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Abstract: In this report, we compared the success rate of classification of coding sequences (CDS) vs. introns by Codon Structure 
Factor (CSF) and by a method that we called Universal Feature Method (UFM). UFM is based on the scoring of purine bias (Rrr) 
and stop codon frequency. We show that the success rate of CDS/intron classification by UFM is higher than by CSF. UFM classifies 
ORFs as coding or non-coding through a score based on (i) the stop codon distribution, (ii) the product of purine probabilities in the 
three positions of nucleotide triplets, (iii) the product of Cytosine (C), Guanine (G), and Adenine (A) probabilities in the 1st, 2nd, and 
3rd positions of triplets, respectively, (iv) the probabilities of G in 1st and 2nd position of triplets and (v) the distance of their GC3 vs. 
GC2 levels to the regression line of the universal correlation. More than 80% of CDSs (true positives) of Homo sapiens (250 bp), 
Drosophila melanogaster (250 bp) and Arabidopsis thaliana (200 bp) are successfully classified with a false positive rate lower or 
equal to 5%. The method releases coding sequences in their coding strand and coding frame, which allows their automatic translation 
into protein sequences with 95% confidence. The method is a natural consequence of the compositional bias of nucleotides in coding 
sequences.
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Introduction
With the continuously growing of sequencing activities, 
the demand for automatic gene finding processes 
remains a priority. The strategies of gene localization 
relies on extrinsic (homology search) and intrinsic 
(pattern search) methodologies. High confidence 
levels can be given to the extrinsic methods even 
at small sequence size (300 bp) given the negli-
gible probability of achieving good alignment just 
by chance. Extrinsic methods definitely allowed 
the improvement of gene annotation reliability by 
comparison with well documented protein families. 
However, they depend on reliable sequences for com-
parison. In addition, they may fail to recognize protein 
regions that are not associated to enzymatic domains 
because of their lower conservation rate.

In eukaryotes, intrinsic gene detection was classi-
cally considered in several steps: (i) coding sequences 
(CDS) detection, (ii) intron detection, (iii) 5’ and 3’ 
gene extremities search, (iv) promoter localization, 
and (v) gene structure confirmation by local base 
composition profiling.1

Methods for CDS detection2–4 were initially 
based on the codon usage5 and were classically 
solved by Markov chains6 and neural network based 
algorithms.7–11 Later on, multiple stage probabi-
listic models called Hidden Markov Models inte-
grating the whole information about gene structure 
were proposed.12,13 The success rate of these models 
depends on the representativeness of training sets.14 
The concept of a self-training algorithm has been 
introduced with the purpose of extending the applica-
bility of these models to the gene search in genomes 
with little or no previous information.15,16

Methods based on nucleotide statistics were also 
introduced. Zcurve, one of these methods,17–19 is 
used for the whole genome characterization,20 but it 
also requires a training step. Other methods based 
on nucleotide statistics are sensitive to nucleotide 
periodicity in CDS.21–26 These methods are largely 
independent of the biological species under con-
sideration and, therefore, are not supposed to be 
trained. They offer the advantage to be tolerant to 
the codon usage, but suffer lack of sensitivity for the 
detection of CDSs with sizes below 400 bp. Among 
these methods AMI (Average Mutual Information25) 
and SRM (Spectral Rotation Measure26) are the most 
relevant.

The success rate of methods based on the detection 
of the so called ‘ancestral codon’ characterized by 
the RNY pattern27 has been recognized to be higher 
at sequence sizes below 350 bp28 than methods based 
on nucleotide periodicity in CDS. The implemen-
tation by Nikolaou and Almirantis29 maximizes a 
function based on the Codon Structure Factor (CSF) 
that measures the codon asymmetry in the 3 frames. 
The maximum of this function tells if the sequence 
must be considered for coding or not by reference to 
a given threshold.

Compared to CSF, the method introduced by 
Carels et al30 implements a function based on purine 
bias (Rrr) and stop codon frequency. For commodity, 
we decided to use the acronym UFM (for Universal 
Feature Method) to refer to this method. UFM is 
largely independent of codon usage and is the first 
among the methods based on nucleotide statistics that 
is able to classify the coding frame among the six 
possible frames of a given coding ORF without any 
parametric adjustment.

