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Abstract

Background: HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a progressive neurological
and inflammatory disease, associated with HTLV-1 infection. HAM/TSP neurological disease is a consequence
of an inflammatory reaction, and adaptive immune responses, through the secretion of anti-inflammatory and
pro-inflammatory cytokines, play an important role in the outcome of infection and disease progression.
Studies addressing the association between cytokines functional single nucleotide polymorphisms and HAM/
TSP development are scarce.

Methods: The genetic polymorphisms of cytokine genes were evaluated in HAM/TSP patients (n = 68) and in
asymptomatic HTLV-1 positive carriers (n = 83) from Rio de Janeiro, Brazil, in a case-control study. HTLV-1
infected patients were genotyped for SNPs in five cytokine genes: TNFA-308G/A, IL6-174G/C, IFNG + 874 T/A,
TGFB at the codons + 10 T/C and + 25G/C, IL10-592C/A and -819C/T, and -1082A/G and proviral load (PVL) was
quantified. Associations between genotypes, haplotypes, clinical outcome and pro viral load were evaluated.

Results: Lack of association between the cytokine polymorphisms and disease outcome was observed. The
genotypes TNFA-308GG, IL6-174GG/GC, IL10-592AA and -819CC and TGFb1 high producers phenotypes were
correlated with higher PVL in HAM/TSP patients versus asymptomatic carriers.

Conclusions: We did not observe association between cytokine polymorphisms and risk for HAM/TSP development
in Brazilian HTLV-1 infected individuals, regardless of differences in PVL between HAM/TSP versus asymptomatic carriers
in specific cytokine polymorphisms.
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Background
The HTLV-1 virus is the etiological agent of two major
diseases: adult T cell leukemia and the neurological
disease HTLV-associated myelopathy / tropical spastic
paraparesis (HAM/TSP), a progressive neurological and
inflammatory disease of the central nervous system. Al-
though many of the infected individuals are asymptom-
atic, approximately 2–5% of the infected individuals will
develop HAM/TSP [1]. This neurological disease could
be the consequence of an inflammatory network that re-
sults in damage of the spinal cord [2], but this associ-
ation is still poorly understood.
Tax viral protein plays an important role in the regula-

tion of the virus genome acting in proviral genome tran-
scription by interacting with several cellular signaling
pathways that modulate the expression of cytokine and
chemokine genes [3]. The IFN-γ secreted by HTLV-1 in-
fected CD4+T cells and the virus recognition by CD8+T
lymphocytes in the central nervous system induces pro-
duction of other cytokines, such as the myelinotoxic
TNF-α. This event, together with the hemodynamic
changes and interactions mediated by adhesion mole-
cules among circulating lymphocytes and endothelial
cells, which contribute to the location of spinal cord in-
jury, is known as a “bystander” damage hypothesis. The
involvement of cytokines in the outcome of HAM/TSP
is associated with the “bystander” damage hypothesis [1].
Among the potential immunopathological findings, high
levels of IFN-γ, TNF-α and IL-6 have been detected in
patients with HAM/TSP, which seem to contribute for
the breakthrough of the blood–brain barrier and result-
ing in immunopathology and neurological symptoms [4].
In addition, HAM/TSP patients showed dysregulation in
TGF-β signaling, affecting Treg function and contribut-
ing for disease pathology [5]. Differences in IL-2, IL-4,
IL-10, IL-12p70, TNF-α and IFN-γ levels were also
found in the supernatants of cultured peripheral blood
mononuclear cells (PBMC) from HAM/TSP and AC [6].
Recent publication showed no difference in plasma cyto-
kine levels among AC and HAM/TSP patients. However,
cerebrospinal fluid levels of cytokines (ITAC, IFN-γ,
IL-5, IL-8 and TNF-α) were higher in HAM/TSP com-
pared with AC patients, indicating that those cytokines
might be used as disease markers of neurologic mani-
festation in long-term HTLV-1 infected individuals [7].
Single nucleotide polymorphisms (SNPs) might have in-

fluence in the cytokine production. It has been shown that
IFNG + 874 T/A [8], TNF -308G/A [9, 10], IL6 -174G/C
[11], IL10–1082A/G, -819C/T and -592C/A [12], and
TGFB at the codons + 10 T/C and + 25G/C [13, 14] SNPs
alter the expression of the related cytokines in patho-
logical or physiological conditions. Many of these poly-
morphisms have been associated with inflammatory and
infectious diseases [15–19]. Indeed, IFNG + 874A/T [20],

