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Abstract

Background: Dengue includes a broad range of symptoms, ranging from fever to hemorrhagic fever and may occasionally
have alternative clinical presentations. Many possible viral genetic determinants of the intrinsic virulence of dengue virus
(DENV) in the host have been identified, but no conclusive evidence of a correlation between viral genotype and virus
transmissibility and pathogenicity has been obtained.

Methodology/Principal Findings: We used reverse genetics techniques to engineer DENV-1 viruses with subsets of
mutations found in two different neuroadapted derivatives. The mutations were inserted into an infectious clone of DENV-1
not adapted to mice. The replication and viral production capacity of the recombinant viruses were assessed in vitro and in
vivo. The results demonstrated that paired mutations in the envelope protein (E) and in the helicase domain of the NS3
(NS3hel) protein had a synergistic effect enhancing viral fitness in human and mosquito derived cell lines. E mutations alone
generated no detectable virulence in the mouse model; however, the combination of these mutations with NS3hel

mutations, which were mildly virulent on their own, resulted in a highly neurovirulent phenotype.

Conclusions/Significance: The generation of recombinant viruses carrying specific E and NS3hel proteins mutations
increased viral fitness both in vitro and in vivo by increasing RNA synthesis and viral load (these changes being positively
correlated with central nervous system damage), the strength of the immune response and animal mortality. The
introduction of only pairs of amino acid substitutions into the genome of a non-mouse adapted DENV-1 strain was sufficient
to alter viral fitness substantially. Given current limitations to our understanding of the molecular basis of dengue
neuropathogenesis, these results could contribute to the development of attenuated strains for use in vaccinations and
provide insights into virus/host interactions and new information about the mechanisms of basic dengue biology.
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Introduction

Dengue virus (DENV) is an arthropod-borne flavivirus that

belongs to the family Flaviviridae. The DENV genome is a 11 kb

single-stranded RNA molecule of positive polarity that encodes

a single open read frame (ORF), which is flanked by two un-

translated regions (59 and 39UTR) [1–2], which are involved in viral

RNA replication and translation [3–6]. ORF translation generates a

single polyprotein that is cleaved by host and virus-derived proteases

to produce three structural (C, prM and E) and seven non-structural

proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5) [1].

The four serotypes of DENV (DENV-1 to DENV-4) are trans-

mitted to humans by the mosquito vector Aedes aegypti. Dengue

disease is endemic to subtropical and tropical countries, and the

World Health Organization (WHO) estimates that 50 to 100 million

individuals become infected annually. DENV infection results in a

spectrum of illnesses, ranging from a flu-like disease (dengue fever,

DF) to more severe and potentially fatal, dengue hemorrhagic fever

(DHF) and dengue shock syndrome (DSS) [7–8]. Epidemics with

high frequencies of DHF/DSS are spreading throughout South

America and unusual clinical presentations such as encephalitis,

hepatitis and other visceral signs are becoming more frequent [9–

12]. There are currently no vaccines or specific licensed antiviral

drugs for prevention or treatment of dengue [13–15].

Despite major advances in DENV biology, many aspects of

dengue pathogenesis remain largely unknown. Animal models

reproducing some of the salient features of dengue disease have

been used to investigate the underlying pathogenesis mechanisms.
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Multiple lines of evidence indicate that immunopathological

mechanisms play an important role in the development of

DHF/DSS [7,16]. The prevalence of DHF is higher in patients

experiencing secondary infection with a heterotypic dengue virus

serotype, leading to the suggestion that severe disease may result

from antibody dependent enhancement (ADE) [17–21]. However,

severe disease is often observed after primary infections, indicating

a role for individual strains of DENV, in addition to host factors

related to previous infection in the development of severe dengue

disease [22–25]. Disease severity is thus probably determined by

the interplay of viral and host factors. Several mouse models of

dengue disease have been described, but even those that faithfully

reproduce some features of human disease, present limitations

because they are based on the use of mouse-adapted viruses or

genetically modified animals. Nevertheless, these models have

provided insights into DENV pathogenesis.

Many studies have shown that mutations affecting the E protein,

which covers the flavivirus surface, can alter flavivirus virulence.

The E protein, a glycosylated dimeric membrane protein [26],

interacts with receptors on the host cell surface [27–28], mediating

virus binding and fusion to the host cell membrane [29–31] and

conferring protective immune responses by eliciting antibody

production [32–33].

Prestwood and coworkers [34] described a DENV-2 isolate that

had been obtained by passing a clinical isolate in mosquitoes and

mice, and that caused severe disease in AG129 mice. By reverse

genetic techniques, they identified two mutations affecting the E

protein (E124 and E128) as responsible for an increase in virulence.

The recombinant virus had a low affinity for heparin sulfate, re-

ducing its binding to cells and increasing its half-life in the serum.

This would potentially allow a larger number of viral particles to

infect the visceral tissues thereby increasing disease severity in this

mouse model.

NS3 protein is one of the most highly conserved proteins in

flaviviruses. This multifunctional protein has at least three different

activities [35]. It has a serine protease domain that catalyzes the

cleavage of several viral proteins, an RNA helicase domain, and an

RNA triphosphatase domain, which promotes dephosphorylation

of the 59UTR region during capping activities [36–46]. In the

course of human dengue infection, NS3 is a common target of T

cells [47].

