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Abstract. In the past decade, genetic epidemiological analyses in infectious diseases have increased drastically since the
publication of human genome and all the subsequent projects analyzing human diversity at molecular level. The great majority of
studies use classical epidemiological designs applied to genetic data, and more than 80% of published studies use population-based
case-control designs with widely spread genetic markers in human genome, like short tandem repeats (STR) or single nucleotide
polymorphisms (SNP), in genes chosen by their physiological association with the disease (candidate genes). Even though genetic
data is less prone to several bias issues inherent to case-control studies, some care has to be taken when designing, performing,
analyzing and interpreting results from such studies. Here we discuss some basic concepts of genetics and epidemiology as a
departure to evaluate and review every step that should be followed to design, conduct, analyze, interpret and present data from
those studies, using particularities of infectious diseases, especially leprosy and tuberculosis as models.

Keywords: Population, SNPs, cytokines, tuberculosis, leprosy, TNF, IL-10

1. Introduction

The explosion of studies using genetic epidemiolo-
gy, i.e. case controls studies with candidate genes, of
infections have risen after common belief that genes
greatly influence susceptibility to infectious diseases.
There is a list of epidemiological evidence reinforcing
this idea: it is estimated that susceptibility to infectious
diseases is a phenomenon that occurs in a very variable
percentage, ranging from 0.1% to 80%, of the exposed
population. In diseases like leprosy it is believed that
a very small fraction (0.1–1%) develops the disease,
while malaria parasites exhibit a high rate of infection
success (around 80% of exposed people exhibit the out-
come). Other evidence is linked to the presentation of
the clinical symptoms, as in most infections there is
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a range from mild to severe states of the disease and
generally it is not common to observe a patient migrate
from one form of the disease to another. Finally, twin
and familial studies, especially in leprosy and tuber-
culosis, provide the idea of genetic inheritance [1,2]
that has been consistently depicted in genome scans of
families [3–5].

Among all of the genes that participate in immune
response against infectious disease it is likely that cy-
tokines and other genes associated with inflammatory
and immune response play a crucial role. Indeed, effi-
cient activation of a cellular immune response is very
important in triggering a protective response against M.
tuberculosis, M. leprae or other pathogens (intracellu-
lar or not) [6].

Several review papers have been published describ-
ing design and interpretation of genetic association
studies [7–10], but none of them dealt specifically with
infectious diseases, where some peculiarities should al-
so be considered. One example is that as with classi-
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cal case-control studies, the main weakness of genetic
case-control studies relies on the correct selection of
controls, an issue that is seldom discussed in the liter-
ature, in which it is very common to have controls se-
lected among blood donor banks or other healthy vol-
unteers, which do not take into account the exposure to
the studied infection.

Other, more general problems should also be under-
stood and addressed, as proper sample size calculations
to get enough power to detect a clinically or biologi-
cally significant difference between cases and controls,
but at the same time being careful not to waste precious
resources with overpowered studies, although it is far
more common to detect underpowered studies in the
literature – for an example in tuberculosis, see Pacheco
and colleagues [11].

Here we review and evaluate some premises of ge-
netic epidemiological studies based on case-control de-
signs using infectious diseases, specifically with lep-
rosy and tuberculosis (TB) as a model.

2. General concepts in genetics

2.1. Genetic markers

It is obvious that many genes and genetic polymor-
phisms are involved in controlling signaling pathways
critical to host resistance, disease susceptibility and
severity. To perform a case control study using a can-
didate gene approach it is necessary that a gene is cho-
sen among those that have shown consistently a bio-
logical implication with outcome of disease. For ex-
ample cytokines (IFNG, IL-12, etc.) are very good
candidates because there are data in humans as well as
mouse models suggesting their involvement with dis-
ease outcome. To map these chosen genes it is nec-
essary to use genetic markers. There are several types
of markers in human genome like short tandem repeats
(STR), variable number of tandem repeats (VNTRs) or
single nucleotide polymorphisms (SNPs). They are all
important in genetic studies depending on the design
chosen, but since STRs and VNTRs are multiallelic,
more expensive and difficult to genotype, SNPs have
been used so far.

