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For those with leprosy, the extent of host infection by Mycobacterium leprae and the 
progression of the disease depend on the ability of mycobacteria to shape a safe envi-
ronment for its replication during early interaction with host cells. Thus, variations in key 
genes such as those in pattern recognition receptors (NOD2 and TLR1), autophagic 
flux (PARK2, LRRK2, and RIPK2), effector immune cytokines (TNF and IL12), and 
environmental factors, such as nutrition, have been described as critical determinants 
for infection and disease progression. While parkin-mediated autophagy is observed as 
being essential for mycobacterial clearance, leprosy patients present a prominent acti-
vation of the type I IFN pathway and its downstream genes, including OASL, CCL2, and 
IL10. Activation of this host response is related to a permissive phenotype through the 
suppression of IFN-γ response and negative regulation of autophagy. Finally, modulation 
of host metabolism was observed during mycobacterial infection. Both changes in lipid 
and glucose homeostasis contribute to the persistence of mycobacteria in the host.  
M. leprae-infected cells have an increased glucose uptake, nicotinamide adenine dinu-
cleotide phosphate generation by pentose phosphate pathways, and downregulation of 
mitochondrial activity. In this review, we discussed new pathways involved in the early 
mycobacteria–host interaction that regulate innate immune pathways or metabolism and 
could be new targets to host therapy strategies.
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iNTRODUCTiON

Leprosy is caused by Mycobacterium leprae or Mycobacterium lepromatosis. Here, we will discuss 
mechanisms of infection and host–pathogen interaction mediated by M. leprae. The heaviest 
exposed population, including the household and family members and social contacts of patients, 
is considered to have the highest risk of developing leprosy, but the disease will not necessarily 
progress during their lifetime. Thus, mycobacterial infection is a necessary, but not sufficient 
cause of leprosy progression. During the natural course of the disease, it has been suggested that 
once M. leprae infects an individual through the airways, the bacteria can come into the lungs 
and be phagocytosed by resident macrophages. The mycobacteria can infect epithelial cells in the 
nasal mucosa and penetrate the organism, while host cells initiate an innate response to eliminate 
the pathogen (1). Intracellular mycobacteria are able to use different strategies to circumvent 
potential bactericidal peptides: (i) mimic a viral response; (ii) upregulate lipid metabolism; or 
(iii) downregulate pro-inflammatory cytokines, which is generally associated with a cascade of 
pro-mycobacteria events (2–4). These virulence strategies are related to other pathogens, such as 
Mycobacterium tuberculosis, suggesting that virulent mycobacteria can share common mechanisms 
of host colonization (5–7). Thus, by understanding the critical pathways related to the subversion 
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of antimicrobial responses, researchers can understand the 
conditions for successful mycobacterial infection and, perhaps, 
the disease progression. Actually, these novel pathways, which 
use different strategies during M. leprae infection have already 
been described, but a better understanding of these phenomena 
could help us interfere, reverse or halt the disease progression.

In this regard, the M. leprae genome is highly conserved, and 
the strain circulating worldwide has remained basically the same 
for the past 1,000 years (8). So, the decline of leprosy in Europe 
does not account for genetic changes in M. leprae that could 
impact bacterial virulence. Currently, it is clear that very few 
differences are observed between strains isolated from different 
clinical forms of the disease. One possible conclusion is that the 
various stages and clinical forms observed in cases of leprosy are 
similar due to the host genetics (9).

Large-scale studies have contributed to the identification 
of new candidate genes and pathways to help understand this 
complex puzzle. These strategies provide insights not only about 
leprosy but also about other immune-based and/or infectious 
diseases. In fact, the most successful genome-wide association 
studies (GWASs; or genomic scans) were performed in leprosy, as 
compared, for example, to tuberculosis studies, in which no genes 
were consistently pinpointed. Several genes have been associated 
with leprosy, such as NOD2, PARK2/PARCG, LRRK2, RIPK2, 
TNF/LTA/HLA, LACC1, IL10, TLR1, and microRNA (miR)-146a 
(10–14). Single-nucleotide polymorphisms in these genes were 
replicated consistently in different populations and have been 
assigned a functional role in leprosy susceptibility. Whole exome 
sequencing and rare variant analysis have implicated several 
novel candidates that still need to be validated. Most of these 
confirmed associations have a modest odds ratio value, but few 
other infectious diseases have a clear association with key genes 
that demonstrate consistent results, which can be replicated in 
populations with different ethnic backgrounds. Interestingly, the 
most important genes or pathways that emerge after M. leprae 
infections in studies using microarray gene expression are type 
I interferon (IFN), autophagy and mitochondrial, and lipid 
metabolism (15). Therefore, different large-scale approaches in 
the literature are revealing distinct, but complementary pathways 
that clearly outline the strategies used by M. leprae to destabilize 
antimicrobial responses and establish a safe environment for con-
tinuous bacterial replication. We have depicted main pathways 
associated with disease susceptibility in a way that how could 
we potentially regulate lipid and mitochondrial metabolism 
and immuno-inflammatory responses toward a reversion of the 
phenotype to accelerates treatment and develop new prevention 
strategies? Hence, in this article, we will discuss seminal findings 
that reveal critical mechanisms of innate immunity and host 
metabolism with a direct impact on the disease outcome where 
modulation could be path toward disease control.

