the array, respectively, and both validated).

Cellular target genes regulated by miR-217 and miR-576-3p

To investigate possible pathways regulated by miR-217 and miR-576-3p during OROV infec-

tion, we performed target prediction using TargetScan, miRTarget2, PicTar, miRBase, TarBase

and miRanda databases. Target genes predicted by at least 3 out of 6 of those databases were
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Fig 2. Heat map of differentially expressed miRNAs in OROV infected HuH-7 cells. Depiction of the 13 miRNAs

differentially expressed in OROV infected cells relative to uninfected cells. Lines represent individual miRNAs and

columns represent independent replicates (four mock infected and five OROV infected). Color scale represents

normalized expression levels of miRNAs in the two conditions in log2 scale; red denotes up-regulation and green

denotes down-regulation, respectively. Dendrogram representing the 1D clusterization of samples and the 2D map

corresponding to the levels of standardized gene expression profiles (z-score). Red dotted lines in the dendrogram

indicate weak unions, discouraged by the Bayesian clustering analysis. Values represented in the dendrogram branches

correspond to log-odds of the union of corresponding branches. For the purpose of display, missing values of

uninfected cells for miR-217, miR-26a-2-3p and miR-92a-5p were predicted by k-nearest neighbors method and

imputed after normalization as described inMethods section.

https://doi.org/10.1371/journal.pntd.0006508.g002
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considered candidates. We predicted 195 cellular genes to interact with miR-217, miR-576-3p,

or both, using that criterion (S2 Table). We used enrichment analysis with GO, KEGG and

REACTOME to identify cellular pathways affected by the predicted targets identified with our

selection criteria. Our analysis showed the enrichment of cellular pathways related to regula-

tion of cell metabolic processes, cell cycle and differentiation, chromatin stability and RNA

metabolism and expression, suggesting that OROV infection possibly affects cell basic pro-

cesses and RNA-related regulation processes, as expected for a RNA virus (Fig 4). This can be

confirmed by the increasing numbers of observed genes (gray columns) compared with the

expected numbers (black columns) for each cellular pathway analyzed (Fig 4). All the analysis

showed very significant statistical levels with p values < 0,0001.

Validation of miRNAs predicted target genes modulated by OROV

infection

We selected 95 target genes, which were either in the group of 195 predicted target genes (92

genes) and/or either were already published as target genes for those miRNAs, to evaluate

their expression through RT-PCR in OROV infected hepatocyte cells. The selection criterion

was based on the function described in the literature or involvement in relevant biological

pathways related to RNA viruses such as: intracellular trafficking, apoptosis, innate immunity,

gene expression regulation, antiviral restriction factor, protein synthesis regulation and intra-

cellular signaling. The predicted selected targets and their association with miRNAs are

depicted in the Fig 5 interaction network (see also S3 Table for a brief description of targets

function).

From the 95 selected genes tested by RT-qPCR analysis we showed only the 18 genes that

were differentially expressed 12 h post infection in comparison with uninfected cells (Fig 6A).

The majority (16 genes) were down-regulated, corroborating with the opposite up-regulation

trend of the related miRNAs during infection. The gene expression of membrane anchor pro-

tein ADAM9, the component of SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase

complex F-box Only protein 11 (FBXO11), the TNF Receptor Associated Factor 3 (TRAF3),

the Mitogen-Activated Protein Kinase 1 (MAPK1) and the Mitochondrial Antiviral-Signaling

protein (MAVS), all had a trending of (0.05� p� 0.1) down-regulation. They were 3.9, 3.9,

Table 1. Mean relative expression levels of the 13 differentially expressed miRNAs.