2.2. Single nucleotide polymorphisms

Single nucleotide polymorphisms are mostly biallel-
ic point mutations, present with a frequency higher than
1% in the population, and are observed with variable

densities depending on the region of the human genome
studied. Very dense regions can be observed with one
SNP every 50–100bp while other places at the genome
have one SNP every 500–1000bp. Therefore SNPs
are widely distributed along human genome being easy
(and cheap) to type, creating markers that can be used
in association studies. SNPs are also believed to be
the true source of variability among humans, especially
when they are positioned in translated stretches of the
DNA altering an amino acid. Nevertheless, most SNPs
are located in non-coding regions, either intergenic or
intragenic. A large number of SNPs in cytokine loci
have been described and studied in complex diseases
like infectious and autoimmune [3,5,12].

The total number of SNPs is currently estimated to
be well over 10 × 106. Recently, with denser maps of
human genome, a real polymorphism and not artifacts
of sequencing have been ascertained in several popu-
lations although some SNP databanks are still carry-
ing thousands of genotypic errors. Information con-
cerning frequency in populations with different ethnic
background generally African, Asian and Caucasian
are available and SNPs exhibiting a higher frequen-
cy 15–25% are generally presented in all three pop-
ulations [13]. This information is currently updated
in on-line websites. A SNP database, also known as
dbSNP (http://www.ncbi.nih.gov/SNP); a SNP consor-
tium (http://snp.cshl.org/) and the haplotype map inter-
national project (http://www.hapmap.org/) can be used
to browse and locate SNPs that exhibit characteristics
to be genotyped.

2.3. Candidate genes

How can we choose the best gene to perform a case-
control study with the disease we work with? There are
roughly 30.000 genes in human genome and if we did
not have any information about the disease, it could be
assumed that any one of these 30.000 genes and more
than 5 millions of SNPs needed to be tested.

Fortunately, we can use previous biological relevant
information to select and test a specific gene. Thus,
candidate gene is an approach to test polymorphisms
in a gene that have been previously implicated biolog-
ically with the disease.

For example, there was well-documented evidence
that tumor necrosis factor (TNF) was involved in lep-
rosy susceptibility [14] and also in the inflammatory
complications along the course of the disease [15,16].
Thus it was a sound possibility to test TNF in a case-
control study in leprosy, which was done in the first
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genetic epidemiological population-based study in lep-
rosy that tested the−308 SNP in the promoter region of
the TNF gene [17]. The association study of the region
was later replicated in other studies, although they yield
conflicting results [18–20] whose implications will be
discussed later.

3. General concepts in epidemiology

Before delving into specific issues it is important to
briefly summarize general concepts of epidemiology,
so that many of the issues mentioned will be clearer to
the reader. In no way is this section covering in deep
the concepts presented and the reader is referred to very
good epidemiology books [21,22].

3.1. Association

The main objective of epidemiological studies, in-
cluding genetic case-control, is to infer causality be-
tween some exposure of interest (e.g. a genetic marker)
and an outcome (e.g. presence or severity of disease).
To do so, we compare two (or more) groups of peo-
ple, depending on the design adopted. For population-
based case-control studies, two groups of persons are
compared: those who are identified with the disease
(cases) and those randomly selected from the source
population (i.e. the population where those cases came
from) and who are disease-free. Then, for both groups,
the exposure of interest (in our case, a genetic mark-
er) along with relevant co-variables is determined, in
a retrospective fashion, to guarantee that the exposure
occurred before the outcome happened.

The next step is to compare both groups to determine
if such exposure is associated with the disease. This
is done using some association measure, which will
be the odds ratio (OR) for the great majority of case-
control designs. The OR is calculated as the ratio of
the odds of being exposed given that the person has the
disease and the odds of being exposed given that the
person does not have the disease. The odds for a group
is simply the proportion of persons exposed (p) over its
complement (1-p). If the odds for both groups are the
same, then OR = 1, and no association exists between
the exposure and the disease; if it is between 0 and 1,
the exposure confers protection and if it is greater than
1, the exposure is a risk factor for the disease. Note that
the OR ranges from zero to infinity. Thus, association
of the AA genotype shown in Table 1, with an OR =
2.83 means that people carrying the AA genotype have
183% more chance to develop the disease than people
from the control group.

3.2. Bias

There are several issues we have to be concerned
about when making such inferences, and they can be
addressed in the design phase, in the analysis phase or
in both phases of the study. The main objective is to
avoid spurious associations that can arise, especially
in non-controlled (but not restricted to them) designs,
such as case-control studies.

Bias is a main concern in case-control studies, since
it cannot be addressed in the analysis and depends ex-
clusively in the design of the study. Even though in ge-
netic epidemiology classification bias due to incorrect
ascertainment of the exposure status is generally not
seen as a major issue [10], errors in genotyping both
cases or controls should be carefully assessed, as we
discuss in more detail below.