TLR-2/1-MeDiATeD ANTiMiCROBiAL 
ReSPONSe iN LePROSY

In the early stages of mycobacterial infection, macrophages 
and other cells of the innate immune system are able to rapidly 

recognize pathogen-associated molecular patterns through expo-
sure to an extensive repertoire of pattern recognition receptors 
(PRRs). These transmembrane receptors mediate the activation of 
several signaling pathways in response to intracellular pathogens 
and initiate important immune events, such as cell differentiation 
and antimicrobial programs (16). The most recognized toll-like 
receptors (TLRs) have been observed to mediate the immune 
recognition of mycobacteria (17). Among these, the TLR-2/1 
heterodimer was responsible for recognizing mycobacterial 
lipoproteins, activating a pro-inflammatory response and releas-
ing vitamin-D-dependent antimicrobial peptides (18). Genetic 
analysis has demonstrated that polymorphisms in the TLR1 gene 
are associated with leprosy susceptibility, and these variations 
have a functional effect that includes structural modifications 
to the protein and alterations to TNF/IL-10 log ratio values 
in the supernatants of M. leprae-stimulated peripheral blood 
mononuclear cells (13, 16). These individual variations exemplify 
the ability of the host’s immune system to initiate an efficient 
antimicrobial response against mycobacteria.

Other components also contribute to TLR-2/1 signaling. miR-
21, which is highly expressed in the disseminated form of leprosy, 
it is a suppressive mechanism of host antimicrobial TLR-2/1-
mediated genes that affect the production of critical cytokines, 
such as IL-1β and IL-10 (19). Recently, a novel component of a 
TLR-2/1-mediated antimicrobial programme has been described. 
The S100A12 gene, which encodes the calgranulin C protein, is 
highly expressed in response to the activation of the TLR-1 recep-
tor. This gene codifies an antimicrobial peptide that is able to kill 
M. leprae directly (20). Also, S100A12 is more expressed in skin 
lesions of tuberculoid (TT) patients than in those of lepromatous 
(LL) patients (20). Since TLR-2/1 signaling pathways regulate 
this gene, differences in disease susceptibility could be linked to 
variations of TLR1 expression and the activation of this signaling 
pathway among patients and healthy volunteers. Thus, pattern 
recognition is essential for controlling mycobacterial growth 
by regulating optimum levels of the TNF/IL-10 ratio during the 
period of infection, while miR-21 levels could counterbalance  
or impair an adequate antimicrobial response (19).

NOD2 SiGNALiNG PATHwAY

In the past few years, independent GWASs in leprosy and inflam-
matory diseases such as Crohn’s disease (CD) have revealed 
a common genetic fingerprint and a considerable overlap of 
susceptibility mechanisms among these pathologies (10, 21, 22). 
As demonstrated in mycobacterial diseases, the risk variants of 
inflammatory bowel disease (IBD) comprise genes that are active 
in the early stages of the host response suggesting that the con-
tinuous interaction between host and pathogens shapes genetic 
factors that are predisposed to IBD (23). An important signaling 
pathway identified by a GWAS was the nucleotide-binding oli-
gomerization domain containing 2 (NOD2)-mediated immune 
response, where variants of genes involved in this signaling path-
way are also implicated in susceptibility to M. leprae infection 
and CD (10).

