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Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide 
(PACAP) are highly similar neuropeptides present in several tissues, endowed with 
immunoregulatory functions and other systemic effects. We previously reported that 
both neuropeptides reduce viral production in HIV-1-infected primary macrophages, 
with the participation of β-chemokines and IL-10, and now we describe molecular 
mechanisms engaged in this activity. Macrophages exposed to VIP or PACAP before 
HIV-1 infection showed resistance to viral replication, comparable to that observed when 
the cells were treated after infection. Also, multiple treatments with a suboptimal dose of 
VIP or PACAP after macrophage infection resulted in a decline of virus production similar 
to the inhibition promoted by a single exposure to the optimal inhibitory concentration. 
Cellular signaling pathways involving cAMP production and activation of protein kinases 
A and C were critical components of the VIP and PACAP anti-HIV-1 effects. Analysis  
of the transcription factors and the transcriptional/cell cycle regulators showed that 
VIP and PACAP induced cAMP response element-binding protein activation, inhibited 
NF-kB, and reduced Cyclin D1 levels in HIV-1-infected cells. Remarkably, VIP and 
PACAP promoted G-to-A mutations in the HIV-1 provirus, matching those derived from 
the activity of the APOBEC family of viral restriction factors, and reduced viral infectivity. 
In conclusion, our findings strengthen the antiretroviral potential of VIP and PACAP and 
point to new therapeutic approaches to control the progression of HIV-1 infection.

Keywords: hiV-1, vasoactive intestinal peptide, pituitary adenylate cyclase-activating polypeptide, neuropeptides, 
macrophages, protein kinase c, protein kinase a

inTrODUcTiOn

The neuropeptides vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypep-
tide (VIP and PACAP, respectively) are members of the secretin/glucagon family of peptides and are 
distributed systemically; VIP and PACAP act through three G-protein coupled receptors that are 
expressed in several cell types, namely, VPAC1, VPAC2, and PAC1 (1, 2). Both neuropeptides have 
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several regulatory functions in the neuro-immune-endocrine 
system, and they mainly control cytokine production, cell 
activation, and differentiation (1, 2). VIP and PACAP signaling 
depends on which of their receptors are activated and includes 
complex pathways. The main proteins involved in the initial 
stages of the cell signaling triggered by VIP and PACAP are the 
protein kinases A (PKA) and C (PKC), which respond to these 
neuropeptides by modulating transcription factors and cell cycle 
proteins (3, 4). Both neuropeptides are considered to be potential 
targets of therapeutic approaches for autoimmune disorders and 
chronic inflammatory illnesses due to their remarkable anti-
inflammatory activities (5, 6).

Macrophages play a critical role in the pathogenesis of HIV-1 
infection due to their resistance to the cytopathic effects that are 
secondary to viral replication and to their ability to continuously 
produce virus particles. These cells are important reservoirs of 
HIV-1 because of their ability to escape from immune system 
surveillance and produce virions when activated by stimuli 
derived from the virus itself and the tissue microenvironment 
(7–9). HIV-1 infection may become latent in macrophages, a 
condition that allows the formation, maintenance, and cycling 
of viral reservoirs and that constitutes a major obstacle to the 
therapeutic control of HIV-1 infection (7–9). During viral 
transcription, the HIV-1 transactivation protein Tat recruits the 
Cyclin/Cyclin-dependent kinase (CDK) family, eliciting produc-
tive transcription of the HIV-1 genome, along with the participa-
tion of the transcription factors NF-κB and NFAT (10–13). The 
absence of these complexes causes incomplete or abortive tran-
scription of the viral genome (13, 14). HIV-1 production is also 
controlled by cellular factors that restrict viral replication, such 
as the interferon-stimulated protein APOBEC3G. APOBEC3G 
induces mutations in the viral genome, affecting the replica-
tive capacity of the nascent virus (15, 16). VIP and PACAP are 
known to prevent the activity of some Cyclin/CDK complexes 
by increasing the production of their inhibitors (17–19) and 
are also capable of regulating the activity of NF-kB and NFAT  
(20, 21). In addition, PKA and PKC phosphorylate and modulate 
the activity and transcription of APOBEC3G and other members 
of the APOBEC family, thus regulating the insertion of mutations 
into the HIV-1 genome (22–24). Therefore, VIP and PACAP may 
modulate the HIV-1 replication by controlling the availability 
of essential components for the establishment of a productive 
infection.

Some authors have shown that activation of the VIP/PACAP 
receptors VPAC1 and VPAC2 by specific ligands alters viral 
replication in peripheral blood mononuclear cells (PBMCs) 
and in lymphocytic lineages (25, 26), and we also reported that 
both neuropeptides inhibit HIV-1 replication in macrophages 
through production of β-chemokines and IL-10 (27). We also 
found that the ability of VIP and PACAP to inhibit HIV-1 repli-
cation is dependent on activation of VPAC2 and PAC1, whereas 
specific VPAC1 activation increases HIV-1 production in these 
cells. Now, we describe molecular mechanisms by which both 
neuropeptides reduce HIV-1 production, and show that com-
ponents associated with proviral transcription are recruited 
by VIP and PACAP to control HIV-1 replication in primary 
macrophages.

