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Necroptosis is a pro-inflammatory cell death, which happens in the context of caspase-8 
inhibition, allowing activation of the receptor interacting protein kinase 1–receptor inter-
acting protein kinase 3–mixed lineage kinase domain-like (RIPK1–RIPK3–MLKL) axis. 
Recently, necroptosis has emerged as a key component of resistance against pathogens 
including infected macrophage by Leishmania infantum, the ethiologic agent of Visceral 
leishmaniasis (VL). VL is the most severe form of Leishmaniasis, characterized by sys-
temic inflammation and neutropenia. However, the role of neutrophil cell death in VL has 
not been characterized. Here, we showed that VL patients exhibited increased lactate 
dehydrogenase levels in the serum, a hallmark of cell death and tissue damage. We 
investigated the effect of necroptosis in neutrophil infection in vitro. Human neutrophils 
pretreated with zVAD-fmk (pan-caspase inhibitor) and zIETD-fmk (caspase-8 inhibitor) 
increased reactive oxygen species (ROS) level in response to Leishmania infection, which 
is associated with necroptotic cell death. MLKL, an important effector molecule down-
stream of necroptosis pathway, was also required for Leishmania killing. Moreover, in 
absence of caspases-8, murine neutrophils displayed loss of membrane integrity, higher 
levels of ROS, and decreased L. infantum viability. Pharmacological inhibition of RIPK1 
or RIPK3 increased parasite survival when caspase-8 was blocked. Electron microscopy 
assays revealed morphological features associated with necroptotic death in L. infantum 
infected-neutrophils pretreated with caspase inhibitor, whereas infected cells pretreated 
with RIPK1 and RIPK3 inhibitors did not show ultra-structural alterations in membrane 
integrity and presented viable Leishmania within parasitophorous vacuoles. Taken 
together, these findings suggest that inhibition of caspase-8 contributes to elimination 
of L. infantum in neutrophils by triggering necroptosis. Thus, targeting necroptosis may 
represent a new strategy to control Leishmania replication.
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inTrODUcTiOn

Visceral leishmaniasis (VL) is a neglected tropical disease, 
caused by protozoan parasites of the genus Leishmania and is 
transmitted by the phlebotomine sandfly bite. The number of new 
VL cases worldwide each year is currently estimated at 300,000. 
Leishmania infantum is the etiological agent of VL in Brazil. VL 
is the most severe form of Leishmaniasis, which causes high 
morbidity and mortality in affected communities if left untreated 
(1, 2). Clinically, VL is a chronic infectious disease character-
ized by fever, weight loss, splenomegaly, hepatomegaly, anemia, 
cachexia, hematological alterations, and spontaneous bleeding  
(3, 4). Notably, neutropenia is one of the main laboratorial char-
acteristics of patients with VL (5).

Neutrophils are the first cells recruited to the Leishmania 
infection site and can efficiently phagocytose parasites during 
the first hours of infection (6). Even though macrophages are the 
preferential host cell for Leishmania parasites in the chronic phase 
of the disease, neutrophils can also exert varied functions in the 
context of leishmaniasis. The role of neutrophils in leishmaniasis 
is controversial, as they can be protective or deleterious depend-
ing on the parasite species and the host (7–11). Concerning 
human VL, the role of neutrophil is also poorly characterized.  
It was proposed that dysfunctional neutrophils contribute to dis-
ease severity and systemic inflammatory response characteristic 
of VL (12). Recent studies show that neutrophils may contribute 
to immunosuppression in subjects with active VL (13). HLA-DR+ 
neutrophils from VL patients do not stimulate T-cell proliferation, 
but they do express higher programmed cell death ligand-1 (13). 
Moreover, the neutrophil effects on Leishmania survival have also 
been associated with the development of an immune response 
after the initial stages of infection where cell death pathways can 
account for a pro- or anti-inflammatory microenvironment in the 
host (6, 8).