miRNA Mean Fold Change (Infected/Uninfected) P-value Bonferroni Adjusted P-value

hsa-miR-1227 1.95 0.0025 0.0596

hsa-miR-19b-1-5p 4.11 0.0025 0.0596

hsa-miR-217 NA NA NA

hsa-miR-26a-1-3p 42.47 3.04E-06 0.0004

hsa-miR-26a-2-3p NA NA NA

hsa-miR-27a-5p 108 0.0329 0.1597

hsa-miR-324-3p 1.73 0.0074 0.0924

hsa-miR-362-3p 1.85 0.0042 0.0653

hsa-miR-450b-5p 0.215 0.0020 0.0596

hsa-miR-576-3p 2.49 0.0006 0.0377

hsa-miR-628-3p 2.77 0.0062 0.0859

hsa-miR-92a-1-5p NA NA NA

hsa-miR-99b-3p 2.21 0.0038 0.0653

NA—not applicable since they were detected only in OROV infected cells

https://doi.org/10.1371/journal.pntd.0006508.t001
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1.59, 1.39 and 1.26 fold (ADAM9, FBXO11, TRAF3, MAPK1 and MAVS, respectively) less

expressed in infected cells 12 h post infection. On the other hand, the pro-inflammatory che-

mokine C-X-C motif Ligand 2 (CXCL2) had a trending 3.5 fold up-regulation (0.05� p�

0.1). The Cytochrome C Oxidase assembly subunit 18 (COX18) was the only significantly up-

regulated transcript (p� 0.05) with a fold increase of 21.5 times. The significantly down-regu-

lated transcripts include the Decapping Protein 2 (DCP2), Fibronectin Type III Domain Con-

taining 3B (FNDC3B) protein, the chaperone protein Chaperonin Containing TCP1 Subunit

6B (CCT6B) and glutamate transporter Solute Carrier Family 1 Member 2 (SLC1A2) (2.78,

5.47, 17.21 and 39.56 times in infected cells, respectively). The Neurofibromin 1 (NF1), the

FYVE, RhoGEF And PH Domain Containing 4 (FGD4), the transcription factor Nuclear Fac-

tor I A (NFIA), the Cardiotrophin-Like Cytokine Factor 1 (CLCF1), the Stimulator for Inter-

feron Genes (STING) and the structural component of caveolae invaginations Caveolin 2

(CAV2) were down-regulated (12.57, 11.16, 8.95, 7.96, 7.16 and 6.59 times, respectively) with

the same significance (p� 0.01).

In order to evaluate if target regulation could present a higher effect in a later point of the

infection, we selected two predicted and published targets for miR-217 and three for miR-576-

3p to assess their expression 24 h post infection (Fig 6B). As it was demonstrated that apoptosis

is regulated by OROV replication [67], we selected the Mitogen-Activated Protein Kinase 1

Fig 3. Validation of individual miRNAs expression. RT-qPCR with specific primers for individual miRNAs. Mean fold change of expression levels in OROV infected

cells relative to uninfected cells for (A) miR-217 and (B) miR-576-3p. RT-qPCR was performed at 3, 6, 12 h post-infection. (C) RT-qPCR for miR-26a-1-3p, miR-26a-2-

3p and miR-92a-1-5p was performed only at 12 h post-infection time point. MicroRNAs expression was normalized by U6 RNA endogenous levels. Error bars

represent SD of triplicates of three independent experiments. Asterisks represent significant values compared to non-infected cells. � = p� 0.05; �� = p� 0.01.

https://doi.org/10.1371/journal.pntd.0006508.g003
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(MAPK1) for being a known miR-217 target that regulates apoptosis [68]. Although MAPK1

was not significantly deregulated at 12 h post infection it showed a 2.23 fold down-regulation

at 24 h post infection (p� 0.05). The three selected and unpredicted miR-576-3p targets,

MAVS, TRAF3 and STING, are known to be important genes in the regulation of IFN-β
response in viral infected cells [69]. MAVS and TRAF3 did not presented a significant down-

regulation at 12 h post infection (Fig 6A); however, both presented significantly down-regula-

tion at 24 h post infection (2 and 7.4 fold, respectively). STING, the only one of the three

selected targets of miR-576-3p that already demonstrated a significant down-regulation at 12 h

post infection, showed an even higher down-regulation at 24 h post infection (39 fold down-

regulation at 24 h post infection compared to 7.16 at 12 h post infection). The Silent Informa-

tion Regulator 1 (SIRT1), a histone deacetylase known to be involved in stress-responsive

pathways as inflammation [70, 71, 72], was a miR-217 target that did not show significant