The current tendency in CDS classification is to 
combine several intrinsic methods and to identify 
their domain of convergence. This allows the reduc-
tion of false positive rate and, as a consequence, to 
increase their success rate at small sequence size, 
i.e. 300 bp.28 Intrinsic methods can also be combined 
with extrinsic methods, with the same purpose.31

Here, we focus on methods of CDS/intron clas-
sification that do not need training steps and in par-
ticular on methods based on the detection of the 
RNY pattern (CSF, UFM) because their success rate 
is higher than the methods based on the detection 
of nucleotide periodicity (AMI, SRM). Actually, 
the success rates of AMI and SRM typically 
vanish for sequences smaller than 350–400 bp.32 
We first compare the success rate of CDS/intron 
classification of CSF with that of a new version of 
UFM. Secondly, we show how UFM scoring can 
be improved to classify coding and non-coding 
CDSs (∼250 bp) of Homo sapiens, Drosophila 
melanogaster and Arabidopsis thaliana. We show 
that more than 80% true positives of CDSs of 
Homo sapiens (250 bp), Drosophila melanogaster 
(250 bp) and Arabidopsis thaliana (200 bp) are 
successfully classified with a false positive rate 
lower or equal to 5%. The method releases coding 
sequences in their coding strand and coding frame, 
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which allows their automatic translation into protein 
sequences with 95% confidence.

Materials and Methods
Sequence materials
We built datasets with coding sequences (CDS) of 
three model species including Arabidopsis thaliana 
(CDS = 1206, GC3 = 25%–65%), Drosophila 
melanogaster (CDS = 1262, GC3 = 40%–85%) and 
Homo sapiens (CDS = 1199, GC3 = 30%–90%).

We retrieved complete nuclear CDSs from 
GeneBank (release 137–15 August 2003) using the 
ACNUC/QUERY retrieval system33 with the options: 
t = cds et no o = plastid et no o = mitochondrion 
et no k = partial et no k = est. Then, we used the 
bibliographical references reported under the field 
MEDLINE in the features to build datasets of experi-
mentally proven genes as follows: (i) the MEDLINE 
identification numbers were used to retrieve the 
abstracts of the corresponding genes from the NCBI 
server (PubMed), through a CGI interface (PERL); 
(ii) those abstracts were then screened to elimi-
nate mitochondrial and chloroplast genes as well as 
(retro)transposons and references based on any kind of 
automatic in silico process. To eliminate redundancy 
from CDS samples, we looked for homology between 
sequences using BLASTN with the “-e” option equal 
to 0.0001. A cleaning procedure was then applied to 
the BLASTN file in order to eliminate the sequences 
implied in a homologous pair with the highest hit 
when it was above a given identity level. The identity 
level above which two sequences were considered 
redundant was set to 90% over 90% of the homolo-
gous regions with the shorter sequence of the pair.

All sequences of our test samples were started 
with an ATG, and ended with a stop codon and did not 
have in-frame internal stop codon, which warrant that 
they were in frame +1. To allow statistical comparison, 
sample size was normalized to 1000 per species.

We tested the success rate of CDS/intron clas-
sification with the CDS samples of A. thaliana, 
D. melanogaster, H. sapiens just described and sam-
ples of intron sequences of these species retrieved 
from http://hsc.utoledo.edu/bioinfo/eid/index.html.34 
For purpose of normalization, CDS and intron datas-
ets were built by cutting pieces of fixed size extend-
ing from the 5’ side to the desired sequence size. Two 
sets of intron sequences were prepared according 

to sequence availability. The first was obtained by 
selecting introns 1000 bp. Datasets of sequence 
fragments of 300, 400, 500, 600 bp were then prepared 
from the 5’ side of coding and intron sequences. This 
sequence material was used to compare the success 
rate of CDS/intron classification by Codon Structure 
Factor (CSF) and Universal Feature Method (UFM) 
(see below). The size of sequence samples of this 
experiment was normalized to 500 per species. The 
second was obtained by selecting introns 500 bp. 
Datasets of sequence fragments of 150, 200, 250, 
300, 350 and 400 bp were then prepared from the 5’ 
side of these sequences. This sequence material was 
used to compare the success rate of the UFM in vari-
ous experimental conditions (see below). The sample 
size for this experiment was normalized to 1000 per 
species.

Conventions and classification contexts
The translation of a nucleotide fragment by a ribo-
some occurs in opposite ways on both strands of the 
corresponding double strand DNA. Therefore, the 
nucleotide sequence of one strand is the reverse com-
plement of the other. By convention, the coding strand 
of a CDS is indicated by “+” and the complementary 
strand by “-”. By extension, the frames on the coding 
strand are indicated by k ∈ {+1, +2, +3} and are 
in-frame with the 1st, 2nd and 3rd positions of codons, 
respectively. On the complementary strand, the non-
coding frames are indicated by k ∈ {-1, -2, -3} and 
are in-frame with the reverse complement of the 
1st, 2nd and 3rd positions of codons, respectively. 
By default, we considered that sequences were on the 
“+” strand. Therefore, the corresponding sequences 
on the “-” strand were obtained by calculating their 
reverse complement.