Necroptosis is a regulated form of cell death morphologically 
characterized by cell and organelle swelling, which ultimately 
culminates in loss of plasma membrane integrity (14, 15). 
Molecularly, receptor interacting protein kinases 1 and 3 (RIPK1 
and RIPK3, respectively) and mixed lineage kinase domain-like 
(MLKL) are essential regulators of necroptosis that can be trig-
gered by distinct signals including those involved in apoptosis 
(16–19). In contrast to necroptosis, apoptosis is an immuno-
logically silent cell death characterized by maintenance of cell 
integrity that occurs in the presence of caspases. Caspase-8 medi-
ates apoptotic cell death by cleaving and activating downstream 
caspases, such as caspase-3 and -7. The activation of RIPK1 is 
an upstream event of necroptosis. When caspase-8 is inhibited, 
RIPK1 promotes necroptosis by interacting with RIPK3, which 
mediates the phosphorylation of MLKL, which forms pore in 
the plasma membrane, promoting cell lysis (20–22). Moreover, 
necroptosis is an inflammatory cell death that contributes 
to innate immunity in both humans and mice by killing cells 
infected by pathogens (23–27). Viral, bacterial, and parasitic 
infections provoke release of danger signals and, consequently 
contribute to alert the immune system (18, 20, 21, 28). TNF-
induced necroptosis requires RIP kinase activation and caspase-8 
inhibition, which controls viral replication (20). More recently, 

our group showed the role of necroptosis in Leishmania infec-
tion (28). Using human and mouse macrophages, we identified 
that RIPK1 and mitochondrial phosphatase phosphoglycerate 
mutase family member 5 (PGAM5) are two novel host factors 
that control Leishmania replication through distinct mecha-
nisms. PGAM5 promotes optimal IL-1β production, which in 
turn stimulates nitric oxide (NO) production, whereas RIPK1 
regulates Leishmania replication independent of IL-1β (28).

In the present study, we show that inhibition of caspase-8 
controls Leishmania infantum replication inside both, human and 
murine neutrophils by promoting cell membrane damage and 
limiting parasite replication. Leishmania infection in the pres-
ence of caspase-8 inhibition is marked by increased RIPK3 and 
MLKL expression by human neutrophils. Inhibition of MLKL 
reduced cell death and restored parasite replication, indicating 
that necroptosis is active and facilitates human neutrophil control 
of parasite replication. Under the same condition of caspase-8 
inhibition, murine neutrophils display loss of plasma membrane 
integrity and formation of reactive oxygen species (ROS), sug-
gesting a pro-inflammatory cell death profile. In addition, specific 
inhibition of RIPK1 or RIPK3 in murine neutrophils reversed 
parasite killing caused by caspase inhibition. Importantly, pre-
treatment of neutrophils with zVAD-fmk followed by L. infantum  
infection revealed morphological features of necroptosis in these 
cells by electron microscopy, whereas addition of the RIPK1 kinase 
inhibitor Nec-1 or the RIPK3 kinase inhibitor GSK’872 increased 
L. infantum viability in murine neutrophils. Collectively, our 
results point to a novel and beneficial role of neutrophils in the 
control of Leishmania replication through necroptosis induced by 
caspase-8 inhibition.

resUlTs

circulating levels of lactate 
Dehydrogenase (lDh) are  
augmented in Patients With Vl
Lactate dehydrogenase is a systemic biomarker of tissue/cell 
death damage related to necroptosis in inflammatory diseases 
(29, 30). Here, we evaluated the circulating levels of LDH in 
serum samples from patients with classical VL manifestation 
before anti-leishmanial therapy and non-infected subjects from 
the same endemic region of northeast of Brazil (endemic con-
trols) (28, 31). These VL patients showed high plasma LDH levels 
compared with healthy controls (HC) (P < 0.0001) (Figure 1).

caspase-8 inhibition induces Damage  
in human neutrophils infected  
by L. infantum
Neutropenia is one of the main clinical characteristics of patients 
with VL (5). To better explore the association between necroptotic 
cell death and neutrophil infection by Leishmania, we employed 
an in vitro system using primary human neutrophils previously 
treated with caspases inhibitors, and then infected by L. infantum  
stationary promastigotes (Figure  2). Using the pan-caspase 
and caspase-8-specific inhibitors, zVAD-fmk and zIETD-fmk, 
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FigUre 2 | zVAD-fmk and zIETD-fmk treatment induces cell damage in 
Leishmania infantum-infected-human neutrophil. Human neutrophils from 
health donors (n = 6) were pretreated with zVAD-fmk (100 µM) or zIETD-fmk 
(100 µM) for 30 min. After that, cells were infected with L. infantum stationary 
promastigotes (5 parasites:1 neutrophil). (a) 1 h after in vitro infection LDH 
release from damaged cells was measured in supernatant by colorimetric 
assay. (B) Receptor interacting protein kinase 3 (RIPK3) concentrations in cell 
lysates was measured by ELISA, 3 h after infection in the presence or not of 
RIPK3 inhibitor (GSK’872, 3 µM). Data shown are from a single experiment 
representative of three independent experiments. Asterisk indicates 
significant differences assessed using the Kruskal–Wallis non-parametric test 
with Dunn’s post-test. *P < 0.05; Abbreviations: L.i., Leishmania infantum; 
LDH, lactate dehydrogenase.