IL6 -174G/C [21], and IL10 -592C/A and -819C/T [22]
have been associated with HAM/TSP development or
HTLV-1 infection.
Because these specific polymorphisms are associated

with changes in cytokines production and many inflam-
matory and infectious diseases, and those cytokines have
important role in HTLV-1 infection, it would be import-
ant evaluate the association between these polymor-
phisms and HAM/TSP development. Studies addressing
the role of SNPs that might alter cytokine production
and HTLV-1 infection are scarce. Therefore, our aim
was to determine in a case-control study if SNPs of pro-
and anti-inflammatory cytokines in HAM/TSP and AC
patients were related to disease outcome.

Methods
Study population
HAM/TSP patients and ACs were randomly recruited
from a cohort of approximately 700 individuals attended
at the Laboratory for Clinical Research in Neuroinfection,
INI-FIOCRUZ, Rio de Janeiro, RJ, Brazil. The diagnosis of
HAM/TSP patients was performed according to the
World Health Organization diagnostic criteria [23]. The
patients were mainly from Rio de Janeiro, Brazil, and the
follow-up mean was 128.85 ± 54.44months. The Institu-
tional Ethics Committee approved the study, and all sub-
jects provided written informed consent. Demographic
data included information regarding a self-identified skin
color as described as white or non-white (black and mixed
persons), sex and age.

DNA extraction
Five milliliters of whole blood were collected in EDTA-
containing tubes, and DNA extraction was carried out
by a commercial kit from Puregene (Gentra Systems
Inc., Minneapolis, MN, USA), following the manufac-
turer’s instructions.

Genotyping
SNPs in five cytokine genes, TNFA-308G/A, TGFB at co-
dons + 10 T/C and TGFB + 25G/C, IL10-1082A/G, -592C/
A and -819C/T, IL6-174G/C, IFNG + 874 T/A were geno-
typed through sequence-specific primers-polymerase
chain reaction technique (SSP-PCR) using a commercial
kit by Cytokine Genotyping Tray (One Lambda, Inc.,
Canoga Park, CA, USA). This technique has allowed us
genotyped eight SNPs of five cytokine genes, simultan-
eously, through PCR reaction. The SSP-PCR technique
provides an accurate, simple, and economical means of
detecting polymorphisms of these important pro- and
anti-inflammatory cytokine genes.
Ninety-six well microtiter® trays with dried primers in

each reaction well were filled with 10 μl of a mix con-
taining dNTPs (8 μl, provided by the manufacturer), Taq
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polymerase (1 μl at 5 U/μl) and DNA sample (1 μl, 100
ng) per reaction well. The reaction was performed in a
Veriti thermocycler (Applied Biosystems, Foster City,
CA, USA) with the follow instructions: one cycle of 130
s at 96 °C, 60s at 63 °C; nine cycles of 10s at 96 °C, 60s at
63 °C; twenty cycles of 10s at 96 °C, 50s at 59 °C and 20s
at 72 °C; and ending at 4 °C.
After completing the PCR reaction, the samples

were transferred to 2.5% agarose gel stained with eth-
idium bromide (0.5 μg/ml), and were electrophoresed
at 140–150 V. After electrophoretic run, the gel was
transferred for an ultraviolet transilluminator and
photographed for analysis. The presence or absence
of gel band from each amplified reaction well deter-
mined the SNP identification.
Phenotype analysis for IL10-1082A/G, -819C/T and

-592C/A SNPs were demonstrated as low (ACC/ACC,
ACC/ATA, ATA/ATA), intermediate (GCC/ACC, GCC/
ATA) and high (GCC/GCC) IL-10 producers, as de-
scribed by the commercial kit.