We took two classification contexts into account: 
the first concerned the comparison of CSF and UFM 
for CDS/intron classification and the second con-
cerned the implementation of UFM in an algorithm 
that is compatible with ab initio gene-finding.

In the first case, CDSs and introns were considered 
on the whole, to be consistent with former investi-
gations on CSF.29 By consequence, CSF and UFM 
functions were calculated among the three positive 
frames, only. In the second case, we wanted to 
measure the influence of the ab initio gene-finding 
context on the performance of UFM. In that context, 
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neither the coding strand nor the coding frame is 
known a priori. This implies the calculation of UFM 
for ORFs over the six frames. By ORF, we mean 
a stretch of DNA that starts and ends with stop 
codons (TAA, TAG, TGA) or sequence extremi-
ties separated by a whole number of nucleotide 
triplets.

Scoring the coding potential  
of ORFs with UFM
The methodology used here involves four steps: 
(i) extraction of all ORFs from all frames (three in 
CDS/intron classification context and/or six in ab 
initio classification context) of a given DNA sequence; 
(ii) elimination of the ORFs without the purine bias 
characteristic of CDSs; (iv) selection of the largest of 
these ORFs if and only if its size exceeded the selected 
threshold size and (v) declaration of the selected ORF 
as putatively coding.

The scoring of the contribution of purines 
bias to CDSs was carried out by computing the 
relative frequencies, Pi(  j), of the four nucleotides 
i (i∈{A,C,G,T}) in the three positions j of triplets 
(  j∈{1,2,3}) over all frames. The probabilities Pi(  j ) 
were computed as the ratio of a given occurrence to 
the number of contiguous triplets N = n/3 where n is 
the nucleotide number in the sequence. The contribu-
tion of purines (A and G) was evaluated in the three 
positions of triplets by computing the product of their 
relative frequencies PA(1)PG(1) over all frames. We also 
computed the number of stop codons (TAA, TAG, 
TGA—that we denoted STOP) and the product of the 
relative frequencies of C, G and A, i.e. PC(1)PG(2)PA(3), 
over all frames.

Using the terms just described, we set up a 
feature for the diagnosis of coding ORFs as follows: 
fk = PA(1)PG(1)/(PC(1)PG(2)PA(3)+STOP+W) where (i) STOP 
is the number of stop codons in-frame with the frame 
k considered, (ii) k ∈{+1,+2,+3} in the CDS/intron 
classification context or k ∈{-1,-2,-3,+1,+2,+3} in 
the ab initio classification context, as noted above and 
(iii) W is a constant whose most appropriate value 
was found to be 0.01.

A sequence was classified as coding when 
(i) the difference between the maximum (  fmax) and 
the minimum (  fmin) values of fk over all frames k was 
higher or equal to a threshold τUFM whose optimi-
zation is described below. In the following, we use 

the acronym PBI (for Purine Bias Index) to refer 
to the quantity max( fk )–min( fk ). Therefore, UFM 
classifies a sequence as coding when PBI  τUFM.

Comparing CSF and UFM for CDS/intron 
classification
We computed the Codon Structure Factor (CSF) by 
calculating the quantity CSFk = ∑ RI J L/(PL(1)PJ(2)PI(3)) 
where (i) n is the sequence size; (ii) RI J L is the 
frequency of triplets having the nucleotides I, J and 
L ∈ {A,C,G,T} in 1st, 2nd and 3rd positions, respec-
tively; (iii) PL(1), PJ(2) and PI(3) are the frequencies 
of the nucleotides L at the 1st position, J at the 2nd 
position and I at the 3rd codon position, respectively. 
Both R and P are frequencies relative to n. The maxi-
mum of the three values CSFk is taken to be the CSF, 
i.e. CSF = max(CSFk).

29 The sequence is classified as 
coding if CSF  τCSF , where τCSF is a threshold whose 
optimization is described below.

Optimization of classification thresholds
The optimal threshold values of CDS/intron classifi-
cation by CSF (τCSF) and UFM (τUFM) were estimated 
by fixed-point optimization35 of the harmonic mean of 
sensitivity and specificity. The resulting function is a 
F-score36 = 2*Sn*Sp/(Sn + Sp) where Sn = TP/(TP + FN) 
is the sensitivity and Sp = TN/(TN + FP) the specificity, 
i.e. TP  = “true positives” (sequences correctly clas-
sified as coding), FP = “false positives” (sequences 
wrongly classified as coding), TN = “true negatives” 
(sequences correctly classified as non-coding) and 
FN = “false negative” (sequences wrongly classified 
as non-coding).