Fig 4. Enrichment pathway analysis of predicted targets for miR-217 and miR-576-3p. Gene set enrichment analysis (GSEA) was performed for all predicted targets

using gene ontology available in GO, KEGG and REACTOME databases. Over-represented pathways are depicted in the y-axis. Quantity of genes associated to a

specific pathway is represented in the x-axis. Black columns represent the quantity of genes expected to be associated to a determined pathway and gray columns

represent the observed quantity of genes associated to the same pathway, respectively. Significance of overlapping is represented by the negative log of P-value for each

pathway.

https://doi.org/10.1371/journal.pntd.0006508.g004
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differential expression relative to uninfected cells 12 h post infection but presented a signifi-

cant down-regulation at 24 h post infection (3.45 fold down-regulated), what reinforces that

different target genes of the same miRNA have different dynamics of regulation. Although not

proved as a miRNA target yet, we included DCP2, the only selected miR-217 target already sig-

nificantly down-regulated at 12 h post infection, because of its relevance as a restriction factor

for other bunyavirus [73]. In our model, DCP2 kept a decreasing expression in infected cells,

being 20 fold significantly down-regulated at 24 h post infection (p� 0.001).

Overall, we confirmed the modulation of target genes transcription in the opposite direc-

tion of its cognate miRNA, showing that miRNA screening is very informative to predict cellu-

lar host genes modulated by virus infection.

IFN-β induction response is attenuated at later stages of infection

The type I interferon response is an important canonical innate immunity response mecha-

nism to viral infection. As STING, MAVS and TRAF3 were demonstrated to be key factors in

regulation of that response [69], we aimed to quantify the variation in IFN-β transcripts in

response to the infection. The IFN-β mRNA levels increased until 12 h post-infection, when it

began to drop abruptly, reaching lower levels at 24 post infection (Fig 7A). Those results are

consistent with interferon immune response being triggered at early stages of virus replicative

cycle. Virus RNA secondary structures are recognized by RIG-I-like receptors (RLR) or toll

like receptors members at early stages of virus replication. However, as the infection proceed,

the virus induces the miR-576-3p expression promoting the down regulation of its target

Fig 5. Interaction network between miRNAs and predicted target genes modulated by OROV infection. Network depicting the relation among miR-217, miR-576-

3p and 92 selected target mRNAs found in at least 3 out 6 databases. Green rectangles displays the two selected up-regulated miRNAs; red ellipses represent predicted

down-regulated mRNAs; gray ellipse represents mRNA predicted to be regulated by both miRNAs.

https://doi.org/10.1371/journal.pntd.0006508.g005
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genes STING and TRAF3 (Fig 7B and 7C)). We hypothesize that OROV try to escape IFN-β
response reducing the levels of STING and TRAF3 through miR-576-3p induction (Fig 7D).

Inhibition of miR-217 and miR-576-3p impairs OROV replication

In order to assess if miR-217 and miR-576-3p were playing a role in OROV infection, we

aimed to evaluate their impact in OROV replication using specific anti-miRNAs (Fig 8).

To accomplish that, HuH-7 cells were transfected with non-human negative control

miRNA inhibitor, miR-217 inhibitor, miR-576-3p inhibitor or both miRNA inhibitors and

infected with OROV 3h post-transfection. At least 70% of cells were efficiently transfected

with negligible cytotoxicity at the concentration tested (S1 Fig). Both miRNA presented a

3-fold decrease in the presence of its respective inhibitor in comparison with negative inhibitor

control (Fig 8A). Nonetheless, the predicted target genes for miR-217 and miR-576-3p, DCP2

and STING, respectively, recovered to similar levels to non-infected cells in the presence of

miRNA inhibitors 18 h post-infection (Fig 8B). DCP2 RNA levels were slightly above of those

in non-infected cells (up to 0.5 fold) whereas STING mRNA levels did not recovered

completely but presented a lower decrease compared to the positive control (1.9 and 7.4 fold

decrease, respectively).