Proviral load quantification
HTLV-1 PVL DNA from peripheral blood leucocytes
was measured by real-time PCR assay (SmartCycle II;
Cepheid) using the TaqMan system (Applied Biosystems,
Foster City, California, USA), through the amplification
of a 159-bp fragment of the tax gene. As a reference, a
standard curve was generated using the human β-globin
gene and DNA from the TARL-2 cell line, which con-
tains a single copy of the provirus HTLV-1, to establish
the tax gene quantification. PVL was calculated in per-
ipheral blood leukocytes (PBL) from each volunteer fol-
lowing the equation: [(copy number of tax gene) / (copy
number of β-globin gene/2)] × 100 [24].

Statistical analysis
Proviral load statistical analysis between genotypes/phe-
notypes and disease groups was performed by an ordin-
ary two-way ANOVA with Bonferroni post-test for
multiple comparisons correction [25], considering re-
sults with p-values < 0.05 statistically significant. Non-
parametric data were evaluated by Kruskal-Wallis and
Mann-Whitney tests and a Spearman correlation, and
association between qualitative variables (alleles, geno-
types and phenotypes frequencies) was tested by chi-
square, Cochran-Armitage or Fisher’s exact test. P-
values from tables with any significant result were cor-
rected using Bonferroni correction for multiple com-
parisons. Results with a p-value < 0.05 were considered
statistically significant. All analyses were performed
using the software GraphPad Prism 6.0 or R version
3.1.0 [26].

Results
Characteristics of HTLV-1 infected patients and proviral
load
Sixty-eight HAM/TSP patients and 83 ACs were en-
rolled. The demographic data are shown in Table 1. We
did not observe differences related to ethnic background,
gender and age between the grouped volunteers. Proviral
load was higher in the HAM/TSP patients than AC
group(p < 0.04, Table 1).

Distribution of cytokines genotypes in HAM/TSP and AC
All analyzed genotype frequencies were in Hardy-Wein-
berg equilibrium for both the HAM/TSP and AC groups
(data not shown). No significant differences were ob-
served at positions TNFA-308G/A, IL6-174G/C, IFNG +
874 T/A and TGFB at codons + 10 T/C and + 25G/C be-
tween the HAM/TSP and AC groups regarding geno-
typic, allelic and phenotypic analysis in the dominant,
recessive or co-dominant genetic models (Tables 2 and 3).
The IL10-1082A/G -592C/A and -819C/T polymor-

phisms (Table 4) showed the highest frequencies for al-
lele A at position -1082A/G and allele C at -819C/T and
-592C/A positions in both groups, with no significant
differences in allelic distribution. The polymorphisms
IL10 -592C/A and IL10–819C/T were estimated by a
single analysis due to the complete linkage disequilib-
rium between the two SNPs with D’ = 0.99. The A allele
of IL10 -592C/A was always linked with the T allele of
IL10–819 T/C and C with C. No differences were ob-
served regarding genotypic distribution between the
HAM/TSP and AC groups in co-dominant genetic
models at all positions. Moreover, at position IL10-
1082A/G, despite we found in a dominant model a
2.4-fold risk factor for HAM/TSP outcome (OR = 2.42
[1.2–4.97], p = 0.01) in IL10-1082A/G plus G/G carriers,
the data lost significance due correction for multiple
comparisons. Analysis including sex, skin color and age
did not interfere with the risk for disease progression
(p < 0.01, the data not shown). IL10 phenotypic (low,
intermediate and high IL-10 producers) and haplotype
(Tables 4 and 5) association showed no influence in
HAM/TSP outcome.