According to this procedure and the 24 datasets 
of 500 sequences of this study (datasets of 300, 400, 
500 and 600 bp for CDSs and introns of H. sapiens, 
D. melanogaster and A. thaliana), we calculated that 
τCSF = 75 and τUFM  = 1.

Classifying coding and non-coding 
ORF with UFM
The procedure of coding ORF diagnosis that we 
describe below (see algorithm) involves (i) the identi-
fication of ORFs with the typical purine bias of CDSs 
(PBI  1), (ii) the extraction of the largest among 
these putative coding ORFs and (iii) two filtering 
steps (a priori and a posteriori) that reduce the rate of 
false positives. In these filters, we calculated (i) GC as 
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the frequency of G + C relative to the sequence size, 
(ii) GC2 as the frequency of G + C in 2nd position of 
triplets relative to the triplet number and (iii) GC3 as 
the frequency of G + C in 3rd position of triplets rela-
tive to the triplet number.

We used two conditions of a priori filtering both 
based on the distance of GC3 vs. GC2 to the orthogo-
nal regression line (GC3 = 7.14*GC2-241.5) of the 
universal correlation,37 i.e. “accept ORF as coding if 
GC2  (GC3 + 120)/3” (equivalent to “accept ORF 
as coding if GC3  1.5*GC-27”) when “GC  60%” 
(filter 1) or when “GC  50%” (filter 2), i.e. these 
two filters only differs by their GC cut off. These a 
priori filters allow the separation of putative coding 
ORFs from random non-coding ORFs (those 
with GC3≈GC2) in GC-rich sequences (found at 
least in warm-blooded vertebrates, Gramineae, 
and Chlamydomonas reinhardtii, with a GC higher 
than 60%).

We used one condition of a posteriori filtering 
that is “accept ORF as coding if G1  G2” (filter 3). 
This condition is known to be true in 94% of cod-
ing frames of complete CDSs30 and also allows the 
filtering out of false positives. However this filter 
was found to increase the number of false nega-
tives therefore slightly reducing the sensitivity of the 
method.

Algorithm for the implementation of UFM
1.	 Load the sequence into the program,
2.	 Scan the three frames in the “+” and “-” strands 

for stop codons,
3.	 For each the “+” and “-” strands, construct a table 

with the ORFs of the three frames,
4.	 For each strand, scan the corresponding ORF table 

and:
	 • � measure the ORF size,
	 • � if the ORF under consideration is larger than a 

selected size threshold:
	  � calculate f over the six frames of that ORF 

and return it if PBI  1,
	  � a priori filtering,

5.	 Chose the largest ORF among “+” and “-” ORFs 
returned by loop 4,

	 • � if the two largest ORFs from “+” and “-” strands 
are of the same size, chose the one with the high-
est score f1, i.e. fmax in frame +1,

6.	 A posteriori filtering.

Results
Comparison of the performances  
of UFM and CSF methods
The values of the classification thresholds (τ) that we 
found after fixed point optimization of the harmonic 
mean of sensitivity (Sn) and specificity (Sp) were 
τCSF = 75 and τUFM = 1 for CSF and UFM, respectively. 
Given τCSF and τUFM, the F-score values of CDS/intron 
classification by UFM were higher than those by 
CSF in all three species with differences of 8%, 11% 
and 24%, on average, in Homo sapiens, Drosophila 
melanogaster and Arabidopsis thaliana, respectively 
(Table 1, Fig. 1).

The success rate of CDS/intron classification 
with UFM was found to be higher in A. thaliana and 
D. melanogaster than in H. sapiens (Fig. 1) suggest-
ing fundamental differences in the intron composi-
tion of H. sapiens compared to the other two species 
(see below). However, convergence between CDS/
intron classification among the three species was 
reached at sequence size 600 bp with a classification 
rate 97%. By contrast, CDS/intron classification with 
CSF was higher for D. melanogaster and H. sapiens 
than for A. thaliana and was still 95% at 600 bp 
without a significant convergence trend (Fig. 1).

When considering CSF, we found that Sn and Sp 
vary in opposite ways across the sequence size range. 
This suggests the dependence of τCSF from the sequence 
size. By contrast, both Sn and Sp of UFM increase 
with sequence size for all species, which indicates 
strong evidence of the independence of its threshold 
of both sequence size and species suggesting that it is 
a robust classifier (Table 1).