The helicase domain of NS3 (NS3hel), together with NS5, an

RNA-dependent RNA polymerase, participates in viral RNA

replication and it is essential for genome propagation. It has been

demonstrated that the interaction between DENV NS3hel and

NS4B triggers the dissociation of the helicase from single-stranded

RNA thereby modulating viral replication. The enzymatic activities

and role of NS3 proteins in viral replication and polyprotein

processing have been studied for several members of the Flaviviridae

family [48–50], but only a few studies have identified point mu-

tations in NS3 modulating viral pathogenesis.

We previously described neurovirulent variants of DENV-1 that

were generated by adapting viruses to cause lethal neurological

disease in mice [51–52]. Comparisons of the sequences of parental

and mouse-adapted strains identified mutations affecting positions

402 and 405 of E protein, and in the helicase domain of the non-

structural protein NS3 (positions 209, 435 and 480), as potentially

responsible for this neurovirulent phenotype [52–53]. We eval-

uated the viral molecular determinants putatively identified as

contributing to DENV pathogenesis in a mouse model, by in-

troducing each mutation, individually or in combination, into a

non-neurovirulent infectious cDNA clone of DENV-1 and re-

covering genetically defined DENV-1 strains which were then

used to determine the effect of these mutations in vitro and in vivo.

These results build on previous demonstrations that multiple mu-

tations in different regions of the genomes of dengue and other

flaviviruses cooperate in the modulation of pathogenesis [54–56].

Methods

Ethics statement
Animal experiments were approved by the ethics committee for

animal experimentation of the Federal University of Parana

(CEP/UFPR 23075-0429663/2007-97). The procedures using

animals in this research project are specified in accordance with

the ethical principles established by the Brazilian College of

Animal Experimentation (COBEA) and requirements established

in ‘‘Guide for the Care and Use of Experimental Animals

(Canadian Council on Animal Care)’’.

Cell cultures
Aedes albopictus cells (C6/36) were grown at 28uC in Leibovitz L-

15 medium (Gibco/Invitrogen, Grand Island, NY, USA) supple-

mented with 0.26% Tryptose (Sigma-Aldrich, St. Louis, MO,

USA), 25 mg/mL gentamicin (Gibco/Invitrogen, Grand Island,

NY, USA) and 5% fetal bovine serum (FBS) (Gibco/Invitrogen,

Grand Island, NY, USA). Human hepatoma cells (Huh7.5) were

grown in 37uC, under an atmosphere containing 5% CO2, in

Dulbecco’s Modified Eagle Medium: Nutrient Mixture F-12

(DMEM/F12) (Gibco/Invitrogen, Grand Island, NY, USA)

supplemented with 25 mg/mL gentamicin and 10% FBS. Neuro-

blastoma cells (Neuro-2a) were grown in 37uC, under an atmo-

sphere containing 5% CO2, in Dulbecco’s Modified Eagle Medium

(DMEM) (Gibco/Invitrogen, Grand Island, NY, USA) supple-

mented with 1x non essential amino acids (Gibco/Invitrogen,

Grand Island, NY, USA), 25 mg/mL gentamicin and 5% FBS.

Infectious cDNA clones
All clones were constructed using the backbone of the infectious

genome-encoding plasmid pBACDV1 [57] (a bacterial artificial

chromosome plasmid – pBAC). The pBACDV1 consists of the

full-length cDNA of strain BR/90 (differing from the sequence

deposited in GenBank (AF226685.2) by only 11 nucleotides, and

Author Summary

Dengue virus constitutes a significant public health
problem in tropical regions of the world. Despite the high
morbidity and mortality of this infection, no effective
antiviral drugs or vaccines are available for the treatment
or prevention of dengue infections. The profile of clinical
signs associated with dengue infection has changed in
recent years with an increase in the number of episodes
displaying unusual signs. We use reverse genetics tech-
nology to engineer DENV-1 viruses with subsets of
mutations previously identified in highly neurovirulent
strains to provide insights into the molecular mechanisms
underlying dengue neuropathogenesis. We found that
single mutations affecting the E and NS3hel proteins,
introduced in a different genetic context, had a synergistic
effect increasing DENV replication capacity in human and
mosquito derived cells in vitro. We also demonstrated
correlations between the presence of these mutations and
viral replication efficiency, viral loads, the induction of
innate immune response genes and pathogenesis in a
mouse model. These results should improve our under-
standing of the DENV-host cell interaction and contribute
to the development of effective antiviral strategies.
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none of which results in an amino-acid substitution), a T7 RNA

polymerase promoter sequence with a single-non-genomic G res-

idue introduced immediately upstream from the first nucleotide of

the 59UTR (to ensure high levels of synthetic transcript pro-

duction), and a hepatitis delta virus ribozyme sequence (HDV-RZ)

followed by a unique restriction endonuclease site just after the last

nucleotide of the 39UTR, (to facilitate the production of templates

for RNA synthesis) [57].

Construction of recombinant DENV clones
To construct the recombinant cDNA clones containing the

mutations identified in the neurovirulent DENV-1 strains, overlap-

ping polymerase chain reaction (PCR) amplifications to generate

cDNA molecules containing specific mutations, except for the

NS3435 mutation, which was located very close to a naturally

occurring restriction endonuclease site, making it possible to in-

corporate this mutation into the DENV-1 cDNA through the use of a

single mutated oligonucleotide. All amplifications were carried out

with the high fidelity enzymes of the TripleMaster System

(Eppendorf, Westbury, NY, USA) or LongRange PCR (Qiagen,

Valencia, CA, USA), following the manufacturer’s protocols. In

some cases, the fragments containing the desired mutations were

initially inserted into the pGEM-T Easy Vector System (Promega,

Madison, WI, USA), in accordance with manufacturer’s instructions.