3.3. Random error

Random variability arises from the fact that we are
dealing with samples from a population and associa-
tions found (i.e. OR �= 1) may be due to chance alone.
In order to avoid such erroneous conclusion, statistical
tests are employed to guarantee that not only an OR �=
1, but also that it is statistically different from 1. When
dealing with samples, there will never be 100% of cer-
tainty that the association is not due to chance alone,
but one can guarantee that with a certain confidence
(generally 95%), the association is true. Random errors
should be dealt with in the design phase of the study
with the calculation of an adequate sample size to be
compared and also in the analysis, using adequate tools
to analyze the data.

3.4. P-values

P-values are derived from the classical calculation
of a critical region in the sample distribution of the
association measure under the null hypothesis and is
translated into the probability of having that calculated
OR �= 1, but still the truth being that OR = 1, when
the experiment is repeated infinite times. This corre-
sponds to the type I error in a hypothesis test, or the
probability of rejecting the null hypothesis when it is
true. It is important to notice two things about the p-
value: a) a very small p-value does not guarantee that
the result is false – only that it has a small probability
of being wrong, but out of the infinite different sam-
ples that could have been chosen each time you repeat
the experiment, you are analyzing one and only one of
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Table 1
Example of genotype and allelic frequency comparisons using a SNP for any disease cases and controls

Genotypes Controls (fraction) Patients (fraction) OR (95% CI) P-value

GG 143 (0.36) 60 (0.27) Reference −
GA 197 (0.49) 97 (0.43) 1.17 (0.80,1.73) < 0.001
AA 58 (0.15) 69 (0.31) 2.83 (1.79,4.50)
Total 398 226 − −
Allele G 483 (0.61) 217 (0.48) Reference −
Allele A 313 (0.39) 235 (0.52) 1.65 (1.30,2.08) < 0.001
A carrier 255 (0.64) 166 (0.73) 1.55 (1.08,2.22) 0.02
Pass HWE test? Yes (p = 0.53) No (p = 0.03) − −

them; b) the p-value says nothing about the strength
of association (which is given by the point estimate of
the OR) and it does not give us a good idea about the
dispersion of the point estimate.

3.5. Confidence intervals

Confidence intervals (CIs) can also be used to estab-
lish if the ORs are statistically different from 1, only
it is based on the alternative hypothesis – when the ex-
periment is repeated infinite times and for a 95% confi-
dence level the CI is calculated for that measure, 95%
of such CI will not contain the value in the null hy-
pothesis (i.e. OR = 1). It means that if a 95% CI does
not contain the unit, we can reject the null hypothesis.
One advantage in using CIs is that it gives us an idea of
the dispersion of the calculated statistic, which trans-
lates to the precision of the estimate. For example a CI
ranging from 1.1 and 99 with a P-value of P = 0.048,
although statistically significant show that association
is very imprecise.

3.6. Confounding

Even though this is quite a generic idea, in genetic
epidemiology it is best known and studied as population
stratification, when a certain characteristic is associat-
ed differently among populations with distinct genetic
backgrounds. Actually, any co-variable that fall into
the following criteria can be considered as a confound-
ing variable: a) it is associated with the disease; b) it is
associated with the exposure in the source-population;
and c) it is not part of the biological causal chain that
leads from the exposure to the disease.

One important notion that has to be considered is that
confounding is not necessarily something that has to be
avoided, as is bias and lack of power (discussed below),
but something that has to be correctly dealt with. If
one wants to eliminate the confounding effect of some
co-variable, it is possible to restrict the selection for
some group in the design phase (e.g. if ethnicity is a

confounder, select only persons from a certain ethnic
background); if one is not interested at all on the pos-
sible effects and interactions the co-variable has with
the outcome, it is possible to perform a matching in
the design phase and then use appropriate methods for
paired data in the analysis phase of the design – this is
done for example in family-based case-control studies,
or when cases and controls are matched in respect to
ethnicity background; and finally one can simply ac-
count for confounding in the analysis phase, when in-
teractions will be measured and a stratified analysis can
be performed either with an weighted average OR for
all substrata, or individual ORs for each studied strata,
even though this approach will require a larger sample
size to obtain the same power.

4. Design of population-based genetic case-control
studies of infectious diseases

Now that we have briefly discussed the building
blocks of genetics and epidemiology, in the follow-
ing sections we will put it all together and discuss
more specifically the design of population-based genet-
ic case-control studies of infectious diseases. Figure 1
summarizes the main steps in designing such studies.