The CSF distribution has a strong right asymme-
try with standard deviation and mean variance with 
sequence sizing (Fig. 2). This property is responsible 
for the variation of τCSF with sequence size and cannot 
be solved by simple variable transformation such as 
log or square-root (not shown). By contrast, the asym-
metry of UFM distribution is lower and false posi-
tives are due to intronic ORFs that have a purine bias 
compatible with that of CDSs (Fig. 3).

Comparing the success rate of coding 
and non-coding ORF classification by UFM
Intermediary results of coding frame diagnosis by 
algorithm of UFM are summarized in Table 2 where 
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we compared coding sequences (CDS) from Homo 
sapiens (Hs), Drosophila melanogaster (Dm) and 
Arabidopsis thaliana (At) (column 1, Sp) of variable 
sizes (column 2, Bp) and 1000 occurrences by sample 
(column 3, N). Data from this table show that PBI is 
always 1 in the coding frame (column 4, ∆F + 1). 
The number of CDSs whose putative coding ORFs 
are of the same size on “+” and “-” strands increases 
with the reduction of ORF size between 400 bp (∼20%) 
and 150 bp (∼70%) in H. sapiens and D. melanogaster. 
In A. thaliana, the probability of two ORFs having the 

same size is lower between 400 bp (∼3%) and 150 bp 
(∼40%) than in the other species (column 5, Bp+ = Bp-). 
The “-” strands of these sequences were all found to 
be PBI  1 (column 6, ∆F-  1), which is a potential 
source of false positives since f1  PBI. Effectively, 
f1 is larger than 1 in almost all “+” strands of CDSs 
(column 7, F+1  1). f can also be larger than 1 in 
the “-” strand (column 8, F-1  1) and fmax is found 
in the real frame -1 of CDSs, in the majority of these 
cases (column 9, Fr-1). fmax can also occur in the real 
frames -2 (column 10, Fr-2) and -3 (column 11, 
Fr-3) of experimentally proven CDSs. Of course, 
these errors of coding frame diagnosis increase with 
the reduction of sequence size. However, we generally 
observed that f+1  f-1 (column 12, Fr+1  Fr-1) and 
that the error rate occurring when f+1  f-1 (column 13, 
F+1  F-1) is  5% for ORF  250 bp (gray area). 
The error rate is generally the highest in frames -1 
and -2 of experimentally proven CDSs and the frame 
where its maximum is found varies according to the 
species and sequence size (columns 14, Fr-1 and 15, 
Fr-2). The error rate in frame -3 remains marginal 
(column 16, Fr - 3).

Even if not sufficient, PBI  1 is a necessary con-
dition for a sequence to be considered coding (step 4 of 
the algorithm, Fig. 3). We found that PBI values were 
scattered between 1 and 12 and were centered on 4–5 
when UFM was run on CDSs (Fig. 3). Running the 

Table 1. Comparative analysis of CDS/intron classification by SCF and UFM.

Species Size, bp CSF UFM
 Sn1 Sp2 F-score3 Sn4 Sp5 F-score
H. sapiens 300 88.8 74.6 81.1 100.0 76.0 86.4

400 86.6 87.6 87.1 100.0 88.0 93.6
500 85.2 93.6 89.2 100.0 93.0 96.4
600 84.2 93.4 88.6 100.0 97.4 98.7

D. melanogaster 300 95.2 71.4 81.6 99.8 97.4 98.6
400 95.8 82.8 88.8 99.8 97.8 98.8
500 93.4 89.6 91.5 100.0 98.6 99.3
600 94.8 92.6 93.7 100.0 98.6 99.3

A. thaliana 300 90.8 59.6 72.0 100.0 100.0 100.0
400 82.2 78.8 80.5 100.0 100.0 100.0
500 78.6 90.8 84.3 100.0 100.0 100.0

 600 78.8 93.0 85.3 100.0 100.0 100.0
1Sensitivity (%) of CSF for τ = 75. 2Specificity (%) of CSF for τ = 75. 3F-score (%) = 2*Sn*Sp/(Sn + Sp). 4Sensitivity (%) of UFM for τ = 1. 5Specificity (%) 
of UFM for τ = 1.
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algorithm on introns led to disclose that values of 
most intronic ORFs were PBI  1 (typically 0) and 
that a minority of ORFs were still PBI  1 but 6, 
which means they have a purine bias similar to that 
of CDSs (false positives). The score of PBI associ-
ated with these false positives of coding ORFs was 
centered on 2 (Fig. 3). As pointed out above, the 
probability of an intronic ORF to be confounded 
with a CDS increases with the reduction of its size 
(Fig. 3). In H. sapiens, we found ∼12% false positives 
when ORFs were 400 bp (Table 3). By contrast, the 

threshold of ∼10% false positives occurred at about 
250 and 200 bp in D. melanogaster and A. thaliana, 
respectively (Table 3).