FigUre 1 | Circulating levels of lactate dehydrogenase (LDH) in patients with 
visceral leishmaniasis (VL). LDH levels from serum sample obtained from 
patients with VL (n = 33) and healthy controls individuals (HC; n = 25) from 
an endemic area in the Northeast of Brazil was estimated by colorimetric 
assay (28, 31). Mann–Whitney U test was used to verify statistical difference 
between VL and HC individuals. Circles represent individual values. Black 
bars represent median values.

FigUre 3 | Inhibition of mixed lineage kinase domain-like (MLKL) reverses 
Leishmania infantum killing induced by blockage of caspase-8 in human 
neutrophils. Human neutrophils from health donors (n = 6) were pretreated 
with zVAD-fmk (100 µM) or zIETD-fmk (100 µM) for 30 min. After that, cells 
were infected with L. infantum stationary promastigotes (5 parasites:1 
neutrophil) in the presence or not of necrosulfonamide (NSA) (10 µM) and/or 
GSK’872 (3 µM). (a) Caspase-8 and MLKL expression as detected by 
western blotting. (B) Neutrophils infected with L. infantum promastigotes 
followed by cultivation at 26°C and viable promastigotes counts after 1 day. 
Data shown are from a single experiment representative of three independent 
experiments. Asterisk and hash indicate significant differences assessed 
using the Kruskal–Wallis non-parametric test with Dunn’s post-test. 
**P < 0.01; #P < 0.05, ##P < 0.01. Statistical comparisons between control 
groups (white bars) and groups that received treatment with zVAD-fmk/
zIETD-fmk are shows as *. Statistical comparisons between zVAD-fmk/
zIETD-fmk groups and groups that received NSA after treatment with 
zVAD-fmk/zIETD-fmk are shows as #.

3

Barbosa et al. Necroptosis, Neutrophils, and L. infantum Infection

Frontiers in Immunology | www.frontiersin.org August 2018 | Volume 9 | Article 1818

respectively, we detected a significant increase in LDH levels in 
infected neutrophil culture supernatant, indicating cell damage 
by loss of plasma membrane integrity (Figure 2A).

In order to investigate the presence of specific molecules of 
necroptotic cell death pathway, we examined the receptor interact-
ing protein kinase 3 (RIPK3) production by L. infantum-infected 
neutrophils in the context of caspases inhibition (Figure 2B). Cell 
extracts from infected neutrophils in the presence of zVAD-fmk, 
showed increased RIPK3 release. Interesting, a pharmacological 
inhibitor of RIPK3, GSK’872, was able to reduce its production 
(Figure 2B). In addition, we analyzed the effective inhibition of 

caspase-8 in L. infantum-infected neutrophils pretreated with 
zVAD-fmk (Figure  3A). Taken together, these results suggest 
that L. infantum-infected human neutrophil undergo necroptosis 
when caspases, especially caspase-8, are inhibited.

human neutrophils control L. infantum 
Viability in an MlKl-Dependent Manner
Next, we investigated the role of MLKL on Leishmania survival 
inside human neutrophils. MLKL is an important downstream 
effector molecule in the necroptosis pathway. MLKL interacts 
with activated RIPK3, resulting in cell lysis, a hallmark of 
necroptosis (32–34). Necrosulfonamide (NSA) is an effective 
pharmacological inhibitor of human MLKL (33, 35). First, MLKL 
expression on L. infantum-infected neutrophil was analyzed by 
immunoblot (Figure 3A). Immunoblots revealed that the MLKL 
was increased following L. infantum infection when caspases 
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FigUre 4 | zVAD-fmk and zIETD-fmk treatment induces cell damage, high 
ROS production, and reduces Leishmania infantum parasite viability in murine 
neutrophils. Inflammatory neutrophils from C57BL/6 mice were obtained after 
i.p. thioglicolate (3%) injection. Neutrophils (5 × 105/well) were pretreated with 
zVAD-fmk (100 µM) or zIETD-fmk (100 µM) or zFA-fmk control (100 µM)  
for 30 min. After that, cells were infected with L. infantum stationary 
promastigotes (5 parasites:1 neutrophil) for 1 h (a,B) and 18 h (c).  
(a) Colorimetric assay was performed 1 h after infection to quantitatively 
measured lactate dehydrogenase (LDH) released into the media from 
damaged cells as a biomarker for cellular cytotoxicity and cytolysis. (B) One 
hour after infection, neutrophils were incubated with DHE and intracellular 
ROS production was evaluated by flow cytometry. (c) Eighteen hours after 
infection, neutrophils were followed by cultivation at 26°C and viable 
promastigotes counts were performed after 1 day. Data shown are from  
a single experiment representative of three independent experiments. 
Asterisk indicates significant differences assessed using the Kruskal–Wallis 
non-parametric test with Dunn’s post-test. *P < 0.05; ** P < 0.01; 
***P < 0.001. Statistical comparisons between control groups (white bars) 
and groups that received treatment with zVAD-fmk/zIETD-fmk are shows as *. 
Abbreviations: Unst, non-infected neutrophils; L.i., Leishmania infantum; 
Etop, etoposide; ROS, reactive oxygen species; DHE, dihydroethidium.
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are inhibited and its reduction in the presence of RIPK3 and 
MLKL necroptotic inhibitors, GSK’872 and NSA, respectively 
(Figure  3A). Moreover, human neutrophils pretreated with 
the caspases inhibitors zVAD-fmk or zIETD-fmk controlled  
L. infantum replication (Figure  3B). In the presence of NSA, 
human neutrophils showed a significant increase in the parasite 
burden when compared with neutrophils pretreated only with 
caspase inhibitors (Figure  3B). Taken together, these results 
suggest that the RIPK3–MLKL-dependent necroptosis pathway 
is active in human neutrophils during L. infantum infection in 
the absence of caspase-8, which contributes to parasite killing.