NOD2 is an intracellular component of NOD-like receptors 
that detects muramyl dipeptide (MDP), which is a cell wall 
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FiGURe 1 | Antimicrobial activity and NOD2-induced autophagy mediate the link between innate and adaptive immunity in mycobacterial infection. The recognition 
of mycobacterial lipoproteins by the TLR-2/1 heterodimer is a critical way to initiate a pro-inflammatory response and activation of a vitamin-D antimicrobial program 
against intracellular pathogens such as Mycobacterium leprae. Mycobacterial muramyl dipeptide sensing by NOD2 receptors enhances the inflammatory response 
in a leucine-rich repeat kinase 2 (LRRK2)-dependent manner and activates autophagic mechanisms. All of these processes lead to mycobacterial killing and are 
essential for bacterial handling, antigen presentation, and consequent generation of an effective CD4 T cell response.
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structure. M. leprae presents a distinct MDP compared with 
other mycobacteria (24). However, even with these structural 
modifications, M. leprae MDP maintains the capacity to trigger 
the NOD2 response. Upon recognizing MDP, NOD2 is able to 
initiate a leucine-rich repeat kinase 2 (LRRK2)-dependent pro-
inflammatory response, as well as other cellular processes, such 
as autophagy (25). LRRK2 is a downstream component of NOD2 
signaling, which enhances the inflammatory cytokine produc-
tion that is required for antimicrobial activity in the presence 
of macrophages (25). For this reason, the LRRK2 gene is similar 
to the many critical genes involved in the NOD2-mediated 
response that is associated with leprosy susceptibility, CD, and 
Parkinson’s disease (PD) (10). Unbalanced LRRK2 activity is 
related to excessive inflammation, which leads to tissue damage. 
It has been reported that a specific mutation in the LRRK2 gene 
is associated with acute inflammation in both leprosy and CD 
cases, supporting the assumption that these diseases share com-
mon pathological mechanisms (26). Furthermore, a recent study 
has found that functional variations in LRRK2 genetically link 
CD to PD, affecting cellular processes such as kinase activity and 
autophagy (27).

In like manner, genetic variation at NOD2 is reported to be 
associated with exacerbated inflammatory responses in leprosy 
reactions that could modulate downstream pathways, such as 

LRRK2 activation (28). Notably, NOD2 activation induces the dif-
ferentiation of monocytes into dendritic cells (DCs) in an IL-32-
dependent manner (29). This DC activation triggers autophagy, 
a process required for bacterial handling, antigen presentation 
and generation of CD4 T cell response (30). Individuals suffer-
ing from CD present a defective activation of these processes, 
which are still poorly investigated in leprosy. In addition to the 
genetic relevance of the NOD2 response to leprosy susceptibility, 
some advances in functional studies have demonstrated that this 
signaling pathway is upregulated in patients with paucibacillary 
leprosy when compared with those that manifest the dissemi-
nated (multibacillary) form of the disease (29). These findings 
show that the activation of the NOD2 response is an essential 
link between innate and adaptive immunity, and aberrant NOD2 
signaling results in impairment of antimicrobial activity and 
defective antigen presentation in leprosy (Figure 1).

TYPe i iFN AND AUTOPHAGY: THe 
HeTeROGeNeiTY OF DNA SeNSiNG  
iN MYCOBACTeRiAL iNFeCTiONS

In parallel, other mycobacterial components trigger innate 
immune responses. A classical view of phagocyte–mycobacteria 
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interaction supports the view that virulent bacilli are able to per-
sist within phagosomes, preventing their fusion with lysosomes 
to achieve a safe environment for replication (31, 32). This inter-
pretation has been extended and updated in light of new data, 
which suggest that a breach in the phagosomal membrane and 
cytosol contamination during the course of an infection leads to 
a permissive response (6). Mechanisms of phagosome matura-
tion are arrested and punctured during mycobacterial infection, 
which involves virulence factors that manipulate important host 
response against intracellular infection.

The ESX-1 secretion system is a determinant of mycobacterial 
virulence that is presented in pathogenic mycobacteria, such as M. 
tuberculosis and M. leprae, and it is responsible for the secretion of 
(CFP-10) and early secreted antigenic target 6 kDa (ESAT-6) pro-
teins (5). The absence of this secretion system in virulent mycobac-
teria such as Mycobacterium bovis BCG supports the importance of 
those proteins for the success of mycobacterial infection (33). Just 
after infection, virulent mycobacteria express the ESX-1 system, 
exporting ESAT-6, which is able to create a fissure in the phagoso-
mal membrane (34). Consequently, ESX-1-mediated pore forma-
tion allows an equalization of phagosomal and cytosol content. 
This process is essential for bacteria to acquire nutrients from the 
host cell and deliver virulence factors capable of downregulating 
host responses against the pathogen (5, 35). The leakage of myco-
bacterial DNA from phagosomes into the cytosol strongly acti-
vates the host cell cytosolic surveillance pathways, triggering both 
a type I IFN response (6) and autophagy (36, 37), which comprise  
pro- and antibacterial responses, respectively (6). Furthermore, 
ESX-1 activity and cytosolic recognition of mycobacterial 
DNA is also involved in the activation of caspase-1, promoting  
the formation of the inflammasome complex and regulation of 
IL-1β secretion (38, 39).