The desired infectious cDNAs were reconstructed by using the

corresponding fragments obtained either directly from the PCR

amplicon, or from the pGEM-T clone to replace the parental

fragments in the DENV-1 infectious genome in pBACDV1.

The fragments replaced for each mutation were: a NotI/MluI

fragment for the E mutations (E402 and E405), a BsiWI/RsrII

fragment for the NS3435 mutation, a MluI/BsiWI fragment for the

NS3209 mutation, and a BsiWI/NheI fragment for the NS3480

mutation (Figure 1). The clones with individual mutations were

named: pBAC-E402, pBAC-E405, pBAC-NS3209, pBAC-NS3435

and pBAC-NS3480, respectively. Finally, for the construction of

the double and triple mutants, we combined the E-mutation with

the NS3-mutation found in two independent neuroadapted strains

(Table 1), generating the clones pBAC-E405/NS3435, pBAC-E402/

NS3209, pBAC-E402/NS3480 and pBAC-E402/NS3209/NS3480.

Each construct was confirmed by sub mitting the replaced frag-

ment for sequencing, at the Macrogen Sequencing Service (Seoul,

South Korea).

RNA transcription and transfection
Infectious DENV RNAs were generated by linearizing the

recombinant pBAC DNAs in an overnight digestion at 25uC with

SwaI (New England Biolabs, Ipswich, MA, USA), purifying the

products by phenol extraction and ethanol precipitation and

transcribing them in vitro with T7 RNA polymerase in the presence

of an 7 mG(ppp)G RNA cap analog (Biolabs, Ipswich, MA, USA)

with the T7 MEGAScript Transcription System (Ambion, Austin,

TX, USA). Eight individual wells of C6/36 cells cultured at 28uC
were transfected with RNA transcripts in the presence of

Lipofectin (Invitrogen, Carlsbad, CA, USA). Supernatant samples

were harvested in duplicate at 48, 72, 96 and 120 hours after

transfection, and used for viral titration. The time points with the

highest titers were used for subsequent viral amplification.

Titration
Viral titers were determined by the focus-forming unit tech-

nique in C6/36 cells (ffuC6/36), as previously described [58]. Foci

were immunostained with purified supernatants of the Flavivirus

group-specific mouse monoclonal antibody 4G2, and the bound

antibodies were then decorated with goat anti-mouse immuno-

globulin conjugated to alkaline phosphatase (Promega, Madison,

WI, USA), which was detected by adding a solution of NBT (nitro-

blue tetrazolium chloride) and BCIP (5-bromo-4-chloro-39-indo-

lyphosphate p-toluidine salt) (Promega, Madison, WI, USA) as a

substrate.

Figure 1. Line diagrams representing the structure of recombinant genomes and the position of key viral elements. Dotted lines
show the positions of the restriction endonuclease sites used to insert fragments containing mutations (represented by stars) into pBACDV1.
doi:10.1371/journal.pntd.0001624.g001
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Viral amplification and purification
To increase viral titers and generate working stocks, two rounds

of infection were performed with each of the recovered virus, using

the time point with highest titer in RNA transfection experiments

in vitro. The first round of amplification was performed in T25

flasks (TPP, Trasadingen, Switzerland) of C6/36 cells (56105

cells/flask) at a multiplicity of infection (MOI) of 0.01. The cell

cultures were incubated at 28uC until cytopathogenic effects were

observed or, in some cases, infection was confirmed by routine

indirect immunofluorescence assays, six days after infection (data

not shown). Virus yields for each sample were determined by

titration, as described above. The second round of amplification

was performed in T300 flasks (TPP, Trasadingen, Switzerland)

(26107 C6/36 cells/flask), under the same conditions as described

above. Recombinant viruses were purified from the products of

this second amplification by centrifugation on a sucrose gradient,

as previously described [59]. A mock-infected control preparation

was prepared from non-infected C6/36 cells by the same protocol.

Complete genome sequencing
Viral RNA was purified from sucrose gradient stocks, using the

QIAamp Viral RNA Mini Kit (Qiagen, Valencia, CA, USA). The

resulting RNA was reverse transcribed with the Improm-II

Reverse Transcriptase (Promega, Madison, WI, USA) in the

presence of random primers (100 pmol/mL – Invitrogen, Carls-

bad, CA, USA) and the entire genome was amplified by PCR for

nucleotide sequencing, which was carried out by the Macrogen

Sequencing Service (Seoul, South Korea).

In vitro kinetics analysis
Huh7.5 (46105 cells/well) and C6/36 (26105 cells/well) cells

were infected in 24-multiwell plates (TPP, Trasadingen, Switzer-

land) with mock and recombinant viruses vBACDV1, vBAC-E402,

vBAC-E405, vBAC-NS3209, vBAC-NS3435, vBAC-NS3480, vBAC-

E405/NS3435, vBAC-E402/NS3209, vBAC-E402/NS3480 and

vBAC-E402/NS3209/NS3480. A MOI of 5 was used to infect

Huh7.5 cells by incubation for 1 h at 37uC under an atmosphere

containing 5% CO2, and a MOI of 1 was used to infect C6/36

cells by incubation for 1 h at 28uC. Cells were recovered at 24, 48,

and 72 hours post infection (hpi). The number of cells infected was

determined by flow cytometry, according to previously described

protocols [61]. Cells were analyzed with a FACS Canto II system

(Becton & Dickinson, San Jose, CA). FACS data were analyzed

with FlowJo 2.2.8 software.