To further confirm if the miRNA inhibition would influence OROV replication, we mea-

sured the intracellular viral RNA levels 18 h post-infection in the presence of miRNA inhibi-

tors (Fig 8C). Inhibition of miR-217 led to a 2.3 fold decrease in viral RNA replication, while

inhibition of miR-576-3p led to a 7.7 fold decrease. The highest reduction was observed with

inhibition of both miRNAs (8.3 fold), but was not significantly lower than miR-576-3p

Fig 6. Relative expression levels of selected target mRNAs predicted for miR-217 and miR-576-3p. HuH-7 cells were infected with OROV at MOI 1 and RT-qPCR

was done 12 h post infection (A) or 24 h post infection (B). (A) Data denotes mean fold change (y-axis) of infected cells relative to uninfected cells for 18 deregulated

mRNA out of 95 selected targets. Gene expression was normalized by endogenous 18S, GAPDH, HPRT1 and GUSB levels. Deregulated target genes are depicted in x-

axis. Black columns represent predicted targets for miR-576-3p and gray columns represent predicted targets for miR-217, respectively. Error bars represent Standard

Error Mean (SEM) for 6 independent samples. ns = non-significant (0.05� p� 0.1); � = p� 0.05; �� = p� 0.01. (B) Data denotes mean fold change (y-axis) of infected

cells relative to uninfected cells for 6 selected targets 24 h post infection. Gene expression was normalized by endogenous GAPDH levels. Black columns represent

predicted targets for miR-576-3p and gray columns represent predicted targets for miR-217, respectively. Error bars represent SD for four independent samples. � =

p� 0.05; �� = p� 0.01; ��� = p� 0.001.

https://doi.org/10.1371/journal.pntd.0006508.g006
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inhibition alone (Fig 8C). Finally, reduced viral titers confirmed the diminished replication, as

a 3-fold decrease was observed in the same time point using miR-217 and miR-576-3p inhibi-

tors (Fig 8D). Altogether, those data demonstrate that inhibition of miR-217 and miR-576-3p

is a prospective approach to restrict OROV replication in HuH-7 cells.

Discussion

In this study, we aimed to identify miRNAs and the target genes regulated in OROV infected

hepatocyte cell lines. We demonstrated that miR-217 and miR-576-3p were up-regulated dur-

ing infection and that their cognate targets were down-regulated. Gene targets related to apo-

ptosis, type I interferon-mediated response and antiviral restriction factors were associated

with those miRNAs, suggesting a post transcriptional modulation of those pathways by OROV

infection, giving new insights about virus-host interactions.

We initially investigate the susceptibility of human cell lines to the viral infection (Fig 1).

Lymphocytes T CD4+ cells (Jurkat) demonstrated low permissiveness to OROV, though being

Fig 7. IFN-β antiviral response is attenuated during infection. HuH-7 cells were infected with OROV at MOI 1 and RT-qPCR was done at indicated post-infection

time points. (A) Normalized expression of IFN-β mRNA during infection. HuH-7 cells were infected with OROV at MOI 1 and IFN-β levels were measured at indicated

post-infection time points. Error bars represent SD for four independent infections. Data denotes mean fold change (y-axis) of infected cells relative to uninfected cells

for (B) STING and (C) TRAF3 RNA levels. Gene expression was normalized by endogenous GAPDH levels. Error bars represent SD for four independent samples.

ns = non-significant (p� 0.1); � = p� 0.05; �� = p� 0.01; ��� = p� 0.001. (D) Schematic representation of IFN-β and miR-576-3p interplay in antiviral response

during OROV infection. Values are relative to uninfected cells. miR-576-3p, IFN-β, STING and TRAF3 transcripts levels are represented by green, blue, red and yellow

lines, respectively.