Type I IFN (IFN-α/β) activation was originally characterized 
as a pathway involved in controlling virus infection. However, in 
the past decade, a number of reports have described a type I IFN 
transcriptional signature in the pathogenesis and progression 
of tuberculosis (40) among other mycobacterial diseases. The 
production of IFN-β may inhibit IL-1β activation, which plays 
a critical role in the elimination of M. tuberculosis (41). IFN-β- 
mediated suppression of the host bactericidal mechanisms is 
also noticed in leprosy. An inverse correlation between IFN 
responses (type I and II) is observed in the clinical spectrum of 
leprosy. Paucibacillary patients preferentially express type II IFN 
(IFN-γ) and, consequently, its downstream antimicrobial genes, 
preventing the spread of mycobacteria; by contrast, the IFN-β 
program is prominent in multibacillary patients (42). The IFN-β 
response can induce IL-27-dependent IL-10 activation, which in 
leprosy, is a well-known immune suppressive mechanism that 
favors mycobacterial growth and dissemination (43).

Interferon-β induction is redundant, and it involves a large 
repertoire of nucleic acid sensors (44). M. tuberculosis models 
have been used to generate most of the existing data on type 
I IFN trigger mechanisms for infections, and this area has not 
been fully explored in leprosy studies. Once released into the 
cytosol, extracellular mycobacterial DNA ligates to a double-
strand DNA sensor (6). In this context, different studies reported 
that cyclic GMP-AMP synthase (cGAS) is the primary sensor 

for mycobacterial DNA (39, 45, 46). After DNA recognition, 
cGAS is able to produce the second messenger cyclic GMP-AMP,  
a potent ligand of the stimulator of interferon genes (STING), 
TANK-binding kinase 1 (TBK1), interferon regulatory factor 3 
(IRF3) signaling pathway exhibiting a transcriptional profile of 
the type I IFN response that antagonizes the host’s antimicrobial 
programmes (6).

Conversely, cGAS-mediated DNA sensing and STING/TBK1 
activation is also required for mycobacterial targeting of the 
ubiquitin-dependent autophagy pathway, an efficient mechanism 
that eliminates intracellular pathogens and links innate and 
adaptive immune responses by enhancing antigen presentation  
(37, 45, 47). However, only one-third of the intracellular myco-
bacteria in the host are delivered for autophagic degradation, 
suggesting that virulent mycobacteria have an active mechanism 
to evade autophagy (36). The paradoxical mechanisms of DNA 
sensing during mycobacterial infection are not clearly under-
stood, but they involve a type of bifurcation that could be depend-
ent on multiplicity of infection. Thus, it is likely when infected 
by a low number of mycobacteria, the host can preferentially 
load autophagy and control the infection. If a higher mycobacte-
rial burden is presented during infection, a pro-mycobacteria 
response is directed.

Many factors may be involved in the heterogeneity of DNA 
sensing following infection. Determining the immunological 
status of a host at the early stages of host–pathogen is critical 
to define the course of infection. An initially permissive envi-
ronment favors bacterial colonization and triggers virulent 
mechanisms. The increase of the mycobacterial burden and 
consequent virulence released into the host cell contribute to an 
imbalance of the DNA-mediated response, driving type I IFN 
production that, in turn, leads to an impairment of the host 
antimicrobial mechanisms (2, 6). Host genetic variation in the 
PRRs of genes that mediate mycobacterial interactions could 
also modulate the bacilli uptake (9), as well as the activation 
of an inflammatory response that directly affects downstream 
signaling pathways, such as cGAS/STING signaling. However, 
in large-scale screenings, no evidence has been found that major 
genes or consistent effects in this pathway are associated with 
leprosy. Mutations in TMEM173, which encode STING, are 
related to selective STING activity, and such activity is able to 
disrupt IRF3 phosphorylation without affecting other activities 
of TBK1 (48). These findings support the hypothesis that vari-
ation in genes that encodes key DNA sensing components may 
contribute to the heterogeneity of DNA-mediated responses. 
Previous research suggests that other cytosolic sensors, such 
as AIM2 inflammasome, may interact competitively with 
the mycobacterial DNA implicated in the balance of STING-
mediated responses (49).