Association with cytokine genotypes and HTLV-1 proviral
load
Besides the PVL was higher in HAM/TSP than in AC,
we found an association in TNFA-308GG (low produ-
cer), IL6GG/GC genotypes (high producer) and high
TGF-β phenotype carriers between the HAM/TSP and
the AC groups (Fig. 1). IL10-592CC and IL10–819CC (p
= 0.0072) genotypes were associated with high PVL in
HAM/TSP patients compared with the AC group, as
shown in Fig. 2. No further association was identified
between the different genotypes or phenotypes when the
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HAM/TSP or AC patients were analyzed. These results
point to a lack of association between the PVL and these
cytokine polymorphisms in our set of HTLV-1-infected
Brazilian patients.

Discussion
HAM/TSP could be the consequence of an inflamma-
tory response of the host immune system; however, the
majority of HTLV-1-infected individuals remain asymp-
tomatic, indicating that HTLV-1 infection by itself is not
sufficient to induce HAM/TSP. Neurons and glial cells
are damaged by toxic or inflammatory products released
from HTLV-1-infected T cells and the bystander damage
by activated cytotoxic lymphocytes in the central ner-
vous system [27]. Cytokines production varies among in-
dividuals, due in part to genetic factors and, in
particular, the presence of polymorphisms in important
regulatory regions, such as promoter regions. In this
study, we aimed to establish an association between
polymorphisms in cytokine-related genes (TNFA, IL6,
IFNG, TGFB and IL10) and disease outcome. Our results
demonstrated that there was no association between
TNFA-308G/A, IL6-174G/C, IFNG + 874 T/A, TGFB at
codons + 10 T/C and + 25G/C, and IL10-1082G/A,
-819C/T and -592C/A polymorphisms and development
of HAM/TSP in our set of the Brazilian population. To
the best of our knowledge, few studies addressed infor-
mation on cytokine SNPs and HTLV-1 infection in the
Brazilian population.
In vitro studies have shown that HTLV-1 infected lym-

phocytes transpose the blood-brain barrier, changing its
permeability by secretion of IL-1α and TNF-α, which in-
creases the migration of lymphocytes through this site
[28]. This migration could enhance the inflammatory re-
sponse in the nervous system, causing damage in neural
cells in vivo. Polymorphism in the promoter region of
the TNFA-308G/A was described by Wilson et al. 1992

[29], where the replacement of the allele guanine TNFA
(−308G or TNF1) for adenine in the TNFA allele (−308A
or TNF2) has been associated with high production of
this cytokine in European populations [29]. The TNFA-
308G/A polymorphism was analyzed in adult T-cell
leukemia/lymphoma versus AC in Japanese population,
and no association between this SNP and disease out-
come was found [20]. In our set of individuals typed for
TNFA-308G/A polymorphism, we also did not find an
association between this SNP and the HAM/TSP or AC
groups. However, an association between the genotype
TNFA-308GG (low producer) and high PVL was ob-
served. Starling et al. 2013 showed an inverse correlation
between TNF-α production and PVL in HAM/TSP pa-
tients [30], corroborating our results and indicating a
possible protective role of TNF-α in the control of
pro viral load. Our data suggest a possible effect of
TNFA-308GG genotype in PVL not related to disease
outcome.
The IL6 -174G/C is associated with changes in cyto-

kine production, where G allele carriers show higher
production of IL-6 compared to C allele carriers [11].
Gadelha and colleagues [21] described no association be-
tween HAM/TSP and AC in IL6 -174G/C in a Northeast
Brazilian population, although this SNP was a risk factor
for HAM/TSP when compared with oligosymptomatic
patients. Although none of the IL-6 genetic background
was associated with HAM/TSP outcome, we observed
an increased level of PVL in HAM/TSP patients carrying
the higher IL-6 producer (IL6-174GG and CC) geno-
types, indicating that a high level of this inflammatory
cytokine could be related to a worse scenario in HAM/
TSP patients. In addition, IL-6 and TGF-β may induce
the differentiation of a Th17 cell profile and increase
central nervous system inflammation [31].
In HAM/TSP patients, there is a predominance of

Th1 cytokines such as IFN-γ, reduction in Th2 cytokines

Table 1 Demographic variables distribution according with clinical condition of HAM/TSP patients