https://doi.org/10.1371/journal.pntd.0006508.g007
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susceptible to infection in vitro, as denoted by the 20% of infected cells (Fig 1A). On the other

hand, the monocyte cell line THP-1 was not infected in the same conditions. Activation with

PMA leads to progressive differentiation of THP-1 into macrophage-like phenotype, as dem-

onstrated elsewhere [58,59,60]. We observed an increase in THP-1 infected population under

two different PMA treatment conditions, suggesting a higher susceptibility of those cells as

they shift to macrophage phenotype. Indeed, a recent case report detected OROV in peripheral

blood mononuclear cells of two patients [74], sustaining the possibility of blood cells playing a

role in OROV pathogenesis in humans. In mouse models, however, macrophages only sus-

tained viral replication in immune-compromised individual with deletions in IFN genes [17].

The human hepatocyte cell line HuH-7 was highly permissive to OROV infection, corroborat-

ing with previous data that suggest a sustainable liver tropism for OROV [17, 62, 63]. HuH-7

presented a 90% rate of infected cells with no associated cytopathic effect until 18 h post-infec-

tion at MOI 1 (Fig 1C), leading us to choose it as our cell model.

Fig 8. Inhibition of miR-217 and miR-576-3p affects OROV replication. HuH-7 cells were transfected with 75 nM negative control inhibitor, miR-217 inhibitor,

miR-576-3p inhibitor or both. 3 h post transfection, cells were infected with OROV at MOI 1 and RT-qPCR was performed to measure miRNA, target genes and OROV

RNA levels. (A) Fold change of miRNA expression levels 6 h post-infection. MiRNA levels were normalized by U6 levels and infected cells were compared to uninfected

cells, both pre-transfected with the respective inhibitor for each condition. Cells transfected with negative inhibitor followed by OROV infection were compared to

uninfected cells transfected with the same inhibitor and considered as positive control (set as 1, y-axis) for comparison. Black columns represent miR-217 expression

levels and gray columns represent miR-576-3p levels. NQ–not quantified. (B) Fold change of target genes RNA levels 18 h post infection. Target genes expression was

normalized by GAPDH RNA levels and deregulation was measured relative to the same target in uninfected cells. Black columns represent DCP2 RNA levels and gray

columns represent STING RNA levels. (C) Intracellular OROV segment S RNA levels 18 h post-infection. Positive control (cells transfected with negative inhibitor and

infected with OROV) levels were set as 1 (y-axis) for comparison. (D) Viral titration of virus supernatants from experiments performed in C. Viruses in the supernatant

were quantified by plaque assay 18 h post-infection and plotted as pfu/ml x 106 (y-axis). Error bars represent SD of triplicates for two independent experiments.

NS = non-significant; � = p� 0.05; �� = p� 0.01.

https://doi.org/10.1371/journal.pntd.0006508.g008
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We initially found 13 miRNAs differentially expressed in infected cells relative to unin-

fected cells (Fig 2, Table 1). Some of them were induced while others were modulated upon

infection, in agreement with the complexity of miRNA regulation network. MiR-217 was

already described in cancer cells involved in tumor migration suppression [75, 76]. Expression

kinetics showed a peak at 6 h post-infection for this miRNA (Fig 3A). Regarding the predicted

target genes, ten of them were significantly down-regulated 12 h post-infection in RT-qPCR

screening (Fig 6A). SLC1A2, also known as Excitatory Amino Acid Transporter 2 (EAAT2) is

a glutamate transporter in astrocytes. Lower expression of this transporter was associated with

neuropathogenesis outcomes in HIV-1 [77] and Human Herpesvirus 6 (HHV-6) infected cells