4.1. Selection of cases

The most challenging step in case-control studies de-
sign is definitely the correct choice of the cases and
the controls. Even though cases generally present less
challenge to be chosen, the “case” status should be
carefully ascertained in order to avoid classification er-
rors, i.e. the most reliable diagnostic method should be
used to maximize the assurance that a person defined
as a case is a real case and that those who are not cases
should be discarded as such. This means that the di-
agnosis method for disease ascertainment should have
both sensitivity and specificity as high as possible. For
example, in the case of TB, it is advisable to use culture-



A.G. Pacheco and M.O. Moraes / Genetic polymorphisms of infectious diseases in case-control studies 177

Fig. 1. Flowchart showing the main steps in designing, conducting analyzing and reporting results from a genetic case-control study.

proven cases instead of using smear microscopy tests.
The reason here is that even though the latter has high
sensitivity, lacks specificity since any acid-fast bacteria
will be classified as TB. In leprosy it is advisable to use
bacilloscopic and/or histologically classified cases.

4.2. Selection of controls

Controls are even trickier to choose, especially in the
context of infectious diseases in general. As mentioned

before, controls have to be chosen from the source-
population where the cases came from. Even though
it sounds like a straightforward task to choose controls
from such a population, a closer look may reveal that
the task is not that simple. For instance, it is not un-
common to find in the literature studies that compare
TB or Leprosy cases with healthy blood donors. At first
it may sound good, because it would be representative
of the general population of a certain place, easy and
cheap access to samples, etc. But notice a complication
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for infectious diseases – if the question is if a certain
genetic profile prevents one from being sick with TB or
Leprosy, all the controls have to have been exposed (or
challenged) at least once, and ideally enough time, to
the infectious agent, otherwise it would be impossible
to say if the controls did not get sick simply because
they are less likely to be challenged with the infectious
agent. The impact of such choice will be noted both on
bias in the point estimate and especially on power to
detect a true difference, and will be dependent on the
prevalence of disease among those exposed and on the
prevalence of exposure to the agent on the source pop-
ulation. This idea is similar to the more general prob-
lem of randomly selecting from a general population as
described by Garner 2006 [23].

Even though it would be impossible to tell for sure
if a person was exposed or not to a certain infectious
agent, there are some ways to at least increase this
probability, which would be to work with case contacts
in the more general context of infectious diseases and in
the specific case of TB or leprosy, household contacts.
That does not guarantee that the exposure experience is
the same in cases and controls, but it carries much less
chance of bias and loss of power than the completely
random approach.

Of course there are some other approaches that could
be used to go around this problem depending on the
setting the study is being conducted. For example, in
the case of TB, positive Tuberculin Skin Test (TST)
health professionals who work with TB patients could
be used, but that does not take into account the quality
and frequency of the challenge.

To illustrate this issue, we use some simulations to
show how comparing controls that were not challenged
may influence on both random error and bias the ORs in
a hypothetical example with TB. Let us assume that we
have designed a study to assess the effect of a certain
SNP on TB latent infection and calculated a sample
size to get adequate power (see next section) to mea-
sure a minimum difference of OR = 2 with baseline
frequency of 10% of the allele of interest, assuming a
co-dominant model and using a linear trend test. That
would yield a sample size of about 300 individuals per
group. Assuming that among TB household contacts
the prevalence of TB latent infection is about 50% [24],
Fig. 2 depicts the impact on power (A) and on the me-
dian ORs and 95%CIs after 1,000 simulations for vary-
ing fractions of non-exposure. In this context, non-
exposure would represent the complement of infection
prevalence in the population of healthy blood donors.
As expected, this would work as a non-differential bias

in respect to the exposure, because part of the controls
would actually become cases if exposed to the agent,
and thus have a genotype distribution similar to cases
and not controls from the source population. The ef-
fect is decrease in power, coupled with bias on the ORs
towards the null hypothesis (black lines). On the oth-
er hand, if we are dealing with active TB disease, the
figures will change, because the expected prevalence
of disease among those exposed is much lower – about
4.5% [24] and the impact on power and bias can be
considered negligible (red lines).

4.3. Sample size considerations

A key feature that should be carefully handled is the
calculation of a suitable sample size. On one hand, the
sample size should not be so small that it will not allow
tests with enough power to detect a clinically signif-
icant difference, but on the other hand, given scarce
resources, it should not be bigger than necessary to
provide adequate power to test the phenomenon being
studied, to avoid unnecessary waste of time and money.
It is not our intention to provide formulas for sample
size calculations, for which the reader is referred to Bio-
statistics books that deal with this subject [25]. What
we will discuss are some general issues that should be
taken into account when calculating sample sizes.