Cell binding assays
To determine the binding affinity of the recombinant viruses for

Neuro-2a cells, Amicon (Millipore, Billerica, MA, USA) concen-

trated recombinant vBACDV1, vBAC-E402, vBAC-E405 viruses

and a mock-infected control were incubated with 26105 Neuro-2a

cells at MOI of 100 for 1 h at 4Cu. The cells were then washed three

times with ice-cold PBS to remove unbound virus. They were lysed

and viral RNA was extracted with the QIAamp Viral RNA mini Kit

(Qiagen, Valencia, CA, USA), according to the manufacturer’s

protocols. The number of bound genome-containing particles per

cell was then determined by RT/qPCR in three independent ex-

periments, as previously described [60]. The murine gene encoding

GAPDH was also included as a housekeeping gene in all analysis,

for data normalization [62].

Mouse studies
A 50% lethal dose (LD50) assay was performed with virus

recovered from the pBACDV1 clone (vBACDV1), to determine
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the optimum dose of recombinant viruses for the inoculation of

mice. Individual litters of two-day-old Swiss mice were inoculated

via intracerebral (i.c.) route with four ten-fold dilutions (corre-

sponding to 100,000 ffuC6/36 to 100 ffuC6/36) of purified

vBACDV1 virus or one dilution of purified mock-infected C6/

36 culture fluid (equivalent to the highest tested concentration of

vBACDV1). Animals were monitored for 21 days. We found that

the LD50 was equivalent to 56,234 ffuC6/36 of vBACDV1. For

comparative studies, 562 ffuC6/36 (corresponding to 1022 LD50)

aliquots of each of the recombinant viruses were compared side-

by-side through the i.c. inoculation of three individual litters of

two-day-old mice, replicating the methods originally described for

DENV-1 neurovirulence in Swiss mice [51]. The animals were

observed for 21 days to evaluate the morbidity and mortality.

Eight days post infection (dpi), three animals were randomly

selected from each litter, euthanized and their brains were harvested

and pooled for the quantification of virus replication and gene

induction. Ten dpi, one animal per group was euthanized, its brain

was collected and fixed in a 10% buffered formalin solution for

histological analysis. In addition, mouse brain and spine cord tissues

were individually collected at 6, 8 and 10 dpi of animals infected

with mock, vBACDV1 and vBAC-E402/NS3209/NS3480 for RT/

qPCR and virus titration analysis.

Quantification of DENV RNA levels by quantitative RT-
PCR (RT-qPCR)

Total RNA was isolated from 30 mg of pooled 8 dpi mouse

brain tissues infected with each DENV or the mock, with the

RNEasy Mini kit (Qiagen, Valencia, CA, USA), according to the

manufacturer’s protocol. For the quantification of viral RNA in

the brain tissues by RT/qPCR, we subjected 2 mg of each RNA

sample to amplification with 400 nM specific DENV-1 oligonu-

cleotides and 300 nM specific DENV-1 probe, with the Multi-

Scribe Enzyme Plus RNase Inhibitor and TaqMan Universal RT-

PCR Master Mix (Applied Biosystems, Foster City, IA, USA) in an

ABI PRISM 7500 Detection System (Applied Biosystems, Foster

City, IA, USA) as previously described [60]. The mouse GAPDH

housekeeping gene was included in all analysis for data nor-

malization as previously described [52].

Relative quantification of mRNA levels by quantitative
PCR (qPCR)

The RNA isolated from DENV- and mock-infected mouse

brain tissues (pooled from three individuals from each group, as

described above) was used for the quantification of mRNA levels

for seven genes (Irf1, Psmb8, Usp18, C1r, IFNa, IFNb and CCL5)

selected on the basis of a previous study by Bordignon and

coworkers [63]. For this purpose, 4 mg of each RNA sample were

reverse transcribed with ImProm-II Reverse Transcriptase

(Promega, Madison, WI, USA) and oligo-dT primers (10 mM)

according to the manufacturer’s protocol. The resulting cDNAs

were then diluted to a concentration of 2 ng/ml and used for

amplification by qPCR, as previously described [63]. Melting

curves were used to check product specificity. Levels of mRNA for

each selected gene were recorded as gene mRNA/murGAPDH

mRNA induced by dengue virus infection in the central nervous

system (CNS) of mice.

Statistical analysis
The qPCR data are reported as means 6 standard deviation

(SD) and were analyzed by one-way ANOVA with Bonferroni’s or

Dunn’s correction for multiple comparisons. In vitro growth

kinetics data are reported as means 6 standard deviation (SD)

and were analyzed using two-way ANOVA followed by a

Bonferroni’s test. The level of significance for the analyses was

set at p#0.05. Mortality data were analyzed by plotting Kaplan-

Meier survival curves and carrying out Log-rank (Mantel-Cox)

multiple comparison test. The analyses were performed with

GraphPad Software (Prism 5 for Mac OS X – version 5.0c, San

Diego, CA, USA).