necroptosis reduces L. infantum Viability 
in Murine neutrophils
We have previously reported that murine neutrophils undergone 
apoptosis upon L. infantum infection and this effect which was 
enhanced by saliva of Leishmania vector, was correlated with 
increased parasite load associated with apoptosis death (36). We 
therefore asked whether blockage of caspases on L. infantum-
infected neutrophils switch the immunologically silent death 
pathway from apoptosis to a pro-inflammatory death in these 
cells. First, we investigated the effect of caspase inhibition in 
mouse neutrophil viability using the pan-caspase and specific 
caspase-8 inhibitors, zVAD-fmk and zIETD-fmk, respectively 
(Figure 4A). In the presence of caspase inhibition, Leishmania-
induced cell death as measured by increased LDH release was 
increased in infected neutrophils (Figure  4A). As control, in 
the presence of etoposide, an apoptosis inducer, there was no 
increase of LDH release in the presence of caspase inhibition 
(Figure  4A). In addition, we measured the generation of ROS 
by infected neutrophils in this system (Figure  4B). Significant 
increase of intracellular ROS was observed within 60  min of 
infection when caspases were inhibited by zVAD-fmk, and this 
effect was further increased with the specific caspase-8 inhibitor 
zIETD-fmk (Figure 4B).

In order to investigate the impact of the switch apoptotic neu-
trophil death to necroptosis on L. infantum survival, we assessed 
the in  vitro parasite viability in the cell cultures (Figure  4C). 
Similar to human neutrophils, we found a significant decrease 
in Leishmania viability in mouse neutrophils when caspase-8 
was inhibited by pretreatment with zVAD-fmk or zIETD-fmk 
(Figure  4C). To rule out toxic effect of caspase inhibitors on 
the parasite, we tested whether treatment with zVAD-fmk or 
zIETD-fmk could directly affect parasite viability. We found that 
these inhibitors were not toxic to Leishmania parasites (Figure 
S1 in Supplementary material). These data reinforce the results 
obtained from human neutrophils and suggest that inhibition of 
caspase, specifically caspase-8, contributes to L. infantum killing.

riPK1 and riPK3 inhibition abrogates  
L. infantum Killing induced by necroptosis
Interaction between RIPK1 and RIPK3 accounts for the forma-
tion of the ripoptosome complex, which is essential for necrop-
tosis activation (26, 37, 38). Usually, this complex is assembled in 
conditions of caspase-8 inhibition (15, 26). In order to explore 
the involvement of the axis RIPK1–RIPK3 on L. infantum 