Variables HAM/TSP Asymptomatic OR (CI:95%) p-value Corrected p-valued

Skin color (n/%)

White 40 (46.5) 46 (53.5) 1

Non-White 28 (43.1) 37 (56.9) 0.87 (0.45–1.66) 0.67a 1.00

Sex (n/%)

Male 27 (41.5) 38 (58.5) 1

Female 41 (47.7) 45 (52.3) 1.28 (0.67–2.47) 0.45a 1.00

Age

Mean (SD) 57.8 (11.3) 53.3 (14.7) 1.03 (1–1.05) 0.04b 0.16

PVL
Median (IQR)

7.1(4.0–9.8) 1.3 (0–4.9) 1.14 (1.06–1.24) < 0.01c < 0.04

HAM/TSP HTLV-1-associated myelopathy / Tropical spastic paraparesis, OR odds ratio, CI confidence interval, SD standard deviation, PVL proviral loads
aChi-Square or Fisher Exact test. bT-test for comparison of difference means and cKruskal-Wallys test. dAdjusted p-value using Bonferroni correction for
multiple comparisons
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such as IL-4 and IL-10, and increased production of
neurotoxic cytokines affecting regions along the spinal
cord [32]. The IFN-γ serum concentration is higher in
HAM/TSP individuals than in asymptomatic individuals
[6, 30]. Located in the first intron of the IFNG gene, the
SNP + 874 T/A contributes to IFN-γ production, with T
allele carriers presenting higher production of IFN-γ com-
pared to A allele carriers [8]. Recently, Queiroz et al. 2018
showed higher prevalence of the IFNG + 874 T/A T allele
among AC compared to HTLV-1 symptomatic carriers,

although no differences in genotypes distribution were de-
tected [20]. Queiroz et al. data agree with our results re-
gard genotype distribution and PVL, differently of allelic
distribution, where we did not find differences. This dis-
cordance might be due to different study approaches.
Queiroz et al. enrolled in their study, HTLV-1 symptom-
atic carriers with diverse clinical manifestations, such as
rheumatism, condition absent in our study. In addition,
the patients of that study belonged to North region of
Brazil, where differences in migration history and genetics

Table 2 Analysis of associations between TNFA-308G/A, IL6-174G/C and IFNG + 874 T/A polymorphisms and risk of HAM/TSP development

Polymorphisms HAM/TSP Asymptomatic

n (%) n (%) OR (IC:95%) p-value

TNFA-308G/A

GG 55 (82.1) 69 (83.1) 1 0.98

GA 12 (17.9) 13 (15.7) 1.16 (0.48–2.75)

AA 0 1 (1.2) 0 (NA)

GG (low) 55 (82.1) 69 (83.1) 1 1

GA + AA (high) 12 (17.9) 14 (16.9) 1.08 (0.45–2.52)

AA 0 1 (1.2) 1 1

GA + GG 67 (100) 82 (98.8) 0 (NA)

Alleles

G 122 (91.0) 151 (91.0) 1 1

A 12 (9.0) 15 (9.0) 0.99 (0.44–2.19)

IL6-174G/C

GG 48 (71.6) 56 (68.3) 1 0.88

GC 16 (23.9) 24 (29.3) 0.78 (0.37–1.62)

CC 3(4.5) 2 (2.4) 1.75 (0.28–13.7)

CC (low) 3 (4.5) 2 (2.4) 1 0.66

GC + GG (high) 64 (95.5) 80 (97.6) 0.53 (0.07–3.31)

GG 48 (71.6) 56 (68.3) 1 0.79

GC + CC 19 (28.4) 26 (31.7) 0.85 (0.42–172)

Alleles

G 112(83.6) 136 (82.9) 1 1

C 22 (16.4) 28 (17.1) 0.95 (0.51–1.76)

IFNG + 874 T/A

AA (low) 34 (50.7) 34 (43.6) 1 0.86

AT (intermediate) 26 (38.8) 40 (51.3) 0.65 (0.33–1.29)