Results

For identification of putative viral determinants on the phe-

notype of neuroadapted DENV-1 strains, we constructed a panel

of DENV cDNA infectious clones containing a subset of mu-

tations affecting the E and NS3 proteins selected in two separate

studies of the neuroadaptation of the FGA/89 strain to newborn

mice [51–52]. The mutations were introduced into a DENV-1

infectious clone not adapted to mice (pBACDV1, derived from

the DENV-1 prototype strain (BR/90) – [57]). Comparisons of

the sequences of the infectious clone, the neuroadapted isolates

and the parental strain used to generate the neuroadapted strains

(FGA/89) (Table S1), led us to focus on mutations at positions

402 and 405 in E and 209, 435, and 480 in NS3 for the studies

described here (Table 1).

The mutations affecting E (E402 and E405) acquired during

adaptation were found to be located outside the parts of the

protein used for structural determinations by X-ray crystallogra-

phy. Both these mutations lie within the first of two predicted a-

helical structures H1pred in the stem region of E just after the

ectodomain [64] (Figure 2). This stem region seems to be involved

in the formation of the E homotrimer, the interactions between E

and prM, particle formation and intracellular retention [64–68].

The NS3 mutations acquired during neuroadaptation are lo-

cated in the helicase domain, with the NS3209 mutation in sub-

domain I, and mutations NS3435 and NS3480 in subdomain II [45]

(Figure 3). The helicase domain of the NS3 protein appears to be

responsible for supporting the initiation of (2)ssRNA synthesis,

through the unfolding of RNA secondary structures, providing

access to the replication machinery [36,69–70].

We investigated the effect of these mutations both individually

and in combination on the in vitro and in vivo properties of DENV-

1, by using infectious cDNAs harboring the mutations (Figure 1

and Table 1) as a source for in vitro RNA synthesis. The RNAs

generated were then introduced into C6/36 cells for the recovery

of viruses, which were amplified and purified as described in the

Methods section. Analyses of the complete sequences of the

genomes of all of the amplified viruses confirmed their identity

with the pBACs used to generate them and showed that no

adventitious mutations had been produced in the cloning steps or

arisen during virus recovery and propagation.

To evaluate the role of each mutation in the neurovirulent

phenotype in a mouse model, purified recombinant viruses were

inoculated i.c. in newborn Swiss mice. Three litters of mice, each

containing 5 to 11 animals, were used. All inoculations were

performed with a single dose of virus (562 ffuC6/36), corresponding

to 1/100 LD50 for the parental cDNA clone-derived virus,

vBACDV1 (see Methods, all viral genomes were resequenced

before inoculation). The equivalent viral genomic RNA (GE) to

FFU ratio (562 ffuC6/36) for each virus inocula was determined by

RT/qPCR as previously described [61] to assure the compara-

bility of viral infection doses (data not shown). Figure 4 shows the

combined mortality data for three experiments. The animals

inoculated with mock, FGA/89, vBACDV1, vBAC-E402, vBAC-

E405, vBAC-NS3209 and vBAC-E402/NS3209 viruses survived

forthe entire 21-day observation period. Mice in the groups
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www.plosntds.org 5 April 2012 | Volume 6 | Issue 4 | e1624



inoculated with FGA/89, vBACDV1, vBAC-E402 and vBAC-

E402/NS3209 behave normally throughout the observation period,

whereas animals from the groups infected with vBAC-E405 and

vBAC-NS3209 displayed mild signs of disease (Figure S1).

However, all the animals inoculated with vBAC-NS3435, vBAC-

NS3480, vBAC-E405/NS3435, vBAC-E402/NS3480 or vBAC-E402/

NS3209/NS3480 displayed more severe signs of disease. Almost all

of the animals in these groups displayed encephalitis and partial

paralysis of the hind limbs (Figure S1). In the groups for which

deaths were recorded, 29% of the animals inoculated with vBAC-

NS3435 died and the mortality rate was even higher (61%) for

mice inoculated with vBAC-NS3480. These results highlight the

importance of the NS3435 and NS3480 mutations for the ac-

quisition of the viral neurovirulent phenotype. Furthermore,

mortality reached 73% in the group of animals inoculated with

the double-mutant virus, vBAC-E405/NS3435, and inoculation

with vBAC-E402/NS3480 and vBAC-E402/NS3209/NS3480 viruses

killed 100% of the animals (Figure 4).

Thus, viruses containing the E402 and E405 mutations alone

were no more virulent than vBACDV1. However, when these

mutations were combined with the NS3480 and NS3435 mutations

respectively, the resulting viruses, each of which carried two of the

mutations found in the neuroadapted derivatives (FGA/NA d1d

and FGA/NA P6; Table 1), were neurovirulent.

To assess the ability of the recombinant viruses (vBACDV1,

vBAC-E402 and vBAC-E405) to interact with Neuro 2A cell re-

ceptors, binding assays were carried out (Figure S2). No significant

difference in binding capacity was observed between these viruses.

We previously showed that viral replication in the brains of mice

inoculated with the FGA/89 and FGA/NA P6 strains of DENV-1

peaked nine days after inoculation [52]. To evaluate the re-

plication properties of the recombinant viruses, brains of three

animals were collected from each group on the eight day after

inoculation, before the onset of signs of disease and death. RT-

qPCR analyses and viral titration performed on the brain tissues

of animals inoculated with the panel of viruses showed that vBAC-

E405/NS3435, vBAC-E402/NS3480 and vBAC-E402/NS3209/

NS3480 produced the largest numbers of viral progeny and the

highest levels of RNA synthesis (Figure 5) in the brain tissues of

infected animals, consistent with the high frequency of encephalitis

in these animals later in the incubation period (see Figure 4).