Sample size depends on several factors: desired pow-
er, probability of type I error, the magnitude of the dif-
ference to be tested and the variance of the variable
studied in the source-population. Power refers to the
ability of a statistical test to find an association (i.e.
reject the null hypothesis, in our case, reject that OR =
1) when the association exists (i.e. when the alternative
hypothesis is true, OR �= 1) this is actually the comple-
ment of the so-called probability of the type II error, or
β error, so it is also referred to as 1 – β. In general prac-
tice, it is desirable that a test has at least 80% power to
detect the difference one wants to test. The probability
of the type I error, also known as α is taken to be 0.05
and the magnitude of the difference to be tested in our
case can be translated to the minimum OR one expects
to consider clinically (or biologically) relevant and the
variance in our case depends basically on the baseline
proportion of the reference allele among controls (p 0)
and the OR itself (which actually can be translated into
the proportion among cases – p1).

One important issue to be carefully considered is the
choice of the minimum OR that represents a clinically
or biologically relevant difference between cases and
controls. In theory it is possible to get a sample that is
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Fig. 2. Effect of non-exposure to infectious agent with high prevalence (latent TB infection, black lines) and low prevalence (active TB disease,
red lines) of the infection among those exposed for the case of an odds ratio (OR) of 2 and allele frequency of 0.1 among controls. (A) Effect on
power. (B) Effect on ORs and 95% confidence intervals. Filled circles: 50% prevalence; open circles: 4.5% prevalence.
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Fig. 3. Necessary sample sizes in log10 to achieve 80% power on a simple binomial comparison for varying odds ratios (x axis) and allele
frequency among the control group (p0).

large enough to detect very small differences (e.g. a 1%
increase in risk, which corresponds to an OR of 1.01),
but in practice it would quickly become impossible to
get such a sample. Figure 3 illustrates the behavior of
sample sizes needed to detect various ORs (x axis) for
6 different baseline proportions in a simple binomial
comparison (e.g. comparing a genotype of interest in a
dominant model), in a balanced design (equal number
of cases and controls). Note that the y axis is in log10

scale, so in the scenario of p0 = 0.01 and to detect a
1% risk, we would need a sample of over 32 million
people (!). For reasonable differences like 50% (OR
= 1.5) or 100% (OR = 2) increases, sample sizes of
1,000 people would be enough, but not for very rare
alleles. In this regard, whenever choosing for the SNPs
to study in a candidate(s) gene(s) it is likely to choose
for SNPs with minor allele frequency higher than 10%.

Another issue that has to be taken into account is
multiple comparisons. The type I error will be fixed
in 5% for a single comparison. This means that if the
study involves more than one SNP to be studied in the
same sample, this fact has to be taken into account, as
the effect of multiple comparisons is the inflation of this
error. For example, if 20 SNPs are being compared,
then for a 5% type I error, it is expected that at least
one of them (5% of 20) will be associated with the

disease due to chance alone. Several methods have
been proposed to account for that problem, including
Bonferroni correction and false discovery rates [26].
These approaches should be taken into account when
calculating adequate sample sizes, which will generally
increase the number of people needed to achieve the
same type I error.

Even though sample sizes for simple models are fair-
ly easy to calculate through algebraic results, and are
implemented in common statistical software, as would
be the case of simple proportion comparisons, as we
showed, sometimes algebraic results do not exist or are
just intractable mathematically. For those cases, sim-
ulations would help find a suitable sample size, which
is done by the construction of power curves and eval-
uation of different scenarios, given some guesstima-
tion for prior parameters. To illustrate how simulations
work, let us stick to our simple example and compare
power curves for varying numbers of total sample sizes
to compare proportions in two groups with the allele
frequency among controls of 10% and an expected OR
of 2. Figure 4 shows the comparison of an algebraic
calculation (black lines) and 1,000 simulations for each
sample size. Note that they are not exactly the same,
but fairly similar. In this simple example, a simula-
tion algorithm with 4 lines of code would be enough to
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Fig. 4. Comparison of power curves calculated from algebraic (black lines) and 1,000 simulated samples (red lines) for the simple case of a
binomial comparison for an odds ratio of 2 and prevalence of the allele among controls of 10%.

do the job, but for more complex examples, it would
demand some effort to correctly simulate the desired
scenarios.