MaTerials anD MeThODs

Primary cells and cell lines
Human monocyte-derived macrophages were obtained from 
PBMCs that had been isolated by density gradient centrifugation 
(Ficoll-Paque Premium, GE Healthcare Life Sciences) from buffy-
coat preparations of blood from healthy donors, through adher-
ence onto plastic plates, as described (28). Briefly, 106 PBMCs 
were plated onto 96-well plates (Costar) in DMEM low-glucose 
(DMEM; LGC Bio) containing 10% human serum (Millipore) 
and penicillin–streptomycin (Gibco). Cells were maintained at 
37°C in 5% CO2 for 7–8 days for monocyte differentiation into 
macrophages. Non-adherent cells were washed out (three washes 
with PBS), and the remaining macrophage layer was maintained 
in DMEM with 5% human serum. Macrophage purity was >90%, 
as determined by flow cytometry analysis using anti-CD3 (BD 
Bioscience) and anti-CD68 (BD Bioscience) monoclonal anti-
bodies. For some assays (see below), macrophages were prepared 
in 25 cm2 plastic culture flask, following the same protocol, but 
dispensing 4  ×  107 PBMCs/5  mL medium/flask, or in six-well 
plates with 107 PBMCs/3 mL. The approximate number of mac-
rophages obtained in each approach is indicated in the respective 
technical procedure. The human monocytic leukemia cell line 
THP-1 (ATCC: TIB202TM) was maintained in DMEM with 
low-glucose (LGC Bio) supplemented with 10% heat-inactivated 
fetal calf serum (Cultilab) and penicillin–streptomycin and dif-
ferentiated into macrophages by treating them with 40  ng/mL  
of PMA for 3  days. Then, the cells were washed three times 
with PBS and incubated with fresh medium for an additional 
3 days. TZM-bl cells (obtained through the AIDS Research and 
Reference Reagent Program, NIH, MD, USA; Dr. John C. Kappes, 
Dr. Xiaoyun Wu, and Tranzyme Inc.) were maintained with 
DMEM low-glucose with 10% heat-inactivated fetal calf serum 
and penicillin–streptomycin.

hiV-1 isolates, reagents, and elisa Kits
Assays of macrophage infection were performed with the CCR5-
dependent isolate HIV-1 Ba-L (donated by the AIDS Research 
and Reference Reagent Program, NIH, MD, USA), which was 
expanded in phytohemagglutinin-activated PBMCs from healthy 
donors, as described elsewhere (29). Recombinant human VIP 
and PACAP and the pharmacological inhibitors (PKA: H89; PKC: 
Go6383; and the PKA/PKC/PKG inhibitor H7) were purchased 
from Tocris, and the pertussis toxin (PTX) from Sigma-Aldrich. 
The HIV-1 p24 ELISA kits were acquired from Sino Biological, 
and MIP-1α and IL-10 ELISA kits were purchased from R&D 
Systems and eBioscience, respectively.

hiV-1 infection and evaluation of 
neuropeptide effects on hiV-1 replication
Macrophages (5 × 104/200 μL/well, 96-well plates) were infected 
with HIV-1 by exposing them overnight to viral suspensions 
containing 10 ng/mL of p24 antigen, as we have described (27). 
Then, non-internalized viruses were removed by washing (three 
times with PBS), and cell monolayers were replenished with 
fresh medium. HIV-1 replication was quantified in cell culture 
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supernatants after 10–12  days of infection by a commercial 
ELISA kit (Sino Biological), according to manufacturer’s instruc-
tions. HIV-1-infected macrophages were treated either with VIP 
or PACAP immediately after cell infection, or, in some assays, 
before infection, and maintained during culture. Cells were main-
tained in culture for different time-points, and HIV-1 replication 
was measured as described above. To measure the impact of 
pharmacological inhibitors on the neuropeptide effects on HIV-1 
replication, HIV-1-infected macrophages were treated with the 
appropriate inhibitor for 30 min and, then, cells were washed and 
the neuropeptides added.

caMP, nF-kB, caMP response element-
Binding Protein (creB), cyclin D1, MiP-
1α, and il-10 Measurement assays
For cAMP quantification, macrophages (5  ×  104/200  μL/well, 
96-well plates) were treated with 500 nM of IBMX (a competitive 
nonselective phosphodiesterase inhibitor, to avoid cAMP deg-
radation) and, after 15  min, with VIP or PACAP (10  nM), for 
different time-points. Culture supernatants were removed, cells 
were lysed with 0.1 M HCl, and intracellular cAMP levels were 
determined by ELISA according to the manufacturer’s instruc-
tions (Cayman Chemical). For NF-kB, CREB, and Cyclin D1 
measurement analyzes, macrophages infected or not with HIV-1 
were treated with VIP or PACAP (10  nM), following different 
protocol settings (see Results), and thus used for ELISA assays 
performed according to manufacturer’s instructions: NFkB 
p65 (Total/Phospho) InstantOne™, CREB (Total/Phospho) 
Multispecies InstantOne™ ELISA Kits (Thermo Fisher), and 
PathScan® Total Cyclin D1 Sandwich ELISA Kit (Cell Signaling). 
For MIP-1α and IL-10 quantification, infected macrophages were 
treated with VIP or PACAP and, 48 h later, supernatants were 
collected and analyzed with specific ELISA kits.