The success rate of coding diagnosis in CDSs was 
close to 100% (Table 3). However, the rate of false 
positives in introns was too high with ∼12% at 250 bp 
and 400 bp in D. melanogaster and H. sapiens, respec-
tively. Consequently, a model for intronic ORFs is 
needed to improve this picture and should be inserted 
in step 4. In the absence of such a model, we tested the 
effect of filter 1, filters 1 + 2 and filters 2 + 3.

Table 3. CDS/intron classification by UFM with filters 1, 2 and 3 in CDS and intron sequences of H. sapiens, D. melanogaster 
and A. thaliana varying between 150 and 400 bp.

Species Filters Seq. Size, bp
   150 200 250 300 350 400
H. sapiens 0 CDS* 100 100 100 100 100 100

Intron** 57.7 40.6 27.5 20.5 15 11.7
1 CDS 96.5 96.9 97.5 97.8 98.4 98.9

Intron 47.0 29.8 17.1 10.5 7.0 4.2***
1 + 3 CDS 85.3 87.9 89.2 92.6 93.5 94.5

Intron 28.4 18.3 10.7 7.6 4.8 2.7
2 + 3 CDS 78.1 81.0 82.6 85.0 86.5 87.8

Intron 20.3 11.0 4.6 3.3 1.5 0.8
D. melanogaster 0 CDS 100 99.8 100 99.9 99.9 99.9

Intron 43.6 25.8 12.2 5.6 3.7 2.6
1 CDS 97.7 98.3 98.7 98.5 98.6 98.8

Intron 43.6 25.8 12.2 5.6 3.7 2.6
1 + 3 CDS 87.2 89.7 90.9 92.3 93.4 94.1

Intron 25.6 13.2 8.4 3.9 2.3 1.8
2 + 3 CDS 81.3 82.2 83.6 86.0 87.4 88.5

Intron 21.5 11.5 5.8 3.1 1.8 1.4
A. thaliana 0 CDS 99.7 99.8 99.9 100 99.8 99.9

Intron 27.1 9.1 2.6 0.8 0 0
1 CDS 99.7 99.7 99.8 100 99.8 99.9

Intron 27.1 9.1 2.6 0.8 0 0
1 + 3 CDS 86.9 88.3 90.9 92.7 94 94.4

Intron 16.2 5.3 1.8 0.7 0 0
2 + 3 CDS 76.2 77.0 79.3 83.2 85.3 85.9

  Intron 16.2 5.3 1.8 0.7 0 0

*“CDS” indicates the proportion (%) of CDS that were correctly classified by the corresponding algorithm, i.e. the true positives. The CDS that are not 
detected, i.e. the false negatives are missing from the CDS output list.
**“Intron” indicates the proportion (%) of introns that were wrongly classified, i.e. the false positives. The non-coding sequences correctly classified do not 
appear in the output list. All entries whose values is 0 contain an ORF whose purine bias is typical of a CDS for the size threshold considered.
***Gray areas indicate cases where the false positive rate of coding ORF diagnosis is below or close to 5%.
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Filter 1 can be inserted in the UFM algorithm a priori 
as well as a posteriori because it does not come into 
conflict with the coding frame diagnosis. When filter 1 
was inserted a priori, the rate of classification at 150 bp 
was found to be improved by only 1.6%, 0.7%, 0.1% 
in H. sapiens, D. melanogaster and A. thaliana, respec-
tively. At 200 bp, the difference between a priori and a 
posteriori classification was 1% in the three species.

As shown in Figures 4A, C, E, the universal 
correlation is such that the GC2 level of coding ORFs 
is smaller than the quantity (GC3 + 120)/3 in 92% 
of the cases, provided that these ORFs are greater 
than 300 bp and with a GC level larger than 60%. 
This condition allows the elimination of about half 

of GC-rich intronic ORFs in H. sapiens (Fig. 4B) 
without significantly affecting the success rate of 
CDS diagnosis. Actually, non canonic true CDSs hav-
ing a GC2 level larger than the quantity (GC3 + 120)/3 
(Figs. 4A, C) only make up 3% of human CDSs 
larger than 200 bp (Table 3). Filter 1 does not affect 
false positive rates in D. melanogaster and A. thaliana 
because these two species do not carry intronic ORF 
whose GC2 level is larger than 60% (Figs. 4D, F).