The targeting and delivery of M. tuberculosis for autophagic 
degradation occurs by a recruitment of the host’s ubiquitin chains, 
a process that depends on Parkin (PARK2), an E3-ubiquitin ligase 
(37). Intracellular M. tuberculosis avoid ubiquitin or proteaso-
mal host systems. More than one decade ago, the gene PARK2, 
which encodes Parkin, was associated with leprosy susceptibility 
(11); this suggests that Parkin also controls ubiquitination and 
autophagy levels during M. leprae infection. A more recent study 
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FiGURe 2 | Antimicrobial autophagy is inhibited in Mycobacterium leprae infections through the activation of the type I interferon (IFN) pathway. After being  
inside the host cell, M. leprae is able to disrupt the phagosomal membrane by a mechanism that is dependent on the mycobacterial ESX-1 secretion system.  
Then, bacterial DNA activates the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING)/TANK-binding kinase 1 (TBK1) pathway and promotes 
interferon regulatory factor 3 (IRF3) translocation, which induces IFN-β production. In response to an autocrine and/or paracrine IFN-β stimulus, macrophages 
increase OASL expression. OASL production inhibits bacterial clearance, blocking LC3-dependent autophagy, and promotes mycobacterial survival  
by creating a permissive microenvironment for sustainable growth and disease progression.
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has showed that multibacillary patients demonstrated auto-
phagy impairment, while paucibacillary ones exhibited strong 
autophagy upregulation (50). The research revealed how live 
M. leprae actively downregulates the autophagic machinery of 
human monocytes to generate a protected intracellular niche for 
bacterial replication. Following this research, our group described 
a transcription profile of the type I IFN response in both human 
Schwann cells and macrophages following in vitro infection with 
live M. leprae. OASL [2′-5′-oligoadenylate synthetase (OAS) 
like] was the most differentially expressed interferon-stimulated 
gene in our study (2). OASL is a member of the OAS family, a 
group of proteins with a recognized antiviral action, although its 
function in bacterial infections is poorly understood. OASL can 
play a dual role following activation: the ubiquitin-like domain 
of OASL can interact with RIG-I, a double-strand RNA sensor, 
leading to type I IFN activation enhancement (51). Conversely, 
viral double-stranded DNA can induce an OASL-mediated type 

I IFN inhibitory effect by blocking cGAS/STING signaling (52). 
Upon M. leprae infection, macrophages are able to produce high 
levels of OASL in a STING-dependent manner. This production 
is associated with the persistence of M. leprae inside the cell as 
OASL inhibits autophagic mechanisms that are essential for 
mycobacterial clearance (2) (Figure  2). However, the mecha-
nisms for the OASL-mediated blockage of autophagy need to 
be explained. The OASL–cGAS interaction, as it occurs during 
double-stranded DNA virus infection, could also be investigated 
in mycobacterial infection to improve our understanding of how 
OASL modulates cGAS/STING-mediated autophagy. Moreover, 
investigating the interactions of OASL with other molecules in 
its ubiquitin-like domain may help us understand the role of 
OASL in the regulation of immune responses against intracel-
lular infections. Thus, these data suggest that OASL participates 
in the fine-tuning of infection outcomes by regulating DNA 
sensing pathways.

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FiGURe 3 | Schwann cell central metabolism is subverted by Mycobacterium leprae. After infection, Schwann cells increase their insulin-like growth factor (IGF) 
expression, upregulating glucose transporter 1 (GLUT-1) and glucose uptake by Akt signaling. Glycolysis is downregulated, feeding the pentose phosphate pathway 
(PPP) with carbons used to synthesize building blocks to promote Schwann cell dedifferentiation and proliferation, generating during this process the reducing 
power [nicotinamide adenine dinucleotide phosphate (NADPH)] responsible for pumping up lipid biosynthesis. Pyruvate generated by the PPP is rapidly converted  
to citrate and subsequently converted to lipids, virtually stopping the tricarboxylic acid cycle, respiration and mitochondrial energy potential of the Schwann cells.  
All of these modulations are crucial for subverting the host immunity against the mycobacteria and, consequently, to the success of the M. leprae infection, 
representing potential for new host-target therapy strategies to halt leprosy progression. The gray arrows represent downregulated pathways.
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MeTABOLiC iMMUNiTY iN LePROSY

Using microarray analysis, researchers have pointed out impor-
tant changes in metabolic pathways in bacterial infections such 
as M. leprae (15, 53). Determining the ability of intracellular 
pathogens to modulate the host metabolic pathways has pro-
vided an understanding of the infection in pathogenic terms 
(54). M. leprae must adjust the cytosol to its requirements, and 
the breach of the phagosomal membrane releases bacterial 
components that will trigger a metabolic switch.