immunoblotting for Detection of PKa  
and PKc activation
Macrophages (1.5 × 106/4 mL/flask, 25 cm2 flasks) were treated 
with VIP or PACAP for different time-points and then proteins 
were extracted using RIPA buffer (Thermo Fischer) with Protease 
Inhibitor Cocktail Set III and Phosphatase Inhibitor Cocktail Set 
II (Merck). The protein concentration was quantified by Qubit 
2.0 Protein Assay Kit (Thermo Fisher). Equal amounts of sample 
protein were separated by SDS-PAGE using polyacrylamide gels, 
and proteins were transferred to nitrocellulose membranes (GE 
Healthcare). Nonspecific binding was blocked with 5% (w/v) 
skimmed milk powder in TTBS (Tween 20 tris-buffered saline) 
for 1  h, followed by incubation with rabbit polyclonal anti-
phospo-PKA (1:1,000; sc-32968, Santa Cruz Biotechnology), 
mouse monoclonal anti-PKA (1:1,000; sc-390548, Santa Cruz 
Biotechnology), rabbit polyclonal anti-phospho-PKC (1:1,000; 
ab23513, Abcam), mouse monoclonal anti-PKC (1:1,000; 
ab23511, Abcam), or mouse monoclonal anti-β-actin antibody 
(1:3,000; ab8226, Abcam), overnight at 4°C. Then, membranes 
were washed with TTBS and incubated with HRP-conjugated 
secondary antibodies (1:1,000; HAF007 or HAF008, R&D 
Systems) or IRDye secondary antibodies (1:15,000; 925–32,210, 

925–32,211, LI-COR Corporate) for 1 h at room temperature. The 
membranes were washed in TTBS and protein expression was 
detected using enhanced chemiluminescence (SuperSignal West 
Dura, Thermo Fisher) or fluorescence using the Odyssey Image 
System (LI-COR Corporate). Bands intensity was quantified by 
densitometry (Image-Pro® Plus Media Cybernetics).

luciferase assay
To investigate the NF-kB-dependent transcriptional activity, 
THP-1 cells (4 × 104 cells/well, 96-well plates) were transfected 
with 100 ng of p6kB-LUC (kindly provided by Dr. Ulisses G. Lopes, 
UFRJ, Brazil) and 2  ng pRL-CMV (Promega), using PolyFect 
Transfection Reagent (Quiagen). Transfected cells were treated 
with TNF-α (10 ng/mL) and, 1 h later, exposed to VIP or PACAP 
(10 nM). After 24 h, cells were washed (three times with PBS), 
lysed according to Dual Luciferase System protocol (Promega), 
and the NF-kB activation was analyzed in a SpectraMax M3 
Luminometer (Molecular Devices).

hiV-1 lTr sequence analyses
HIV-1-infected macrophages (106/3 mL/well, six-well plates) were 
treated with VIP (10 nM), PACAP (10 nM), or IFN-α (103 U/mL)  
and, after 12  days, DNA was extracted using a QIAamp DNA 
kit (Qiagen Inc.), and quantified using a Nanodrop 1000 system  
(Thermo Fisher). The 5′LTR region was amplified by a nested-
PCR protocol and directly sequenced as described (30). Chro-
matograms were assembled into contigs using the SeqMan v7.0 
software (DNASTAR Inc.). Nucleotide sequences were aligned 
using ClustalW implemented in MEGA 7 program (31) and then 
edited, yielding an alignment covering positions 57–580 relative 
to the HXB2 reference genome. Neighbor-Joining phylogenetic 
trees were reconstructed under the Tamura–Nei nucleotide sub-
stitution model (32) using the Mega v7 program. Phylogenetic 
confidence was assessed by bootstrap with 1,000 replicates, and 
pairwise genetic distances were estimated under the Tamura–Nei 
nucleotide substitution model using the Mega v7 program.

replication Fitness assays
HIV-1-infected macrophages were treated with VIP (10  nM), 
PACAP (10 nM) or IFN-α (103 U/mL) and, after 12 days, culture 
supernatants were collected, centrifuged at 3,000 × g, filtered using 
45 μm pore size, and virions were concentrated using Centricon 
filter devices with YM-100 membranes (Millipore). These super-
natants were obtained from the HIV-1-infected macrophages 
used for LTR sequencing experiments. Next, virus amount was 
quantified (by p24 ELISA, as above) and TZM-bl cells were 
infected with 5  ng/mL of normalized virus suspensions in the 
presence of DEAE-Dextran (15 μg/mL). Luciferase activity was 
assessed with Bright-Glo reagent (Promega) 48 h after infection.

resUlTs

ViP and PacaP retain Their anti-hiV-1 
effects Under Diverse addition Protocols 
to Macrophages
To examine whether both neuropeptides were able to render 
uninfected macrophages less susceptible to HIV-1 infection, 
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FigUre 1 | Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) retain the anti-HIV-1 effect at different modes of 
addition to macrophages. (a) Macrophages were treated with VIP or PACAP (10 nM) 24 or 48 h prior, or 24 h after infection. After 14 days of infection, supernatants 
were collected and viral replication was measured (n = 5). Macrophages were infected and treated with different concentrations of VIP or PACAP in a regime of one 
dose at day 1 [(B), 1T] or three doses at day 1, 5, and 10 [(c), 3T]. Supernatants were collected 5, 10, and 15 days after infection. (D) Area under curve (AUC) 
analysis of panels (B,c) (n = 4). *p < 0.05; **p < 0.01; ***p < 0.001; two-way ANOVA, with Tukey post-test.
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cells were treated with the neuropeptides and then infected.  
We found that pre-exposure to VIP and PACAP (10 nM) resul-
ted in long-term inhibition of HIV-1 replication, albeit to a 
lesser extent compared to post-infection treatment (Figure 1A). 
Following, we compared two treatment protocols: a single post-
infection treatment (day 1) using optimal and suboptimal VIP 
and PACAP concentrations (relative to inhibition of HIV-1 
replication) (Figure 1B) and a consecutive treatment with three 
doses of each neuropeptide (on day 1, 5, and 10) at both concen-
tration levels (Figure 1C). Applying area under curve analysis, we 
observed that when infected macrophages were exposed to three 
non-functional doses of VIP or PACAP, HIV-1 replication was 
reduced to a level similar to that observed when cells were treated 
with single functional doses (Figure 1D).