By contrast to filter 1 and filter 2, filter 3 cannot 
be inserted in the UFM algorithm a priori because it 
is not only true in 94% of frames +1 of complete 
CDSs (data not shown), but also in ∼60% of their 
frames -1 with the consequence that it would 
come into conflict with the success rate of coding 
frame diagnosis (data not shown). The addition of 
filter 3 to filter 1 (Table 3) was found to strongly 
decrease the false positive rate in H. sapiens. 
With this combination of filters, we reached the 
threshold of 5% false positives at 350, 300, 
250 bp with a success rate of CDS diagnosis 90% 
in H. sapiens, D. melanogaster, A. thaliana, respec-
tively (Table 3). However, a posteriori filtering 
with filter 3 could also be performed at step 5 of 
the algorithm. In that condition, we observed that 
it does not interfere with coding frame, however, it 
did not significantly improve the performance of the 
algorithm in comparison to the filtering by introducing 
filter 3 at step 6 (data not shown). This indicates that, 
in the case of filter 3, if an ORF candidate satisfies the 
condition G1  G2, it will necessarily reach step 6.

The reasoning with filters 2 + 3 is, of course, 
identical to that with filters 1 + 3. The difference 
between success rates from both filter combinations 
is linear. The combination of filters 2 + 3 shows that 
it is possible to reach the threshold of 5% false posi-
tives at 250 bp even in H. sapiens, but it is at cost of 
the success rate of CDS diagnosis that comes down 
from 90% to ∼80% (Table 3).

The GC distribution of introns matches lower 
values than that of CDSs (Figs. 5A, B, C). In 
D. melanogaster and A. thaliana, GC is almost 
sufficient to classify coding and non-coding ORFs 
(Figs. 5B, C, respectively). In H. sapiens, the GC 
distribution of introns largely overlaps that of CDSs 
and such classification is more difficult to carry 
out as shown by the GC distributions of false posi-
tives in H. sapiens, D. melanogaster and A. thaliana 
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(Figs. 5D, E, F, respectively). These distributions also 
show that false positives are especially difficult to filter 
out in the range of base composition between 40% and 
60% GC (Figs. 5D, E). This is obvious when using 
filters 2 + 3 since the gain on false positive rate is at cost 
of success rate of CDS diagnosis (Table 3, Figs. 5G, H). 
Below 40% GC, the codon stop frequency is usually 
high enough to allow the elimination of 95% of non-
coding ORFs  200 bp (Table 3, Figs. 4F, 5F, I).

The difficulty of false positives filtering for GC 
level between 40% and 60% is due to the overlapping 
of GC2 and GC3 in CDSs, on the one hand, and in non-
coding ORFs, on the other hand, in this interval of base 
composition (Fig. 6). This makes difficult to discrimi-
nate coding ORFs from pseudo-random sequences.

Discussion
General considerations on scoring 
the purine bias and stop codons
One specific feature that has been recognized to be 
general to all coding sequences (CDS) is the purine 

bias,27,30 i.e. the fact that the probability of finding 
a purine is higher in the 1st position of codons than 
in the 1st position of nucleotide triplets among any 
other five frames. The fact that the probability to find 
a purine is the highest in the 1st position of codons 
(PA(1)PG(1)) justifies the proportionality of a function 
f that maximizes this feature. By contrast, the product 
of probabilities of C in the 1st, G in the 2nd and A in 
the 3rd position of codons takes its minimum value 
in the coding frame of ∼93% of complete CDSs,30 
therefore, it is justified that f is inversely proportional 
to PC(1)PG(2)PA(3) together with stop codon frequency 
(STOP), which is null in that frame. The absolute or 
relative frequency of stop codons can be used equally. 
However, the variation range of f is smaller using 
the absolute frequency (1 to 12) and that is why we 
used it in place of the relative frequency (1 to 80). 
Since the denominator cannot be equal to 0, and a 
constant is necessary; the best value for that con-
stant is 0.01 (data not shown). Actually, this constant 
is a multiple of G2 whose range of variation is very 
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limited over the whole biological spectrum (data 
not shown). The difference between the maximum 
of f, found in frame +1, and the minimum of f, found 
in another frame is expected to be higher in CDSs 
than in non-coding DNA since purine bias is not 
expected in random sequences. We can therefore use 
the information carried by the purine bias index (PBI) 
given by PBI = fmax-fmin to score the coding potential 
of a DNA sequence. This index is theoretically null 
in random sequences since f is the same in all frames 
with the consequence that fmax = fmin.

It is interesting to note here that the success rate 
of UFM classification is such that we can conclude 
that 80% of CDS  250 bp follow the pattern of 
purine bias introduced by the ancestral codon.