5. Genotyping SNPs and quality assurance

In order to genotype SNPs it is used a method to
specify the region that is generally a PCR and then an-
other conjugated method to sort out the variation pre-
sented in a specific position. To do so, a digestion
with a restriction enzyme, hybridization or even bio-
chemical and molecular methods to separate or weight
the DNA strand carrying the SNP (measuring by high
pressure liquid chromatography (HPLC), a mass spec-
trometer or a sequencer). In the most of the papers
published that analyses a small number of SNPs, tech-
niques based on PCR with post analysis using RFLPs
(restriction fragment length polymorphism), SSP (sin-
gle strand polymorphism) or sequencing are the most
common, although these tests are becoming obsolete
and replaced by methods based on PCR coupled with
fluorescent detection (real time PCR). Old-fashioned
methods like PCR-RFLP and PCR-SSP have a very
low cost-benefit ratio since it is laborious, expensive,
and error-prone. On the other hand, these methods are

still easy to perform and to fit in a low tech lab that
cannot afford the cost of sequencing machines or real-
time PCRs or the new generation of genotyping plat-
forms. A summary of common methods for genotyp-
ing is depicted in Table 2. Based on this table, one
would assume that performing of genome-wide associ-
ation studies (GWAS) using platforms genotyping with
millions of SNPs would be cheaper. It is actually true,
but the cost of the assay per sample that enrolls mil-
lions of SNPs/assay is far more expensive than a sim-
ple PCR coupled with sequencing or even a real time
PCR. It is also needed a nice infra-structure to set up a
genotyping platform, which also takes into account to
choose the strategy to perform a case-control study for
any disease.

As we mentioned before, genetic case-control stud-
ies suffer less with classification biases than classic epi-
demiologic studies. One major source of such bias in
genetics emerges from genotyping errors in the labo-
ratory [27]. Of course, the main measure to avoid this
kind of bias is to use sound protocols for genotyping
and avoiding errors during the experiment. If possible
it is necessary to assure the quality of your DNA sam-
ples. The DNA obtained for genotyping must exhibit
high quality that can be measured spectrophotometri-
cally in separate samples or in plates or even by robust
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Table 2
Common genotyping methods and platforms

Type Method Routine (handling) scale SNPs/day Cost in US$ Application
(Companies)

Low scale PCR-RFLP and
PCR-SSP

1 SNP/sample
(manual)

300–500 $0.50–2.00/SNP Case-controls (in
house)

Low scale Allelic discrimi-
nation (real time
PCR)

1 SNP/sample
(semi-automatic)

500–1000 $2.00/SNP Case-controls (Ap-
plied Biosystems)

Moderate scale Sequencing 1–10 SNPs/sample
(semi-automatic)

500–1000 $1–2.00/SNP Case-controls (Ap-
plied Biosystems,
BioRad)

Moderate scale Mass
spectrometry

1–50 SNPs sample
(semi-automatic)

1000 $0.10–1/SNP Case-controls
(Sequenom)

Large scale Bead arrays 100–105

(semi-automatic)
Hundreds of
thousands

$0.01-/SNP GWAS (Illumina)

Large and ultra-
large scale

Microarray
geneChips

106

(semi-automatic)
Millions $0.001/SNP GWAS

(Affymetrix)

real-time/conventional PCR reactions. Nevertheless,
genotyping errors are common and it is likely to use
control samples (for example DNA of a known geno-
type test by high quality sequencing) to validate your
method. Most common errors are observed because
of the presence of unknown SNP in the neighboring
nucleotides of a target SNP can affect primer or probe
complementary hybridization leading to another calling
to that sample. Also problems with annealing in meth-
ods that rely on hybridization can occur and efficiency
on several commercial fluorescent probes varies signif-
icantly. Each method chosen can undergo miscalling
of the SNP, i.e. and error in the genotyping (such as GG
is called as GA in TNF -308 position) that obviously
create a bias for analysis. For example PCR-RFLPs
that are not carefully set up can generate an inflated
number of heterozygotes when a partial digestion with
the restriction enzyme is observed. Several scenarios
can be drawn based on miscalling of a genotype.

One important issue that has to be accounted for in
the laboratory is that the person responsible for call-
ing the true genotype for patients and controls samples
should be blinded in respect to their status, in order to
avoid classification bias.