ViP and PacaP Do not change  
the expression of cD4 and ccr5  
in Macrophages
Taking into account our previous findings that HIV-1 inhibition 
by VIP and PACAP is partially dependent on β-chemokines (27), 

we tested the possibility that these neuropeptides could directly 
modulate the expression of CCR5 in macrophages. We observed 
that the macrophage expression levels of CCR5 and CD4 as well 
were not changed after cell exposure to either neuropeptide 
during 24 h (Figures S1A–E,H in Supplementary Material), thus 
excluding reduced expression of cellular HIV-1 receptors as a 
mechanism of HIV-1 inhibition promoted by VIP and PACAP. 
In addition, the treatment with VIP and PACAP did not change 
the expression of the macrophage marker CD68 (Figures S1F,G 
in Supplementary Material).

ViP and PacaP Do not Modulate  
the expression of Their receptors  
in hiV-1-infected Macrophages
We previously demonstrated that, in addition to VIP and PACAP, 
specific ligands to the VPAC1, VPAC2, and PAC1 receptors also 
diminished the production of HIV-1 in macrophages (27), thus 
indicating that these receptors are present in HIV-1-infected 
macrophages. However, we had not yet directly detected the 
presence or quantified the levels of these receptors in our model. 
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FigUre 2 | Activation of cAMP signaling contributes to vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP)-induced 
HIV-1 inhibition in macrophages. (a) Uninfected macrophages were treated with VIP or PACAP (10 nM) and intracellular cAMP levels were analyzed by ELISA at 
different time points (n = 3). (B,c) HIV-1-infected macrophages were exposed to pertussis toxin (25 pg/mL) and, 3 h later, cells were washed and treated with  
VIP or PACAP at different concentrations. Supernatants were collected after 12 days and viral replication was measured (n = 3). *p < 0.05; **p < 0.01; ns, not 
significant; two-way ANOVA, with Tukey post-test.
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Here, we determined the expression levels of VPAC1, VPAC2, 
and PAC1 in HIV-1-infected macrophages and also examined 
whether VIP and PACAP could modulate the levels of their own 
receptors in these cells. As expected, macrophages expressed 
the three receptors and VIP and PACAP did not significantly 
change the receptor levels; however, we detected that VPAC1 and 
PAC1 were expressed in only 20%, and VPAC2 in approximately 
30% of cells, without any significant differences in the MFI 
relative to the basal and treatment conditions (Figures S2A–C in 
Supplementary Material).

activation of caMP signaling contributes 
to ViP and PacaP-induced hiV-1 inhibition
Because the activation of cAMP signaling has been detected 
in the majority of VIP and PACAP cell signaling studies (3, 4, 
33–35), we analyzed the levels of cAMP production and its role 
in the HIV-1 inhibitory effect promoted by both neuropeptides. 
We found that VIP and PACAP raised cellular levels of cAMP, 
peaking at 15  min of stimulus (Figure  2A), pointing to Gs 
protein activation by both neuropeptides. Two scenarios are 
possible regarding cAMP regulation: (1) dependency of the Gs 
protein only, implying a wide window of tolerance for high levels 
of cAMP; (2) dependency of both Gs and Gi, inferring a narrow 