Comparing the success rate of CDS/
intron classification by CSF and UFM
The sensitivity (Sn) measures the accuracy of classifiers 
in detecting coding sequences while the specificity (Sp) 
measures their accuracy in detecting introns. Therefore, 
the harmonic mean (F-score) of Sn and Sp is the best 
measure of the overall efficacy of a classifier in a coding/
non-coding classification context. For this reason, we 
can conclude that UFM is at moment the best method 
of CDS/intron classification among the methods that do 
not need a training step (i.e. CSF, AMI and SRM).

The main advantage of UFM is that f1 is 1 in 
CDSs as short as 100 bp, which shows that the final 
decision by its algorithm concerning the coding status 
of an ORF can be improved with the inclusion of a 
better model for introns. This does not seem to be the 
case of CSF, AMI and SRM.

In the specific case of CSF a limitation of the 
method is due to the variation of the classification 
threshold (τCSF ) with the sequence size. This variation 
of τCSF is responsible for the poor robustness 
of CSF as a classifier and makes it difficult to 
automate.

Given that CSF is scoring the codon asymmetry, 
the lower classification rate of Arabidopsis thaliana 
by CSF is probably due to the higher homogeneity in 
base composition of its CDSs compared to those of 
Drosophila melanogaster and Homo sapiens.

Comparing the success rate of coding 
and non-coding ORF classification 
by UFM
Considering a CDS, it is obvious that the larger the 
ORF, the higher the probability that it matches the 
coding frame of a putative CDS. A corollary of this 
is that the higher the AT level of DNA, the stronger 
the statement. However, this consideration is true 
if the DNA under consideration is actually coding. 
If the DNA is not coding, the largest ORF does not 
make any sense. Therefore, the correct strategy is 
to search for the largest ORF among the poten-
tially coding ORFs of both plus and minus strands. 
This means that a measure for the coding poten-
tial of an ORF is needed. A condition that could 
improve the success rate of CDS/intron classifica-
tion should be better inserted in step 4 of the algo-
rithm (a priori). However, to be effective it cannot 
come into conflict with the coding frame diagnosis 
of the putative coding ORF. In that case, it would 
decrease the success rate of the algorithm because 
it would generate alternative ORFs not correspond-
ing to that of the coding frame of the actual CDSs 
(we understand by “actual CDSs” the ones proven 
through experimental investigations). That is what 
occurs when the condition G1  G2 is inserted in 
step 4 of the algorithm. If this is done, the success 
rate of CDS/intron classification by UFM decreases 
because G1  G2 is not only true in the coding 
frame of CDSs, but can also be true in other 
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non-coding frames of these CDSs. An alternative 
to this process of a priori filtering is a posteriori 
filtering. The consequence of a posteriori filtering 
is that it does not maximize the coding ORF search; 
it just filters out false positives. A true coding 
ORF  300 bp could be skipped by a posteriori 
filtering because it would not necessarily end up in 
the list of coding ORF candidates. This, together 
with statistical significance explains why true posi-
tives are increasingly lost when the size of ORFs 
under consideration is reduced (data not shown). 
A posteriori filtering is possible because a confident 
hypothesis of a coding frame is provided by f and 
allows testing the condition “G1  G2” that only 
occur by chance in non-coding ORFs, at rather low 
frequencies.

A priory or/and a posteriori filtering allow accep
table success rates of CDS/intron classification in 
H. sapiens despite large heterogeneity of this genome.38 
The higher rate of false positive elimination obtained 
through the use of these conditions shows that the 
ORFs on the diagonal of GC3 vs. GC2 are, indeed, 
quasi-random sequences.39 This is easy to establish 
for ORFs whose GC level is higher than 60%, but 
is difficult below this threshold. For that reason, 
we believe that filtering out false positives with 
these conditions is not very convenient and would 
be better replaced by a specific model for intronic 
ORFs. However, these simple filters can be useful 
for testing hypotheses since they allow coding 
ORF sampling according to objective and universal 
criteria.

False positives of coding ORFs of this study may 
have several sources. The most probable source of false 
positives may result from the activity of transposable 
elements. The cumulative intron invasion by trans-
posable elements over time may be considerable and 
may carry coding sequences that may further evolve 
in pseudogenes.40

An alternative source of false positives could be 
lncRNAs.41 These RNAs (200 bp) were shown to 
act in tissue specificity and to have regulatory func-
tions, in particular on brain activity.42 They can be 
found in intergenic sequences as well as in introns. 
They were mostly described in vertebrates (human and 
mouse) and their most obvious origin is pseudogenes, 
which may justify the conservation of a purine bias 
in a quasi-random context.
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