TT (high) 7(10.4) 4 (5.1) 1.75 (0.48–7.20)

AA 34 (50.7) 34 (43.6) 1 0.49

AT+TT 33 (49.3) 44 (56.4) 0.75 (0.39–1.44)

TT 7 (10.4) 4 (5.1) 1 0.35

AT+AA 60 (89.6) 74 (94.9) 0.46 (0.12–1.61)

Alleles

A 94 (70.1) 108 (69.2) 1 0.97

T 40 (29.9) 48 (30.8) 0.96 (0.58–1.58)

HAM/TSP HTLV-1 associated myelopathy tropical spastic paraparesis, Asymptomatic HTLV-1 patients, OR odds ration with confident interval, Chi-square 2 × 2 or
3 × 2 contingent tables, Fisher exact or Cochran-Armitage tests
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Table 3 Analysis of associations between TGFB codon 10 T/C and codon 25G/C polymorphisms and risk of HAM/TSP development

Polymorphisms HAM/TSP Asymptomatic

n (%) n (%) OR (IC:95%) p-value

TGFB Codon 10

T/T 25 (37.3) 24 (28.9) 1

T/C 29 (43.3) 45 (54.2) 0.62 (0.3–1.28)

C/C 13 (19.4) 14 (16.9) 0.89 (0.35–2.29) 0.61

Alleles

T 79 (59.0) 93 (55.4) 1

C 55 (41.0) 73 (43.5) 0.89 (0.56–1.41) 0.70

TGFB Codon 25

G/G 56 (83.6) 71 (85.5) 1

G/C 10 (14.9) 11 (13.3) 1.15 (0.45–2.92)

C/C 1 (1.5) 1 (1.2) 1.27 (0.05–32.54) 0.74

T/C G/G High 47 (70.1) 58 (69.9) 1

T/C G/C; C/C G/G; T/T G/C Intermediate 15 (22.4) 24 (28.9) 0.77 (0.36–1.62)

C/C G/C; C/C C/C; T/T C/C Low 5 (7.5) 1 (1.2) 6.17 (0.95–120.4) 0.51

HAM/TSP HTLV-1 associated myelopathy tropical spastic paraparesis, Asymptomatic HTLV-1 patients, OR odds ration with confident interval, Chi-square 2 × 2 or
3 × 2 contingent tables, Fisher exact or Cochran-Armitage tests

Table 4 Analysis of associations between IL10-1082A/G, -819C/T and -592C/A polymorphisms and risk of HAM/TSP development

Polymorphisms HAM/TSP AC Crude

n (%) n (%) OR (IC:95%) p-value Corrected p-value

IL10-1082G/A

A/A (low) 20 (32.3) 38 (53.5) 1

G/A (intermediate) 34 (54.8) 24 (33.8) 2.69 (1.28–5.79)

G/G (high) 8 (12.9) 9 (12.7) 1.69 (0.56–5.1) 0.07 0.21

A/A 20 (32.3) 38 (53.5) 1

G/A G/G 42 (67.7) 33 (46.5) 2.42 (1.2–4.97) 0.01 0.07

Alleles

A 74 (59.7) 100 (70.4) 1

G 50 (40.3) 42 (29.6) 1.61 (0.97–2.70) 0.07 0.21

IL10–819/−592a

C/C and C/C 25 (43.3) 29 (40.8) 1

C/T and C/A 31 (50.0) 27 (38.0) 1.33 (0.63–2.8)

T/T and A/A 6 (9.7) 15 (21.2) 0.46 (0.15–1.33) 0.38 1

C/C and C/C 25 (40.3) 29 (40.8) 1

C/T + T/T and C/A + A/A 37 (59.7) 42 (59.2) 1.02 (0.51–2.05) 1 1

T/T and A/A 6 (9.7) 15 (21.2) 1

C/C + C/T and C/C + C/A 56 (90.3) 56 (78.8) 2.5 (0.94–7.44) 0.12 0.84

Phenotype

ACC/ACC, ACC/ATA, ATA/ATA (Low) 20 (32.3) 38 (53.5) 1

GCC/ACC, GCC/ATA (Intermediate) 34 (54.8) 24 (33.8) 2.69 (1.28–5.79)