[78]. In hepatocytes, an increased expression was associated to cholestasis outcome [79]. It is

unclear how this transporter could affect OROV infection in hepatocytes, but considering the

neurotropism of OROV infection in vivo, an investigation of its role in neuropathogenesis

should be considered. Another possible cellular factor related to neuropathogenesis of OROV

is NF1. The regulation of NF1 by other miRNAs was already demonstrated in neurons and

other tissues [80], and is considered a mechanism of fine-tuning in neurological disorders

such as neurofibromatosis. The transcription factor NFIA was recently demonstrated to be a

novel factor that is negatively regulated by miR-373 [81]. As a consequence, IFN-β response is

down-regulated, facilitating Porcine Reproductive and Respiratory Syndrome Virus (PRRSV)

replication. The data suggest that both miR-217 and miR-576-3p could act synergistically to

inhibit IFN-β antiviral response. CLCF1 is a member of Interleukin-6 (IL-6) family and play a

dual role as pro-inflammatory and anti-inflammatory cytokine. FNDC3B has a role in cell

migration and invasiveness in hepatocellular carcinoma [82] and glioblastoma cells [83]. In

the second case, it was shown that FNDC3B could be down-regulated by miR-129-5p. Likely,

FNDC3B could be one of many targets which down-regulation leads to an apoptotic state in

OROV infection. The chaperone protein CCT6B as well as its relevance in OROV infection

remains elusive. The assembly factor COX18 is a key component for cytochrome oxidase com-

plex works properly [84]. Although its regulation showed an opposite trend, we speculate that

this phenomenon could be a collateral effect of the apoptosis state, with cells trying to increase

cytochrome oxidase efficiency due to a leaking of cytochrome c to cytoplasm.

We further assessed the expression in a later point of infection (24 h) of three targets of

miR-217 during OROV infection: DCP2, MAPK1 and SIRT1 (Fig 6B). DCP2 is a decapping

protein involved in mRNA decay. It was recently demonstrated that bunyaviruses compete for

the same cellular capped mRNAs that DCP2 targets for degradation in a process known as

“cap-snatching” [73]. Bunyaviruses need to snatch capped cellular mRNAs in order to repli-

cate the virus RNA genome; therefore, DCP2 is a direct competitor for bunyaviruses replica-

tion. Our results suggested that the down-regulation of DCP2 by miR-217 could explain

OROV sustained replication. The kinase MAPK1 and protein SIRT1 both presented a signifi-

cant lower transcription only 24 h post infection (Fig 6B), when most living cells presumably

are in apoptosis process.

The miR-576-3p expression peaked at 6 h post-infection and presented a kinetic similar to

miR-217 (Fig 3B). The expression levels at 12 h post-infection were consistent in both quanti-

tative assays (e.g. miRNA array and validation RT-qPCR), corroborating our findings (Table 1

and Fig 3B). At the same time point, two candidate targets, FGD4 and CAV2 were down-regu-

lated, confirming the inverse trend of miR-576-3p (Fig 6A). FGD4 is a protein involved in reg-

ulation of actin cytoskeleton and cell migration. Another miRNA, miR-155, was associated to

reduced FGD4 levels, resulting in impaired neutrophil migration in myelodysplastic syn-

dromes [85].

CAV2 is a protein component of caveolae structures. A recent study demonstrated that the

caveolae and, therefore, its components could act as restriction factor for Tiger Frog Virus
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(TFV) release in late steps of viral cycle [86] in another hepatocyte cell line, HepG2. As OROV

entry is mediated by clathrin-endocytosis [16], we speculate that caveolae could be a restriction

site for viral budding/release; therefore down-regulation of a structural component could

favors viral release.

MiR-576-3p was recently proposed as a key miRNA in feedback regulation of IFN-β path-

way in response to viral infections [69]. Our results regarding down-regulation of STING and

TRAF3 corroborated that hypothesis (Fig 6). Moreover, IFN-β transcription regulation corre-

lated with miR-576-3p, STING and TRAF3 transcription dynamics (Fig 7), implying in a tem-

poral feedback mechanism in response to OROV infection, as suggested for other viruses.