We investigated whether the neurovirulent phenotype resulted

from an increase in viral fitness by carrying out in vitro growth

kinetics studies on human and insect derived cells and quantifying

protein synthesis. Levels of protein synthesis were significantly

higher in Huh7.5 and C6/36 cells infected with vBAC-E405/

NS3435, vBAC-E402/NS3480 and vBAC-E402/NS3209/NS3480

than in cells infected with vBACDV1 (Figure 6).

Results from a previous study ([63] and unpublished results])

revealed that a number of innate immune response genes were

differentially expressed in the brains of mice infected with avir-

ulent and neurovirulent strains of DENV-1. Therefore, to analyze

the influence of individual mutations on the ability of recombinant

viruses to induce innate immunity genes, a subset of genes re-

presenting several major pathways [interferon signaling (Irf1 -

interferon regulatory factor 1), interferon alpha and beta, antigen

presentation (Psmb8 - proteosome subunit beta type 8), protein

ubiquitination pathway (Usp18 - ubiquitin specific protease 18),

complement system (C1r - component 1, r subcomponent) and

chemokine (CCL5 - chemokine ligand 5-C-C motif)] were selected

for analyses. RNAs extracted from brain tissues obtained 8 days

after infection, were subjected to amplification with specific

primers for these genes, and the RT-qPCR signals obtained were

normalized with respect to the signal for murGAPDH (Figure 7).

Figure 2. Location of Envelope mutations. (A) Representation of the full-length Envelope protein with domain I in red, domain II in yellow and
domain III in blue. The stem region is represented in green and the transmembrane anchor in purple. (B) Detailed view of amino acids 333–495
showing the predicted regions H1pred and H2pred of stem, and domains TM1 and TM2 of the transmembrane anchor. The red arrows indicate the
positions of mutations.
doi:10.1371/journal.pntd.0001624.g002
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Consistent with the virulence (Figure 4) and viral load studies

(Figure 5), levels of expression for all of the host genes shown in

Figure 7 were significantly higher in animals infected with FGA/

NA d1d, FGA/NA P6 (data not shown) or any of the recombinant

viruses containing double and triple mutations (vBAC-E402/

NS3480, vBAC-E405/NS3435 and vBAC-E402/NS3209/NS3480)

than in mock-infected or vBACDV1-infected animals.

To discard an eventual mouse to mouse variation due to the

outbred nature of the mice used in this study, and confirm the role

of the critical residues responsible for increased viral load and

pathogenesis, single animals were euthanized at various time

points during infection (6, 8 and 10 dpi) and individual mouse

CNS and spinal cord tissues were analyzed. Viral RNA synthesis,

viral load curves and modulation of innate immune response genes

were correlated with disease and death of the animals infected

with vBAC-E402/NS3209/NS3480 compared to mock-infected or

vBACDV1-infected animals (Figure S3).

We also evaluate the target cells and the damage caused by virus

infection in the CNS of these mice, by carrying out histological

analyses of brain tissues. Brain tissue collected (10th dpi), from

animals infected with neuroadapted (FGA/NA d1d and FGA/NA

P6) or recombinant viruses, displayed moderate to severe men-

ingitis. The degree of tissue injury observed (data not shown) was

consistent with viral RNA replication, viral load (Figure 5) and the

severity of infection as determined by mortality rate (Figure 4).

Discussion

Several studies have provided support for the hypothesis that

viral virulence determinants play a role in dengue pathogenesis

and vector transmissibility [71–73]. In this study we focused on

determining how point mutations, acquired during the adaptation

of DENV to mice increase viral fitness in vitro and in vivo, and exert

their effects on mice neuropathogenesis. We used reverse genetics

techniques to sample individual mutations found in two indepen-

dently obtained newborn mouse-adapted isolates of DENV-1 [51–

52]. Comparisons of the genomes of the parental (FGA/89) and

neuroadapted variants of DENV-1 (FGA/NA d1d and FGA/NA

P6) suggested that acquired mutations in the genes encoding E and

NS3 might be responsible for the neurovirulence of these mouse-

adapted strains. To test the role of these mutations in viral fitness

and virulence, we created a panel of non-mouse adapted infectious

clone-derived viruses with the E mutations (E402 Phe to Leu and

E405 Thr to Ile) and NS3 mutations (NS3209 Val to Ile, NS3435 Leu

Figure 3. Location of NS3 mutations. (A) Representation of the full-length NS3 protein with the serine protease domain in red and the helicase
domain in blue, with different shades of blue fused to represent the various subdomains. (B) Detailed view of amino acids 167–498, encompassing
subdomains I and II of the helicase. Motifs conserved in helicase superfamily 2 are indicated in different colors and labeled. The red arrows indicate
the positions of mutations.
doi:10.1371/journal.pntd.0001624.g003
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to Ser and NS3480 Leu to Ser) present separately, in paired or in

group of three mutations, as in the empirically adapted isolates.

Both of the E mutations studied mapped to the region outside the

ectodomain and the three NS3 mutations studied here are located

in the helicase region of NS3.

The positions of the mutations detected in the neuroadapted

isolates (E402 and E405 – Figure 2) were not consistent with a

change in affinity for the receptor. Indeed, the recombinant viruses

carrying these mutations had the same binding affinity for

Neuro2A cells as the infectious clone-derived virus. We therefore

conclude that the mechanism by which E protein mutations

increases virulence involves critical steps occurring after viral

attachment (fusion/assembly/release).