6. Data abstraction and management

This topic is mentioned here just to emphasize that
one important source or systematic error is poor care
in properly abstraction and storage of data. In general
genetic data is generated in the lab while epidemiolog-
ical data is generated somewhere else (e.g. in the clin-

ic the patient is attending to) and at some point these
data have to be merged into a single database to allow
proper analysis of data. The details of how this should
be done is out of the scope of this paper, but one word
of caution is to always use appropriate software to han-
dle databases and to avoid as much as possible word
processors and electronic sheets to store data.

7. Data analysis and presentation

It is also important to take into account is how to
report the findings of a genetic association study to
allow reader to assess for themselves the merits and
limitations of the study and evaluate if the data can be
used for other studies (e.g. meta-analyses). Recently,
the STREGA (Strengthening the Reporting of Genetic
Association Studies) statement [28] has been published
with recommendations on how data should be reported
in scientific papers. This statement is an extension of
a more general one, STROBE (Strengthening the Re-
porting of Observational Studies in Epidemiology) [29,
30]. We strongly recommend that readers refer to those
documents and adhere to their recommendations when
writing their manuscripts.

Here we highlighted some of the items also men-
tioned in STREGA. One important step is to choose
appropriate statistical software that is able to perform
all the necessary tests. Even though there are several
mainstream packages that can do the job, one very good
choice is the R environment [31] that has increasingly
been used for the analysis of genetic data.
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7.1. Description

The first step is to describe the data at hand. For
genetic data, genotype and allele frequencies (Table 1)
along with a description of Hardy-Weinberg equilibri-
um status among cases and controls should always be
provided (see below), along with appropriate statistical
tests and if more than one locus is studied, descrip-
tion of linkage disequilibrium among them is also war-
ranted. Other co-variables (if present) should also be
described in respect to the disease status.

7.2. HWE tests for genotyping error ascertainment

Since genotyping errors can pose serious problems
when data is analyzed, especially if there is reason to
believe that the errors are differential among cases and
controls, it is customary to use tests for departure from
Hardy-Weinberg equilibrium (HWE) to assure geno-
typing quality. Even though the usefulness of such pro-
cedure is an area of current intense debate [32–36], it
is our impression that one should test and report re-
sults about HWE departures, especially among con-
trols, as the general population is assumed to be ran-
domly distributed. The main point is that HWE tests
should be applied and their results reported clearly, as
recommended by STREGA [28].

It is very important to know if the population test-
ed exhibits some sort of cryptic stratification due to
uneven admixture, migration or other genetic effects.
Sometimes, this problem has great effect over results
since cases and/or controls can be recruited from dif-
ferent “structured subpopulations” generating SNP fre-
quencies that will be significantly different irrespective
of the loci that are depicted to be tested. One way to
prevent this issue is the use of genomic controls [37].
Briefly, several randomly selected SNPs are used to
normalize the differences between cases and controls.
Other methods try to use genetic ancestry based on
“control databases” derived from genome-wide studies
in different populations to match samples from cases
and controls [38,39]. In general, important departures
from HWE can be observed when different subpopula-
tions are clustered in the same group and it is highly rec-
ommended that populations presenting several SNPs
deviating from HWE be carefully reassigned or some
genetic ancestry screening in the group be performed.
Obviously, the best way to avoid these problems is to
carefully select controls and patients.

7.3. Simple comparisons

Traditionally descriptions can be accompanied by
simple comparisons of frequencies, using chi-square
tests or Fisher’s exact tests where appropriate, but re-
cently simple comparisons using univariable logistic
models have been increasingly used, so that a table
could have a ‘raw’ OR and an ‘adjusted’ OR for the
multivariable model.

7.4. Logistic regression

Logistic regression [40] is the model of choice to be
used when working with ORs, because the calculated
coefficients can easily be converted to ORs by simply
taking their exponential. It belongs to a general class of
generalized linear models (GLM) [41] with a logit link
function, with residuals being expected to behave as a
binomial distribution. The results of a logistic model
are depicted in Table 1 along with genotype and allele
descriptions.

In this case, we present the models in three ways:
(i) making no assumption about the inheritance mode –
here, a nominal genotype variable entered in the model,
in the form of two dummy variables, one for heterozy-
gous group (GA) and another one for the homozygous
group of interest (AA). Even though it seems like the
GG homozygous group is not in the model, it is ac-
tually represented by entering zero in both dummies.
Even though both ORs and 95%CIs are shown, only
a single p-value is reported, because they are not truly
two variables, but rather one variable with 3 possible
values represented as two variables; (ii) assuming co-
dominance and that the allelic dose has a linear trend –
this is also known as the Cochran-Armitage test for
trend in respect to allele A. The single OR reported for
this allele assumes that the OR of having 2 A alleles
in respect to those that have 1 A allele is the same as
the OR of those that have 1 A allele in respect to those
who have no A allele; (iii) assuming dominant inher-
itance, where the presence of the allele A determines
the disease outcome – this approach does not seem to
be supported by the inheritance-free model and indeed
underestimates the effect of the A allele.