window for the optimal cAMP level, with an increase of cAMP 
over the maximum point, leading to reversion or blockade of the 
neuropeptide effect. Using PTX (an inhibitor of Gi protein), we 
evaluated whether Gi protein blockade (leading to a subsequent 
extra-amplification of the cAMP levels) could change the VIP 
and PACAP inhibitory effect on HIV-1 infection, indicating 
that cAMP pathway activation is a component of the cellular 
signaling involved in the neuropeptide effects on HIV-1 produc-
tion in macrophages. However, before using PTX, we searched 
for a concentration that was able to affect the levels of cAMP 
without modifying HIV-1 replication, since the B-subunit of 
PTX (the A-subunit being the Gi inhibitor) is a potent inhibi-
tor of HIV-1 (36). Thus, we reduced the PTX concentration to 
25 pg/mL, which preserved the modulation of the cAMP levels, 
and found that HIV-1 inhibition was negligible (Figures S3A,B 
in Supplementary Material). In the presence of PTX, an incre-
ment in the anti-HIV-1 effect occurred at suboptimal doses of 
1 and 5 nM VIP and a complete loss of function was found at 
the optimal dose of 10 nM (Figure 2B). Concerning PACAP, we 
observed the same change with the suboptimal doses, but only a 
partial reduction of the effect with the optimal dose of 10 nM, as 
HIV-1 inhibition resulting from the combination of PACAP plus 
PTX was lower than that of viral replication in the presence of the 
neuropeptide only (Figure 2C). These results indicate that the 
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FigUre 3 | The effect of vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) on HIV-1 replication is dependent on 
protein kinases A (PKA) and C (PKC). (a,B) Uninfected macrophages were treated with VIP or PACAP (10 nM) and levels of PKA and pPKA (a), PKCα and pPKCα 
(B) were analyzed by western blot at different time-points; figures show the ratios between band densitometry normalized based on β-actin intensity (n = 3).  
(c–e) Infected macrophages were treated with VIP or PACAP (10 nM) in the presence or not of signaling inhibitors (PKAi, H89; PKCi, Gö 6983; Pan-protein kinase 
inhibitor, H7, 50 nM each one) for 30 min; cells were washed before neuropeptide addition [in (c), results are shown normalized to medium to rule out any possible 
inhibitor interference on HIV-1 replication]. (D,e) Treatment with VIP (D) or PACAP (e) plus inhibitors; results are shown normalized to respective controls [shown in 
(c)], to compare the individual inhibitory effects. Supernatants were collected after 12 days and viral replication was measured (n = 5). (F,g) Infected macrophages 
were treated with VIP or PACAP (10 nM) in the presence or not of signaling inhibitors as above, for 30 min; cells were washed before neuropeptide addition. After 
48 h, supernatants were collected and production of MIP-1α (F) and IL-10 (g) were analyzed by ELISA (n = 4). *p < 0.05; **p < 0.01; ***p < 0.001; one-way 
ANOVA, with Dunnett post-test.
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Gi protein regulates the optimal levels of cAMP that are needed  
for VIP and PACAP inhibition of HIV-1 replication.

effect of ViP and PacaP on hiV-1 
replication is Dependent on PKa  
and PKc activation
Since PKA and PKC are the main proteins responsible for medi-
ating the physiological actions of VIP and PACAP (3, 4) and 
because PKA activation occurs secondary to cAMP formation, 
we analyzed whether the HIV-1 inhibitory effect promoted by 

both neuropeptides was dependent on the activation of these 
kinases. We found that VIP and PACAP activated PKA and 
PKC, as expected, and that the activation of PKA was short-lived 
(Figure 3A) and activation of PKC was long-lasting and exceeded 
the analytical time-frame for PACAP (Figure  3B; representa-
tive blots are shown in Figure S4 in Supplementary Material).  
To evaluate the participation of PKA and PKC in the anti-HIV-1 
effect of VIP and PACAP, we treated HIV-1-infected macrophages 
with pharmacological inhibitors of these kinases before exposing 
them to either neuropeptide. We found that blocking PKA or 
PKC activation reduced the anti-HIV-1 effect of VIP and PACAP, 
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FigUre 4 | Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) inhibit NF-kBp65 phosphorylation in HIV-1-infected 
macrophages. (a) Macrophages were infected with HIV-1 and 7 days later the levels of NF-kBp65/phosphoNF-kBp65 were analyzed by ELISA (n = 4). (B,c) 
Macrophages were treated with VIP or PACAP (10 nM) 7 days after HIV-1 infection (7 dpi), in the presence or not of protein kinases A (PKA) or C (PKC) inhibitors 
(PKAi, H89; PKCi, Gö 6983; 50 nM each one, for 30 min; cells were washed before neuropeptide addition). After 1 h, the levels of NF-kBp65/phosphoNF-kBp65 
were analyzed by ELISA (n = 3). *p < 0.05; one-way ANOVA, with Dunnett post-test.
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respectively (Figures 3C–E), whereas blocking both (PKAi plus 
PKCi), or using a pan-inhibitor (PKA/PKC/PKG), completely 
disrupted the HIV-1 inhibition promoted by both neuropeptides 
(Figures  3C–E). We further analyzed whether these signaling 
events contribute to downstream MIP-1α and IL-10 production, 
since these molecules participate in VIP- and PACAP-mediated 
HIV-1 inhibition in macrophages, as we previously described 
(27). As observed in Figures  3F,G, PKA and PKC are clearly 
involved in macrophage production of MIP-1α and IL-10 induced 
by these neuropeptides. More precisely, VIP induction of MIP-1α 
is dependent of both kinases and that of IL-10 is only dependent 
on PKA; however, PACAP induction of MIP-1α is only depend-
ent on PKC and that of IL-10 is dependent on both kinases.  
Of note, all of the pharmacological inhibitors were tested for cel-
lular cytotoxicity; thus, the concentrations used in the assays did 
not affect macrophage viability (data not shown).