Chen and coworkers [74] reported similar results concerning

the effect of mutations affecting this domain of E protein on

neurovirulence in mice. They used chimeric DENV-4 carrying the

C-prM-E genes of DENV-3 to show that a mutation at E406

(substitution of a Lys for the WT Glu) increased the neuroviru-

lence of a DENV-4/DENV-3 chimera.

Lin and coworkers [68], using site-directed mutagenesis and

functional assays, demonstrate the involvement of the EH1 and

EH2 domains of the E protein in DENV assembly and cell entry.

Substitutions at positions E401 (Met to Pro), E405 (Thr to Pro), E408

(Gly to Pro) and E412 (Met to Pro) in the EH1 domain affected the

assembly of DENV VLPs, probably due to interference with prM-

E heterodimerization. The authors hypothesized that mutations

mapping to the N-terminal EH1 domain affected the association

of the stem region with the viral membrane altering curving and

bending during the assembly in the ER.

The NS3209, mutation, which was co-selected with the NS3480 in

FGA/NA P6, had no apparent effect on virulence in our studies.

The triple mutant recombinant virus (E402/NS3209/NS3480) gave

higher viral RNA levels and virus titers in the mouse CNS 8 dpi

than the double mutant (E402/NS3480), but both viruses killed

100% of the animals by days 15 and 16 post infection, respectively.

The recombinant viruses harboring mutations at residues

NS3435 and NS3480, located in the helicase subdomain 2, after

motifs V and VI (Figure 3), respectively, displayed an alteration of

replicative capacity (in vitro and in vivo) and were neurovirulent in

mice. It has been reported that a substitution at position 249 (Thr

to Pro) of the NS3hel in West Nile virus confers a highly virulent

phenotype on strains usually only weakly virulent in American

crows [75]. This region is involved in RNA binding and ATP

hydrolysis and is required to drive the helicase along its nucleic

acid substrate [76]. The presence of mutations in these regions

may affect the activity of the helicase, increasing replication

efficiency, through either a direct effect on helicase activity itself or

through interaction with other viral or cellular proteins. Sampath

and colleagues [46] carried out a structure-based mutational

analysis and proposed an ‘‘inchworm’’ model of DENV NS3

translocation and unwinding activity. They suggested that the

pocket next to DENV-2 NS3 Ile365 (tip of domain II) would acts as

a ‘‘helix opener’’ disrupting hydrogen bonds at the fork. The basic

concave face between domains II and III would acts as ‘‘the

translocator’’ in this model, by binding dsRNA ahead of the fork.

The NS3480 mutation maps to this concave face, the NS3435

mutation maps to domain III, and both may therefore enhance

dsRNA binding and modulate helicase activity.

Grant and coworkers [54] recently described a DENV-2 strain

causing lethal infections in immunocompromised AG129 mice.

One critical virulence determinant at the NS4B52 protein had

been identified. By reverse genetics, these authors demonstrated

that the replacement of a Leu residue by a Phe residue, at this

position, converted a non-virulent strain into a strain causing 80%

lethality and increased viremia independently of the host type I

interferon response. Physical interaction between NS4B (located in

the ER lumen) and NS3 (located on the cytoplasmic face of the

ER) is unlikely, but the authors hypothesized that a transient in-

teraction could occur before polyprotein processing, thereby

modulating DENV replication and implicating NS3 in this

process. They also demonstrated that the NS4B52 substitution

enhances viral RNA synthesis in mammalian cells but not in C6/

36 insect cells.

The non-mouse adapted infectious clone-derived viruses with

only the E mutations identified in this study (E402 and E405) had no

higher binding affinity to Neuro2A cells receptor(s) or higher levels

of viral RNA synthesis, viral load (in vitro and in vivo) and

neurovirulence in mice than vBACDV1. However, the combina-

tion of these mutations with NS3hel mutations (E405/NS3435, E402/

Figure 4. Newborn mice survival after i.c. inoculation with
DENV-1 variants. (A) Comparison of mock, FGA/89 and neurovirulent
strains, FGA/NA d1d and FGA/NA P6, (B) Comparison of mock, vBACDV1
and single-mutant recombinant viruses, (C) Comparison of mock,
vBACDV1 and double- and triple-mutant recombinant viruses. Data
from three independent experiments were pooled and plotted as
Kaplan-Meier survival curves and then analyzed by log-rank (Mantel-
Cox) multiple comparison tests, the p value for comparisons between
FGA/89 and neuroadapted viruses, or vBACDV1 and the corresponding
recombinant virus are indicated, and n is the total number of mice per
group.
doi:10.1371/journal.pntd.0001624.g004
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NS3480 and E402/NS3209/NS3480), altered viral replicative

capacity across other tissue (spinal cord) and cell types (Huh7.5

and C6/36 cells) and resulted in a highly neurovirulent phenotype

in mice.

The pathological outcome of an infection is determined by the

balance between the host response to infection and the ability of

the infectious agent to escape from this response and multiply in

the host. As part of this dynamic interaction, the host responses to

some infections, including DENV infections, may contribute to the

pathophysiology of disease. We have shown that high levels of

replication of genetically defined DENV result in the upregulation

of genes induced by type I IFN (IFN-a/b), consistent with previous

data from non human primates [77] and primary cultures of

human cells [78].