When infected by intracellular pathogens, immune cells are 
able to increase nitric oxide synthetase inducible (iNOS) and 
indoleamine 2,3-dioxygenase-1 (IDO-1) activity. These enzymes 
catalyze the degradation of l-arginine and l-tryptophan, respec-
tively, resulting in local amino acid deprivation (55). While iNOS 
generates nitric oxide radicals, IDO-1 leads to the production 
of kynurenine metabolites (56). This metabolite activates the 
aryl hydrocarbon receptor, promoting the conversion of naive 
CD4 T cells into Foxp3+ regulatory T cells (57). DCs are able to 
increase IDO1 expression and activity in response to IFN-γ (56), 
and IDO1 is highly activated in leprosy patients (58). Genetic 
variations in the IDO1 gene are related to differential activation 
of regulatory T  cell function and correlated with autoimmune 
disease development (59). IDO-1-mediated l-tryptophan depri-
vation is an innate response against viral replication. However, it 
is ineffective against mycobacterial infection. Despite the drastic 

reductive evolution in the M. leprae genome, all enzymes involved 
in l-tryptophan anabolism have been maintained. M. leprae 
infection activates the IDO-1 signaling pathway (55, 60, 61) in 
an iron and IL-10-dependent manner. Thus, the l-tryptophan 
deprivation does not affect M. leprae survival (56). Transforming 
growth factor beta, which is highly expressed in leprosy patients 
(58), is able to maintain high IDO-1 expression in DCs through 
phosphorylation of its immune-based inhibitory tyrosine motifs, 
leading to a sustained immunoregulatory effect (62).

Glucose plays a central role in energy metabolism as a carbon 
source. In addition, glucose is a highly versatile precursor of 
amino acids, coenzymes, fatty acids, and cholesterol. After phos-
phorylation, this molecule can follow a catabolic pathway such as 
that of glycolysis, generating energy and carbon to be burned in 
the mitochondria. Alternately, it can follow an anabolic pathway, 
such as the pentose phosphate pathway (PPP), which generates 
carbons and reducing equivalents, in the form of nicotinamide 
adenine dinucleotide phosphate (NADPH) to synthesize lipids, 
nucleotides, and aromatic amino acids (63). In both leprosy and 
tuberculosis, it was found that the bacilli increases glucose uptake 
in the infected host cells in a glucose transporter 1-dependent 
manner (64, 65). Modulation of glucose metabolism was noticed 
in M. leprae-infected Schwann cells (64) (Figure  3) while this 
event has been demonstrated in human macrophages infected by 
M. tuberculosis (65). The hypothesis that these mechanisms also 
occur in M. leprae-infected macrophages needs to be investigated.
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Studies on the host carbohydrate metabolism during 
infec tion have demonstrated that many pathogens, including 
viruses such as immunodeficiency virus (HIV), hepatitis C 
virus (HCV), Mayaro, transmissible gastroenteritis virus, and 
human cytomegalovirus, can increase host cell glucose uptake 
to provide biosynthetic precursors for their replication (66–71). 
Furthermore, the synthesis of immune-active lipids, such as 
1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine, 
is able to generate a strong anti-inflammatory response when 
oxidized (72). In M. leprae infection, live bacteria are able to 
avoid free radical generation by using carbons from the electron 
transport chain (ETC) for lipid synthesis (64). To support the 
positive feedback of this pathway, M. leprae mediates an increase 
in the production of insulin-like growth factor (IGF)-1 in both 
macrophages and Schwann cells (73). IGF-1 is one of the main 
regulators of glycolysis metabolism. In macrophages, IGF-1 can 
impair the host antimicrobial activity and increase lipid metabo-
lism (73). Otherwise, IGF-1 shares a high amino acid homology 
with insulin (74), and the structure of its receptors is closely 
related to post-receptor signaling (75). This signaling activation 
involves glucose uptake with subsequent lipid synthesis and 
storage in lipid bodies. Indeed, glucose uptake can be positively 
modulated by the IGF-1 receptor through the activation of the 
PI3K signaling pathway. Thus, virulent mycobacteria cause a 
metabolic switch that drives the cell toward the production of 
several micronutrients, macronutrients, and electron acceptors 
in response to infection.