ViP and PacaP inhibit nF-kBp65 
Phosphorylation in hiV-1-infected 
Macrophages
The transcription factor NF-kB is an inherent component of the 
HIV-1 replicative cycle, and NF-kB inhibition decreases viral pro-
duction and promotes provirus latency in infected cells (37). VIP 

and PACAP are inhibitors of NF-kB (20), and this inhibition may 
contribute to their anti-HIV-1 effect. We thus evaluated the activ-
ity of NF-kB in cells exposed to the neuropeptides by detecting 
the total and phosphorylated NF-kBp65 subunit. To better assess 
the inhibition phenotype, we first treated uninfected macrophages 
with TNF-α for 1  h, added VIP or PACAP, and evaluated the 
levels of NF-kBp65 1 h later. This approach was aimed to promote 
the activation of NF-kB by TNF-α, which allowed us to analyze 
whether VIP and PACAP were able to reduce the activation status 
of NF-kB to basal levels. TNF-α mimics the effect of HIV-1 infec-
tion, which activates the NF-kB transcription factor and leads to 
the production of TNF-α (38, 39). Both neuropeptides reduced 
TNF-α-mediated activation of NF-kBp65 to levels comparable 
to those of control cells not exposed to the cytokine, indicating 
the marked anti-NF-kBp65 activity of VIP and PACAP (Figure 
S5A in Supplementary Material). We also analyzed the activation 
of NF-kB using a gene reporter assay in uninfected THP-1 mac-
rophages. The NF-kB reporter construct was induced by TNF-α, 
but this induction was abrogated when VIP or PACAP was added 
together with TNF-α (Figure S5B in Supplementary Material). 
Next, we analyzed the phosphorylation of NF-kB in macrophages 
infected with HIV-1 for 7 days to achieve a larger virus propaga-
tion throughout the culture, thus allowing the increment of basal 
NF-kB activity by the own HIV-1 infection (Figure 4A) (40, 41). 
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FigUre 5 | Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) promote cAMP response element-binding  
protein (CREB) phosphorylation in HIV-1-infected macrophages. (a) Uninfected macrophages were treated with VIP or PACAP (10 nM) and levels of CREB and 
phospho-S133 CREB were analyzed by ELISA at different time-points (n = 3). (B) Infected macrophages were treated with VIP or PACAP (10 nM) in the presence  
or not of a protein kinases A (PKA) or C (PKC) inhibitors (PKAi, H89; PKCi, Gö 6983; 50 nM each one, for 30 min; cells were washed before neuropeptide addition), 
and CREB activation was analyzed 30 min after neuropeptide exposure (n = 3). *,+p < 0.05; ns, not significant; two-way ANOVA, with Tukey post-test.
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One-hour treatment with VIP and PACAP reduced NF-kBp65 
phosphorylation induced by TNF-α (Figures 4B,C). Notably, PKA 
or PKC blocking prevented VIP inhibition of NF-kB (Figure 4B), 
whereas only PKC blockage inhibited the effect of PACAP on 
NF-kB (Figure 4C).

ViP and PacaP Phosphorylate creB  
in hiV-1-infected Macrophages
The CREB, a classical transcription factor of the cAMP/PKA 
pathway and Ca2+-dependent kinases, is induced by several 
GPCRs ligands, including VIP and PACAP (42, 43). CREB and 
NF-kB share the CREB-binding protein/p300 (CBP/p300 pro-
tein) as a cofactor, and CREB activation results in the inhibition of 
NF-kB (44). We observed that VIP and PACAP promoted CREB 
phosphorylation in uninfected (Figure 5A) as well as in HIV-1-
infected macrophages (7 days of infection) (Figure 5B). Under 
this last condition, PKA or PKC blockage diminished CREB 
phosphorylation by VIP, while the effect of PACAP on CREB 
activation was reduced only with PKC blockade (Figure 5B).

ViP and PacaP reduce the levels of 
cyclin D1 in hiV-1-infected Macrophages
We evaluated whether VIP and PACAP could decrease the levels 
of Cyclin D1, a macrophage protein that is recruited to the HIV-1 
transcription complex and participates in viral latency process 
(45, 46). We initially observed that both neuropeptides did 
not modulate the Cyclin D1 levels in uninfected macrophages 
(Figure 6A). On the other hand, we found that HIV-1-infected 
macrophages (7 days of infection) presented higher expression of 
Cyclin D1 (Figure 6B) and that both neuropeptides diminished 
the total levels of this protein in infected cells. In addition, the 
effects of VIP and PACAP on Cyclin D1 expression were weak-
ened when PKA and PKC activation was blocked (Figure 6C).

ViP and PacaP Promote Mutations  
in the hiV-1 genome
Because members of the APOBEC family can be targeted by 
PKA and PKC (22–24), it is possible that VIP and PACAP 
modulate these HIV-1 restriction factors, thus promoting 
mutations in the HIV-1 proviral DNA. To test this hypothesis, 
infected macrophages were treated with VIP or PACAP [or 
also IFN-α as a positive control, since it is a potent APOBEC3G 
inducer (47)], and after 12 days, the mutation profile in the LTR 
region of the integrated provirus was analyzed. We observed 
that proviruses obtained from macrophages treated with VIP 
and PACAP displayed higher genetic distance to the original 
input (Ba-L[D0]) than proviruses from untreated macrophages 
(Ba-L[D12]) (Figure  7A; Table S1 in Supplementary Material). 
PACAP-treated proviruses accumulated a significantly higher 
number of mutations than those treated with VIP or untreated 
proviruses and were comparable to IFN-α-treated proviruses 
(Figure  7B; Table  1). Notably, a significant proportion of the 
mutations detected upon treatment with VIP (15%), PACAP 
(27%), and IFN-α (42%) corresponded to G-to-A substitutions, 
consistent with mutations derived from the activity of members 
of the APOBEC family of viral restriction factors (Table 1), and 
were two, eight, and ten times higher than those detected in con-
trol Ba-L(D12) proviruses, respectively (Table 1). The complete 
nucleotide alignment of the HIV-1 LTR sequences is in Figure 
S6 in Supplementary Material.