In a previous study, we investigated the effect of DENV-1

infection on the transcription profile of CNS of mice. The Ube2l6

gene, which encodes an ubiquitin conjugate enzyme, was found to

be up regulated in animals infected with the FGA/89 and with a

neuroadapted derived strain FGA/NA a5c, with fold changes of

2.59 and 4.73, respectively, eight dpi ([63] and unpublished

results). In a recent study based on the use of a high-throughput

two hybrid assay, a human cellular protein, with a similar function,

UBE2l (an ubiquitine conjugate enzyme), was found to interact

with the DENV NS2B, NS4B and NS5 proteins, and siRNA

targeting of this gene inhibited DENV replication [79]. As FGA/

NA d1d and FGA/NA a5c differ by only three amino-acid

substitutions in the E protein, we will investigate further the

modulation of the Ube2l6 protein and its interaction with the

Figure 5. DENV detection at 8 dpi in the brains of mice inoculated with DENV-1 variants. (A) Viral progeny numbers in the mice CNS were
determined by titration in C6/36 cells. (B) Viral RNA levels in the mouse CNS were determined by RT-qPCR with normalization against levels of
murGAPDH mRNA. Data were log transformed and analyzed by one-way ANOVA followed by Bonferroni’s correction for multiple testing and the
values presented are the means 6 SD of three different experiments. * p,0.05, ** p,0.01 and *** p,0.001. A gap was inserted into the x axis to
facilitate data interpretation, by grouping mouse-adapted strains and non mouse-adapted recombinant viruses and their corresponding controls. The
significance bars correspond to comparisons between viruses with the mutations at same positions.
doi:10.1371/journal.pntd.0001624.g005

Figure 6. In vitro growth kinetics on human and mosquitoes derived cells. (A) Growth kinetics in Huh7.5 cells. (B) Growth kinetics in C6/36
cells. Infected cells were assessed by flow cytometry. Data were analyzed by two-way ANOVA followed by Bonferroni’s correction for multiple testing
and the values presented are the means 6 SD of three different experiments. * p,0.05, ** p,0.01 and *** p,0.001.
doi:10.1371/journal.pntd.0001624.g006
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replication complex during infection with the recombinant viruses

generated in this study. Transcript levels for Usp18, which

functions as an ubiquitin cycle enzyme, were positively correlated

with higher levels of replication in animals infected with the strains

vBAC-E405/NS3435, vBAC-E402/NS3480 and vBAC-E402/

NS3209/NS3480.

We demonstrated here that single mutations in the DENV-1 E

protein and NS3hel domain increase viral fitness, both in vitro

(human and mosquito-derived cells) and in vivo, facilitating early

virus emergence during mouse infection consistent with a major

role in DENV pathogenesis.

In a context of limited knowledge of the molecular basis of

dengue pathogenesis, our results could contribute to the estab-

lishment of attenuation strains for vaccine development, and

provide insights into virus/host interactions and new information

about the mechanisms of dengue pathogenesis.

Supporting Information

Figure S1 Newborn mice morbidity after i.c. inocula-
tion with DENV-1 variants. The graphs show the cumulative

signs of disease from three independent biological replicates. (A)

Comparison of mock, FGA/89 and neurovirulent strains FGA/

NA d1d and FGA/NA P6, (B) Comparison of mock, vBACDV1

and single-mutatnt recombinant viruses, (C) Comparison of mock,

vBACDV1 and double- and triple-mutant recombinant viruses.

(TIF)

Figure S2 Assay of the binding of vBACDV1, vBAC-E402

and vBAC-E405 recombinant viruses to Neuro-2a cells.

Data were analyzed by one-way ANOVA followed by Dunn’s

multiple comparison test and values are expressed as means 6 SD

of three different experiments. * p,0.05.

(TIF)

Figure S3 In vivo growth kinetics in CNS and spinal
cord tissues of individual mice after i.c. inoculation
with mock, vBACDV1 and vBAC-E402/NS3209/NS3480.
(A) Viral progeny numbers in the CNS of individual mice were

determined by titration in C6/36 cells. (B) Levels of mRNAs of

innate immune genes from CNS of individual mice were

determined by RT-qPCR with normalization against levels of

murGAPDH mRNA. (C) Viral RNA levels in the spinal cord

tissue of individual mice were determined by RT-qPCR with

normalization against levels of murGAPDH mRNA. #1, #2 and

#3 represent each individual animal collected for each respective

time point (6, 8 and 10 dpi).

(TIF)

Table S1 Summary of amino acid sequence differences
between vBACDV1 and the GenBank-deposited se-
quences of BR/90 (used to generate clone pBACDV1),
FGA/89 (parental virus used for neuroadaptation),
FGA/NA d1d and FGA/NA P6 (neuroadaptated variants
from FGA/89).

(DOC)
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77. Sariol CA, Muñoz-Jordán JL, Abel K, Rosado LC, Pantoja P, et al. (2007)

Transcriptional Activation of Interferon-Stimulated Genes but Not of Cytokine
Genes after Primary Infection of Rhesus Macaques with Dengue Virus Type 1.

Clin Vaccine Immunol 14: 756–766.
78. Warke RV, Martin KJ, Giaya K, Shaw SK, Rothman AL, et al. (2008) TRAIL

Is a Novel Antiviral Protein against Dengue Virus. J Virol 82: 555–564.
79. Khadka S, Vangeloff AD, Zhang C, Siddavatam P, Heaton NS, et al. (2011) A

physical interaction network of dengue virus and human proteins. Mol Cell

Proteomics 10: M111.012187.

Synergistic Interaction of DENV1 NS3 and E

www.plosntds.org 12 April 2012 | Volume 6 | Issue 4 | e1624