GCC/GCC (High) 8 (12.9) 9 (12.7) 1.69 (0.56–5.10) 0.07 0.21

HAM/TSP HTLV-1 associated myelopathy tropical spastic paraparesis, Asymptomatic HTLV-1 patients, OR odds ration with confident interval, Chi-square 2 × 2 or
3 × 2 contingent tables, Fisher exact or Cochran-Armitage tests
a-819 and -592 are in linkage disequilibrium
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background might occur compared to our study. Our re-
sults, in agreement with a previous study [33], demon-
strated no significant differences for allele and genotype
frequencies of the IFNG + 874T/A SNP between HAM
and AC. In our set of the Brazilian population, there was
no statistical influence on any genotypes of IFNG + 874 T/
A and PVL in the HAM/TSP or AC groups. However, our
results were in discordance with those published by
Rocha-Junior et al. [33], who reported a significant associ-
ation between PVL and the IFNG + 874AA genotype,
where this SNP was associated with low PVL. In addition
to the two populations belonging to Brazil, the study also
had a group included by Rocha-Junior that was from São

Paulo State, where high Asiatic frequency is present; our
study groups did not include any Asiatic individuals.
It has been shown that TGF- β signaling is critical for

Foxp3 expression and T regulatory cells functions in
HAM/TSP patients [34]. HAM/TSP patients showed
low levels of TGF-β receptor II (TGF-βRII) and Smad7
(a TGF-β–inducible gene) in CD4+ T cells, when com-
pared to healthy donors. In addition, TGF-βRII expres-
sion was inversely correlated with the HTLV-1 PVL.
This evidence suggests that HTLV-1 can modulate the
immune tolerance affecting both regulatory and effector
T cells and contributing to the pathogenesis of HAM/
TSP [5]. HTLV-1 infection in patients with Sjogren’s
Syndrome led to an enhanced serum level of TGF-β and
may be important for increased HTLV PVL [35]. The
haplotype TG from the SNPs of TGFB at the codons +
10 T/C and + 25G/C has been associated with high pro-
duction of this cytokine [13]. We did not observe associ-
ation with these SNPs and HAM/TSP development.
However, in our study, we observed higher PVL in
HAM/TSP patients TGF-β high producers (+10TT or
TC, and + 25GG) compared to AC, suggesting a role of
this cytokine in control of the viral replication and dis-
ease prognosis. Additional factors might affect the

Table 5 Haplotype distribution of the IL-10 (−1082G/A,-819C/T
and-592C/A) according with the clinical condition

Haplotypes HAM/TSP Asymptomatic

N (%) N (%) OR (IC:95%) p-valuea

GCC 56 (41.18) 54 (32.53) 1

ATA 49 (29.52) 69 (50.74) 0.64 (0.36–1.12)

ACC 31 (22.79) 43 (25.9) 0.62 (0.34–1.13) 0.19

HAM/TSP HTLV-1 associated myelopathy tropical spastic paraparesis,
Asymptomatic HTLV-1 patients, OR odds ration with confident interval
aChi-square 3 × 2 contingent tables
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Fig. 1 HTLV-1 pro viral load according with cytokines genotypes and phenotypes in HAM/TSP versus AC. The proviral load was expressed as
percentage of infected blood leukocytes. a, b and c represent TNFA-308G/C, IL6-174GC genotypes and d represent TGFB1 phenotypes. Statistical
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expression of TGF-β during the HTLV-1 infection,
changing the gene expression levels regardless the
polymorphisms influence [5, 36, 37]. To the best of
our knowledge, there is no previous work describing
the TGFB SNP in HAM/TSP patients.
HTLV-1 infection in HAM/TSP patients does not alter