ViP and PacaP reduce hiV-1  
replication Fitness
To verify the impact of these APOBEC3 signature mutations 
in viral infectivity, supernatants were collected 12  days after 
macrophage infection, centrifuged, and clarified. Virions were 
concentrated, titrated (the same donors as in Figure  7 and an 
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FigUre 6 | Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) reduce Cyclin D1 levels in HIV-1-infected 
macrophages. (a) Uninfected macrophages were exposed to VIP or PACAP (10 nM) and levels of total Cyclin D1 were quantified by ELISA 24 or 48 h later (n = 3). 
(B) Macrophages were infected with HIV-1 and 7 days later the levels of Cyclin D1 were analyzed by ELISA (n = 5). (c) Macrophages were treated with VIP or 
PACAP (10 nM) 7 days after HIV-1 infection (7 dpi), in the presence or not of protein kinases A (PKA) or C (PKC) inhibitors (PKAi, H89; PKCi, Gö 6983; 50 nM each 
one, for 30 min; cells were washed before neuropeptide addition), and levels of Cyclin D1 were quantified by ELISA 24 h later (n = 3). *p < 0.05; **p < 0.01; 
one-way ANOVA, with Dunnett post-test.
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additional donor) and added to TZM-bl cells at normalized 
amounts to evaluate infectivity. Treatment with VIP did not 
significantly alter HIV-1 infectivity, whereas viruses derived from 
PACAP- or IFN-α-treated HIV-1-infected cells significantly lost 
infectivity (Figures 8A,B). These results suggest that the APOBEC 
signature mutations introduced into the HIV-1 genome could  
be related to the ability of PACAP to reduce HIV-1 replication  
and, consequently, weaken viral propagation in culture. Therefore, 
we believe that VIP/PACAP-mediated inhibition of HIV-1 infec-
tion relies not only on the reduction of virus production but also 
on the concomitant loss of virus fitness.

DiscUssiOn

Vasoactive intestinal peptide and PACAP, together with other 
peptides, regulate the neuro-immune-endocrine system and par-
ticipate in a variety of processes, such as embryogenesis, memory 
and learning, hormone production, and immune responses. 

Although both neuropeptides have been extensively studied in 
many fields, data regarding their actions on specific cell types and 
influence on infectious processes are still scarce. In this sense, 
we previously described the ability of VIP and PACAP to limit 
HIV-1 replication in macrophages and identified some of the 
mechanisms involved in this activity. Here, we sought to deepen 
our knowledge of the interaction of VIP and PACAP with human 
primary macrophages and to search for additional mechanisms 
contributing to the anti-HIV-1 activity of both neuropeptides.

The variety of ways that these peptides promote HIV-1 rep-
lication inhibition suggests that multiple mechanisms may be 
involved in this phenomenon, in addition to the production of 
β-chemokines and IL-10 (27). Modulation of transcription fac-
tors and viral restriction agents and activation of receptors or the 
enzymes related to HIV-1 replicative cycle may contribute to the 
inhibitory phenotype. These mechanisms could act separately or 
together, preceding those already observed by us or even being 
redundant, compensating for the absence of each other by virtue 
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FigUre 7 | Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) promote mutations in HIV-1 genome. Macrophages 
from four donor (dn1 to dn4) were infected with the HIV-1 Ba-L isolate (Ba-L[D0]) and incubated for 12 days with medium (Ba-L[D12]), VIP (10 nM; Ba-L + VIP), 
PACAP (10 nM; Ba-L + PACAP), or IFN-α (103 U/mL; Ba-L + IFN-α). After that, genomic DNA from macrophages was extracted and the LTR sequences were 
obtained. (a) Neighbor-Joining phylogenetic tree of proviral LTR sequences derived recovered from untreated and treated macrophages. Phylogenetic trees were 
rooted using the LTR sequence of the original Ba-L(D0) isolate. (B) Number of mutations respect to the original Ba-L LTR sequence accumulated in proviral 
genomes recovered from macrophages under different treatment conditions. Horizontal lines indicate the mean and SDs. p Values were calculated using the 
Mann–Whitney test.

TaBle 1 | Description of total and specific G to A mutations identified in HIV-1 
provirus from infected cells exposed to different treatments.

Treatment Donor iD number of 
mutations 

respect to Ba-l

number of g → a 
mutations respect 

to Ba-l

None dn01 2 1
dn02 1 0
dn03 0 0
dn04 0 0
Mean 0.75 ± 0.96 0.25 ± 0.50

Vasoactive intestinal 
peptide

dn01 4 0
dn02 3 0
dn03 4 1
dn04 2 1
Mean 3.25 ± 0.96 0.50 ± 0.58

Pituitary adenylate 
cyclase-activating 
polypeptide

dn01 8 2
dn02 13 4
dn03 5 1
dn04 4 1
Mean 7.50 ± 4.04 2.00 ± 1.41

INFα dn01 7 5
dn02 8 3
dn03 4 1
dn04 5 1
Mean 6.00 ± 1.83 2.50 ± 1.92
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of the type of stimulus or cellular state at the moment of interac-
tion with VIP and PACAP. We also detected that VIP and PACAP 
receptors were expressed in HIV-1-infected macrophages, cor-
roborating the findings of our previous work in which specific 
agonists for each of the three receptors were shown to have 
quantifiable effects on HIV-1 replication (27).