Based on our data and in conclusions of other group [69], we proposed the following dynamics

in antiviral response (depicted in Fig 7D): upon viral entry and uncoating, double-strand viral

RNA triggers the IFN-β signaling pathway through STING, MAVS and TRAF3 action, leading

Interferon Responsive Factor 3 (IRF3) to activate INF β transcription. Concomitantly, miR-

576-3p transcription is also activated by the transcription factor IRF3 and the miRNA accumu-

lation increases until peak 6 h post-infection (Fig 3B). When enough miR-576-3p accumulates

in cytoplasm (6 h post-infection) the target mRNA levels, mainly for TRAF3 and STING,

begin to fall progressively (Fig 7B and 7C)). At 12 h post-infection, as result of the decrease of

STING and TRAF3 mRNA levels, the IFN-β response begins to be relieved, starting a feedback

mechanism that leads to a halt in antiviral response and sustaining viral replication.

The miR-576-3p is a primate specific miRNA that was conserved along the evolution, pre-

sumably, to avoid tissue damage derived from an excessive inflammatory response due to an

infection. Indeed, in mice, OROV infection can be successfully controlled by IFN pathway in

immune competent individuals. On the other hand, immune compromised mice (e.g. deleted

for genes of IFN pathway) have high mortality rates and fast disease progression with notable

liver damage [17]. Our results suggested that, unlike mice, the presence of miR-576-3p in pri-

mates and repression of INF-ß rendered them more susceptible to OROV infection.

Furthermore, the inhibition of miR-217 and miR-576-3p partially restricted viral replica-

tion, as demonstrated by a decreasing in both viral RNA and titer in the presence of miRNA

inhibitors (Fig 8). Those results are in accordance with previous data for miR-576-3p inhibi-

tion in other viral infections [69]. We speculate that the restriction is a consequence of a longer

sustained innate immune response due to lower suppression of IFN-β pathway signaling cas-

cade in a miRNA inhibition scenery, since both miRNAs might regulate target genes of that

pathway.

Finally, as NSs protein has been demonstrated elsewhere to be a candidate viral protein that

regulates host innate immune response in other bunyaviruses [87]. A recent study demonstrate

that a mutant NSs-deleted OROV induces a strong IFN-α production in opposition to the

virus with functional NSs [88]. However, sensitivity to IFN-α treatment was not related to the

presence of NSs, as both viruses presented similar sensitivity. It was also demonstrated that

OROV is more resistant to IFN-α in comparison to BUNV. Although NSs alone seems to be a

candidate viral protein to modulate IFN pathway, we cannot exclude the role of other viral or

cellular proteins, as well as viral secondary RNA structures in this conundrum.

We focused our analysis on miR-217 and miR-576-3p given the aforementioned reasons;

nonetheless, we cannot exclude the possibility that the other miRNAs identified could be play-

ing a role in OROV infection, as we could validated some of them (Fig 3C). As most of them

were star miRNAs and could not be properly investigated by our methodology, a different

approach would be necessary to further evaluate if they regulate target genes. Recently, new

methodologies to investigate miRNA-mRNAs interactions have been proposed [89, 90] and

could be an alternative for future studies. We chose the hepatocyte cell line HuH-7 as our

model for an initial, representative study. However, it is also possible that at different time
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points or using different cell models we could identify different miRNA signatures. It would

be interesting to compare the miRNA signature among other permissive cells and using differ-

ent OROV strains to investigate unique and common miRNA responses to the viral infection.

Although the targets validated by RT-qPCR are a good indicative of regulation, those assump-

tions must be considered with caution, as only RNA down-regulation not necessarily reflects a

decrease in protein expression coded by the RNA. Protein quantification (e.g. western blot)

would be necessary to assure that the final products of those genes are indeed being regulated.

We limited the present study to identify miRNAs and their targets regulated during OROV

infection, however, the mechanism by which that regulation occurs remains elusive. A further

functional study with expression and knockout of viral proteins could shed a light on the role

of viral proteins in this mechanism.

To our knowledge, this is the first study to identify candidate miRNAs that could modulate

infection of a member of Orthobunyavirus genus, the most representative genus from Peribu-
nyaviridae family. Taken together, the data obtained in this study hint at pathways that could

impact OROV infection, replication and pathogenesis, and expand the knowledge of the com-

plex interactions in bunyavirus infections.
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