the expression of IL-10 when compared with AC patients
[38]. SNPs in the IL10 gene are controversially associated
with the HAM/TSP outcome. A Japanese population
showed an association between the IL10 -592A allele and
a protective effect, reducing risk of HAM/TSP [39]; how-
ever, this SNP was considered to be a risk factor for devel-
oping HTLV-1 infection and disease in an Iranian
population [22]. No association between IL10 SNPs and
HAM/TSP outcome was observed in a Brazilian popula-
tion [21] in a high-risk HTLV-1 prevalence area with 9.4/
1000 habitants [40]. In our set of Brazilian population en-
rolled from Rio de Janeiro City, an intermediate HTLV-1
prevalence risk area, with 4.7/1000 habitants [40] there
was no association with the disease outcome. At position
IL10–1082A/G, an Iranian population showed no associ-
ation with HAM/TSP in a co-dominant genetic model
[22]. There were no previous reports describing the SNP
in this position in Brazilian HTLV-1-infected individuals.
Our results showed a predominance of intermediate pro-
ducers of IL10-1082AG and GG genotypes among the
HAM/TSP individuals (OR 2.42 [1.2–4.97] p = 0.01), pre-
disposing to disease outcome, although the data lost
significance after Bonferroni correction for multiple com-
parisons. Low-producer haplotypes (IL10-1082A, − 819 T
and -592A) have been previously associated with AC or
HAM/TSP compared with healthy controls [40]; however,
no association was described between AC and HAM/TSP
groups, as described in this study. Our results demon-
strated that only IL10–819CC and -592AA carriers, pre-
senting high levels of IL10 production, have the highest
PVL when the HAM/TSP group was compared with the
AC group.
The infection caused by HTLV-1 elicits a robust im-

mune response with many factors affecting the cytokines
gene expression, such as genetic population’s back-
ground, virus subtypes, immunomodulation and individ-
ual health status. Indeed, it has been shown that
different subtypes of HTLV-1 are region restricted, be-
sides the genetic background of ethnicities across the
world [41]. This fact could explain association between
polymorphisms of cytokine genes, such as IL10 -592C/A
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Fig. 2 HTLV-1 pro viral load according with IL10 genotypes and
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1082G/A and IL-10 -592A/C and -819C/T genotypes. c represents IL-10
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p value
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and IL10–1082A/G, and HTLV-1 infection in some spe-
cific populations. On the other hand, some polymor-
phisms, such as TNF -308G/A, IFNG + 874 T/A, IL6
-174G/C, are repeatedly not associated with the disease,
regardless genetic background population, suggesting ir-
relevant role in the HTLV-1 infection. However, more
studies in different populations are needed to confirm this
hypothesis. Despite no association with disease develop-
ment, some of these polymorphisms in cytokine genes,
such as IFNG + 874 T/A, TNF -308G/A, IL6 -174G/C,
TGFB + 10 T/C and + 25G/C, IL10–819C/T and -592C/A
might change PVL, indicating a role of this polymor-
phisms in the controlling of the viral replication and dis-
ease prognosis.
Our study might be analyzed considering its limita-

tions such as the number of patients enrolled and the
unavailability to measure cytokines concentrations in
plasma or cultured cells in the patients. As we used con-
venience samples, we had limitations regard sample size
and biological material to perform the analysis. Despite
these polymorphisms are well established to modulate
the cytokines production, is not clear its role on the
HTLV-1 infection. Future studies addressing the role of
these polymorphisms in different populations, associated
with the cytokines production, might clarify the role of
these functional SNPs in the HTLV-1 infection.

Conclusion
In conclusion, besides the importance given to pro- and
anti-inflammatory cytokines in the outcome of HAM/
TSP, we could not affirm that TNFA-308G/A, IL6-174G/
C, IFNG + 874 T/A, TGFB at the codons + 10 T/C and +
25G/C, IL10-592C/A and -819C/T, and -1082A/G poly-
morphisms are related to either disease progression,
even those related with the amount of secreted cyto-
kines. Genetic background may be studied in other sets
of populations to determine and understand the com-
plex role of cytokine networks in HTLV-1 infection and
improve the clinical studies for this disease.
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