Here, we found that VIP and PACAP elicited macrophage 
cAMP synthesis and PKA and PKC activation, although PKC 
activity appeared to be predominant over PKA activation follow-
ing PACAP exposure. Considering studies on other cell types, 
PACAP is a strong activator of PKA along with PKC (48). For 
example, PAC1 associations with the Gαs, Gαi, and Gαq subunits 
are reported to trigger PKA activation, PKA inhibition, and PKC 
activation, respectively (49). In addition, the PAC1 receptor itself 
presents several isoforms that have different binding affinity and 
signaling activity (1). In addition, in several models, the actions 
of PACAP are related to the activation of the exchange protein 
directly activated by cAMP (EPAC), which directly binds cAMP 
and exhibits guanine nucleotide exchange factor activity (50). 
Therefore, it is also possible that, as indicated by our results, the 
induction of cAMP by PACAP could lead to EPAC activation, 
generating the differences we observed in the NF-kB and CREB 
assays. The potential triggering of EPAC signaling pathway raises 
the possibility that, although HIV-1 replication inhibition by 

VIP and PACAP is dependent on PKA and PKC activation, other 
possible inhibitory mechanisms could be differently modulated, 
depending on the neuropeptide in question.

The difference between VIP and PACAP observed in the 
experiments using PTX could be explained by the fact that the 
PACAP receptor PAC1 mainly couples with the Gs and Gq pro-
tein subunits (51). Also, the blockade of Gi by PTX could lead to 
excessive levels of cAMP, promoting receptor desensitization, as 
described elsewhere (52). These results suggest that VIP action 
on HIV-1 replication inhibition could more dependent on cAMP 
signaling than PACAP.

Regarding the analysis of nuclear factors and the final com-
ponents of the signaling pathways, we observed that VIP and 
PACAP promoted CREB activation and inhibited NF-kBp65. 
The investigation of the neuropeptide effects on these two targets 
was based on the fact that NF-kB is a crucial factor for HIV-1 
transcription (37), and on findings reported by others authors 
indicating that VIP can inhibit the activity of this factor in many 
cellular models (20, 53, 54). CREB is one of the final components 
of the signaling promoted by GPCRs that activates PKA and PKC 
(55, 56). CREB can act as a negative regulator of NF-kB, since 
both CREB and NF-kB share the accessory protein CBP/p300 
and participate in the structure of the transcriptional complex 
formed by CREB and NF-kB (44, 57). The data we obtained 
favor the hypothesis regarding the negative regulation of NF-kB 
by CREB, but we cannot exclude the possibility that VIP- and 
PACAP-mediated regulation of both transcription factors may be 
not interconnected.

Overall, our results are internally connected, once they were 
obtained following the classical signaling pathways triggered by 
both neuropeptides. Nonetheless, to integrate all of the evidence 
concerning the cellular signaling cascades involved in the anti-
HIV-1 effect of both neuropeptides, it is essential to take into 
account that the properties of VIP and PACAP to induce HIV-1 
inhibitory mediators and regulate transcription factors are both 
equally dependent of PKA and PKC activation (Figure 9). In this 
regard, in our previous work (27), we showed that HIV-1 inhibi-
tion by VIP and PACAP was dependent on β-chemokines and 
IL-10 induction; here, we confirmed that the production of these 
anti-HIV-1 inhibitory factors is also determined by PKA and PKC 
activation. The transcription factor NF-kB can be modulated in 
several ways: through regulation of IKK, direct phosphorylation, 
proteasomal tagging, and competition with its co-activators  
(58, 59). The participation of PKA in NF-kB inhibition has also 
been reported by others (60–64), supporting our findings that 
PKA and PKC blockade prevented the inhibitory effects of VIP 
and PACAP on NF-kB activation. Likewise, activation of CREB 
can occur via direct phosphorylation by PKA and PKC (65, 66), 
and in some models, the optimal activation of CREB by PKA 
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FigUre 8 | Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) reduce HIV-1 replication fitness. TZM-bl cells  
were exposed to 5 ng/mL of normalized HIV-1 infectious input, obtained from 12 days-infected macrophages treated with VIP (10 nM), PACAP (10 nM), or  
IFN (103 U/mL). After 48 h, TZM-bl cells were lysed and luciferase activity was measured. (a) Relative luminescence units; bars represent the median of each 
treatment; (B) normalized data from (a) (n = 5). *p < 0.05; ***p < 0.001; one-way ANOVA, with Dunnett post-test.

FigUre 9 | Proposed model of the role of protein kinases A (PKA) and C (PKC) in the vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating 
polypeptide (PACAP)-mediated inhibition of HIV-1 replication in macrophages. The interaction of VIP and PACAP with their specific receptors in HIV-1-infected 
macrophages activates PKA (via induction of cAMP) and PKC, leading to inhibition of NF-kB activation and Cyclin D1 synthesis induced by HIV-1 infection, and  
to reduction of HIV-1 production. Also, PKA and PKC activation can trigger the phosphorylation of cAMP response element-binding protein (CREB) and the 
macrophage production of β-chemokines and IL-10, which diminish HIV-1 replication (27). In addition, PACAP introduces mutations on HIV-1 provirus that  
result in a reduction of HIV-1 replication fitness (the color green in the DNA represents the integrated HIV-1 provirus).
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