After M. leprae infection, Schwann cells redirect glucose from 
the glycolysis pathway to the PPP through the activation of G6PD, 
increasing the carbon flux to lipid synthesis. The PPP generates 
ribose-5-phosphate and NADPH, as the main products that sus-
tain cell proliferation, lipid biosynthesis, and the regeneration of 
oxidized glutathione, which is the main free radical scavenger of 
human cells (63). M. leprae is highly dependent on the host PPP 
because G6PD inhibition by pharmacological interference and 
RNA interference associated with G6PD knockdown decreases 
the viability of intracellular mycobacteria (64). During its adapta-
tion, M. leprae has developed another mechanism to live inside 
human cells: shutting down the cell’s mitochondria (64). The dis-
sipation of the mitochondrial inner membrane electric potential 
after infection demonstrates the suppression of the ETC. This is 
probably due to the redirection of carbons to lipid synthesis for 
the formation of lipid bodies in infected cells, and it will increase 
long chain fatty acids in cytosol, responsible to mitochondrial 
permeability transition pore opening and consequent electric 
potential dissipation (3, 64, 76).

Gene expression analysis of skin lesions of lepromatous 
patients revealed upregulation of SREBF1, a host gene involved 
in lipid synthesis (77). Together with this observation, a mass 
spectroscopy analysis revealed that these patients’ skin lesions 
were enriched with cholesterol (77) and other immune-active 
lipids, such as oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-
3-phosphorylcholine (oxPAPC), prostaglandins E2 and D2, 
lipoxin A4, and omega-3 and omega-6 (72, 78). Live M. leprae 
can actively induce and support adipophilin, adipose differen-
tiation related protein, and perilipin expression in macrophages, 
promoting lipid accumulation within the phagosome (77). In this 

context, host lipid synthesis and its deposition in infected tissues 
have been associated with pathogenesis and infection success in 
leprosy (79), with special involvement of cholesterol. In contrast 
to M. tuberculosis, M. leprae is not able to use cholesterol as a 
carbon source (80). However, during the reductive evolution 
of the genome, M. leprae maintained an enzyme of paramount 
importance to its survival, 3β-hydroxysteroid dehydrogenase, 
which is a catalyst in the first step of cholesterol degradation: the 
oxidation of cholesterol to cholest-4-en-3-one (cholestenone) 
(80). In clinical applications, avoiding cholesterol synthesis by 
treating infected macrophages with statins, inhibitors of HMG-
CoA reductase, has a strong impact on intracellular M. leprae 
and M. tuberculosis viability (81). Based on microscopy data 
from our previous study, in which we demonstrated the ability 
of M. leprae to recruit and surround itself with lipid bodies (3), 
we hypothesized that M. leprae could use lipids to cover and hide 
its surface antigens from innate immune receptors in the cytosol.

Altogether, these host metabolic alterations are essential for 
immune response modulation and infection success. For that 
reason, new strategies based on host metabolite identification 
could, in the near future, contribute to preclinical diagnosis. The 
development of fast, highly sensitive, and non-invasive diagnostic 
tests is paramount for the control of this disease. As an example, 
it was demonstrated that it is possible to identify leprosy patients 
through detection of leukotriene E4 by gently pressing silica plates 
against their skin for a few seconds (82). Based on the fact that 
M. leprae-infected Schwann cells increase their glucose uptake by 
about 40% (64), we propose, as another example, that full body 
imaging of the glucose analog fludeoxyglucose using positron 
emission tomography could represent a potential non-invasive 
alternative for diagnosing pure neural leprosy.

LiPiD MeTABOLiSM DeReGULATiON 
ASSOCiATeD wiTH iNFLAMMATiON  
iN LePROSY

Several diseases are associated with deregulation of the host lipid 
metabolism, favoring an exacerbated inflammatory process that 
contributes to immunopathogenesis. In an experimental model 
of arteriosclerosis, for example, the lipid accumulation process 
and atherosclerotic plaque development are mediated by the pro-
duction of monocyte chemoattractant protein-1 (MCP-1), which 
recruits monocytes to the inflammatory site. Largely differentiated 
from anti-inflammatory macrophages with an M2 profile, which 
has a foamy phenotype, these monocytes are rich in lipid droplets 
(83). MCP-1-mediated recruitment of peripheral monocytes was 
also observed in a zebra fish model of Mycobacterium marinum 
infection. In this model, MCP-1 produced by infected resident 
macrophages actively participated in the recruitment of mono-
cytes to the infection site by a mechanism that was dependent 
on the STING signaling pathway (84). In the context of M. leprae 
infection, in the absence of OASL, a gene induced by type I IFN, 
there is a drastic decrease in the levels of MCP-1 and the intracel-
lular viability of the bacilli in M. leprae-infected macrophages (2). 
Indeed, MCP-1 induction can be mediated by STING either by 
a type I IFN-dependent pathway or by an independent pathway 
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(85–87). These data, taken together, suggest a scenario in which 
the induction of the type I IFN pathway participates in MCP-1 
induction. The enhancement of MCP-1 aids the recruitment of 
monocytes at the site of infection and promotes the differentiation 
of monocytes into macrophages with a M2 phenotype, exhibit-
ing high levels of IL-10 and prostaglandin E2 (PGE2) (88). Lipid 
bodies are sites of production of eicosanoids, such as PGE2, leu-
kotriene B4 (LTB4), and lipids, including cholesterol. This could 
explain the characteristic phenotype of foamy macrophages that 
present in the skin lesions of patients with lepromatous leprosy, as 
well as the abundance of immunological mediators, such as IL-10, 
IL-4, PGE2, and MCP-1, in these lesions (89).