Multivariable logistic models are very popular in epi-
demiology and are handy to include co-variables one
would like to control for in the analysis phase, in case
confounding is suspected. Co-variables can be nom-
inal, ordinal or continuous and the models allow for
very good interpretability of their coefficients and ORs.

Finally, the ease of extensibility of GLMs can be-
come handy when one wants to explore more complex
situations, as we will see in the next section.
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8. Haplotypes

Haplotypes are a combination of 2 or more polymor-
phisms (SNPs in this case) within a single chromosome
in an individual. It has become a very popular approach
to study the association of haplotypes with diseases
when two or more SNPs are studied. The advantages
of using haplotypes instead of individual SNPs are due
to: (i) less information contained in a SNP alone than
in a combination of SNPs that are in LD; (ii) if we are
to combine the information of several SNPs separately,
correction for multiple comparisons (e.g. Bonferroni,
FDR) would have to be employed, lowering consider-
ably the power to detect associations.

Whenever it is impossible to genotype the cases par-
ents, the determination of the haplotype phase is not
always possible. If more than one locus is heterozy-
gous and it is not possible to genotype the individu-
al’s parents, there is no way of knowing for sure in
which chromosome the combination of alleles lie (even
though there are some lab techniques that would al-
low that directly). One way to go around this problem
is to use statistical imputation of missing data, which
will assign a probability of an individual having certain
haplotypes (depending on the combinations involved,
an individual can have several different pairs of them),
given the individual’s haplotype and the known phase
haplotype distribution in the population studied.

Recently, a method that combines Generalized Lin-
ear Models (GLM) with the Expectation-Maximization
(EM) algorithm have been proposed [42], in which a
score statistic is used to infer the association of hap-
lotypes of unknown phase and diseases, and with the
possibility to include covariates in the model. This ap-
proach combines the imputation of missing data (EM
algorithm) with logistic regression models, when the
outcome is binary (the method is also extended to oth-
er outcome types, through GLM). Even though the
method is able to quickly calculate the statistic to infer
associations, it does not calculate the maximum like-
lihood estimate for the model parameters, which does
not allow the calculation of the strength of association
involved.

In a more recent paper the same group proposed and
implemented new methods to calculate the MLE for
the GLM [43], incorporating the uncertainty of the EM
phase of the algorithm, allowing the calculation of an
Odds Ratio OR) when the outcome is binary.

9. Meta-analysis

Meta-analysis is a powerful tool when correctly used
and can provide a consensus answer using available
data from different sources that study the same phe-
nomenon, treating each study as a cluster. Of course,
the results will be more accurate as more data is avail-
able and this underscores the need for publication of
even non-significant results of well-designed studies to
avoid publication bias in meta-analysis.

The details of performing meta-analysis are out of
the scope of this paper, but some insight on its interpre-
tation along with some issues is warranted. The main
feature is to identify an association of interest and per-
form a thorough literature search on the subject. The
more spread and unrestricted the search, the better the
chance of not having publication bias, in which papers
that describe statistically significant results are more
likely to be accepted for publication than studies that
do not find significant associations. This would happen
even if published studies are not so well-designed, but
suffer from the so-called “winner’s curse” [44,45].

Of course, one would like to restrict some of the in-
formation, especially based on quality of data collec-
tion, conformation to study guidelines and of course,
enough data available to be pooled in the publication
(even though in some cases, data can be requested di-
rectly from the authors for that end). The quality of
genotyping is again warranted in meta-analysis, and
even though there is evidence some evidence that the
use of data with departures from HWE does not influ-
ence the results [34] we still think it is a good policy to
exclude studies that report loci not in HWE [11].

The interpretation of the results is the same as de-
scribed for the logistic regression and ORs above, on-
ly now there will be a summary OR that in general is
visualized together with the individual ORs for each
study included in the meta-analysis (generally in a fig-
ure known as forest graph). Currently it is usual to re-
port both the fixed effects summary OR and the random
effects summary OR, emphasizing the former (which is
more powerful) if the random variation across studies
is not significant and the latter otherwise.
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