In a M. tuberculosis murine model, IL-1β triggered PGE2  
production as a protective response toward mycobacterial clear-
ance and it is also negatively regulated type I IFNs. Curiously, 
highly susceptible mice (IL-1β knockouts, for example) can 
be rescued using PGE2 and zileuton, which is an inhibitor of 
5-lipoxygenase that blocks LTB4 and, consequently, TNF (41, 90).  
Genetic polymorphisms of LTB4 demonstrate an important asso-
ciation with the development of severe tuberculous meningitis, 
in which the inadequate balance of the inflammatory response 
that is mediated by TNF and LTB4 may aggravate the disease 
progression (90). The importance of the host’s lipid metabolism 
regulation, which can affect the availability of nutrients to the 
pathogen as well as the production of inflammatory mediators, 
is increasingly evident. Host-based therapies are currently under 
development with the goal of metabolic drugs that could be 
interesting adjuvants in the mycobacterial diseases treatment, 
such as leprosy and tuberculosis.

Thus, ongoing mycobacterial survival is associated with 
enhancements to lipid metabolism. After infection takes place, 
mycobacteria cause a shift in the host cell gene expression that 
leads to lipid uptake through the receptor induction of cho-
lesterol (15, 77) and the formation of lipid bodies (91). Strong 
modulation of lipid synthesis pathways in host cells by M. leprae 
or M. tuberculosis has been observed, and it has been suggested 
that lipid droplets work as a nutrient reservoir for M. tuberculosis 
(7). Although M. leprae are unable to remove carbons from 
cholesterol (80), both M. leprae and M. tuberculosis seem to 
take shelter within lipid bodies, which are formed abundantly 
by host cells (91). Therefore, as an example, a pharmacological 
approach to compensate for the induction of this crucial pathway 
for M. leprae survival would be the use of statins as an adjuvant in 
combination with multidrug therapy. Results from experimental 
models (81) suggest that modulation of autophagic mecha-
nisms could also promote the antimicrobial response against  
M. tuberculosis and decrease inflammation-mediated immuno-
pathology (31, 82, 83). Recently, mammalian target of rapamycin 
pharmacological agents, including rapamycin or AMPK targets 
such as metformin, have been tested in clinical trials as an 

adjuvant therapy in tuberculosis; these tests have been successful 
and can be applied in leprosy (92–94).

CONCLUSiON

An infectious disease is a result of a specific and successive combi-
nation of events that can only culminate in complete progression 
if the bacteria are able to block several restrictive antimicrobial 
mechanisms. The last 10 years of research have been remarkable for 
revealing novel genes associated with leprosy, including comple-
mentary approaches such as genomic scans or GWASs and micro-
array analysis. Combining these data produce a clear overview of 
the mechanisms induced by bacteria to survive within hostile and 
sterile cellular cytosol. Gene-sensing mycobacterial components 
such as NOD2 and TLR1 and pathways that regulate autophagy 
(PARK2, LRRK2, and RIPK2) are intrinsically antimicrobial, but 
they can be opposed and inhibited by the emergence of type I IFN 
induction. In this scenario, double-stranded DNA receptors and 
STING/TBK1/IRF3 signaling drive a pro-mycobacterial response.

The fact remains that it is very difficult to define the chronol-
ogy of these events or even the precise moment when the disease 
progression takes place in the infected individual. The rationale 
here is that defining these steps carefully and observing the fine-
tuning of genotypic influences on phenotypes can help to halt the 
disease progression in infected people. Consequently, the current 
challenge is to combine results from in vitro and genotype-to-phe-
notype studies toward the development of host-directed therapies.
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