replication in mice neutrophils, we performed infection assays 
in the presence of necrostatin-1 (Nec-1) or GSK’872, specific 
inhibitors of RIPK1 and RIPK3, respectively (Figure 5). C57BL/6 
neutrophils pretreated with zVAD-fmk or zIETD-fmk controlled  
L. infantum replication (Figures 5A,B). Importantly, the opposite 
effect was observed when neutrophils were incubated with RIPK1 
(Figure  5A) or RIPK3 (Figure  5B) inhibitors. Taken together, 
these data suggest that the RIPK1–RIPK3 complex is active 
during L. infantum infection in neutrophils when caspases are 
inhibited, which limited parasite replication.
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FigUre 5 | Inhibition of RIPK1 and RIPK3 reverses Leishmania infantum 
killing induced by inhibition of caspase-8. Inflammatory neutrophils from 
C57BL/6 mice were obtained after i.p. thioglicolate (3%) injection. Neutrophils 
(5 × 105/well) were pretreated with zVAD-fmk (100 μM) or zIETD-fmk 
(100 μM) for 30 min. After that, cells were infected with L. infantum stationary 
promastigotes (5 parasites:1 neutrophil) in the presence or not of (a) Nec-1 
(50 µM, RIPK1 inhibitor) or (B) GSK’872 (3 µM, RIPK3 inhibitor) followed by 
cultivation at 26°C and viable promastigotes counts after 1 day. Data shown 
are from a single experiment representative of three independent 
experiments. Asterisk indicates significant differences assessed using the 
Kruskal–Wallis non-parametric test with Dunn’s post-test. *P < 0.05.  
(c) Representative transmission electron micrographs of inflammatory 
neutrophils pretreated with zVAD-fmk followed of infection with L. infantum 
stationary promastigotes in the presence or not of Nec-1 and GSK’872. 
Morphological features of necroptosis in L. infantum infected-neutrophils 
pretreated with zVAD-fmk is reversed by inhibition of RIPK1 and RIPK3. 
Untreated infected neutrophils (negative control), viable parasites (p), intact 
nuclei (n). Scale bars = 2 µm.
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After these results, we then decided to investigate whether the 
morphological aspects presented in L. infantum-infected neutro-
phils pretreated with the caspase inhibitor zVAD-fmk corresponds 
to necroptosis cell death morphology (Figure 5C). Distinct from 
apoptosis, necroptosis cell death is morphologically character-
ized by swelling of organelles and plasma membrane rupture 
(39–42). Transmission electronic microscopy assays revealed that 
zVAD-fmk pretreated L. infantum-infected neutrophils exhibited 
plasma membrane and organelle rupture (thin black arrows) and 
dead parasites (thick black arrows) (Figure 5C). Moreover, groups 
treated with inhibitors of RIPK1 (Nec-1) or RIPK3 (GSK’872) 

maintained plasma membrane integrity, preserved intracellular 
content and interestingly, displayed viable Leishmania (p) within 
parasitophorous vacuole, in contrast with neutrophils pretreated 
with zVAD-fmk only. Combined, these data clearly indicate the 
participation of neutrophil necroptosis in L. infantum killing.

MaTerials anD MeThODs

ethics statement
This study was performed with both, human and animal neu-
trophils. For human, it was carried out in accordance with the 
recommendations of Institutional Review Board of the Federal 
University of Sergipe, Brazil with written informed consent from 
all subjects. All subjects gave written informed consent in accord-
ance with the Declaration of Helsinki. The protocol was approved 
by the Institutional Review Board of the Federal University of 
Sergipe, Brazil (license number: 04587312.2.0000.0058). In vitro 
experiments were performed using buffy coats from healthy 
blood donors at the state blood bank, Salvador, Brazil. For ani-
mals, inbred male C57BL/6 mice, aged 6–8 weeks, were obtained 
from the animal facility of CPqGM-FIOCRUZ (Bahia, Brazil).  
All experimental procedures were approved and conducted accord-
ing to the Brazilian Committee on the Ethics of Animal Experi-
ments of the Centro de Pesquisas Gonçalo Moniz—Fundação  
Oswaldo Cruz (CPqGM-FIOCRUZ, license number: 004/2014).

Parasites culture
Leishmania infantum (MCAN/BR/89/BA262) parasites were 
grown at 23°C in hemoflagellate-modified minimal essential 
medium (HOMEM medium) containing 10% (v/v) HI-FCS 
and 24.5 mM hemin (BOD incubator). In all experiments, the 
cultures were used at stationary phase.

Mouse and human neutrophil cultures
Mouse neutrophils were obtained as described previously (36, 43).  
Briefly, C57BL/6 mice were intra peritoneally injected with 
aged 3% thioglycolate (Difco, Detroit, MI, USA) solution. Seven 
hours after injection, peritoneal lavage was performed using 
10  ml RPMI-1640 medium (Invitrogen, Carlsbad, CA, USA) 
supplemented with 1% Nutridoma-SP (Roche, Indianapolis, IN, 
USA), 2  mM l-glutamine, 100  U/ml penicillin, and 100  g/ml  
streptomycin (Invitrogen, Carlsbad, CA, USA). Exudate cells 
were incubated at 37°C in 5% CO2 for 1 h in 250 ml flasks (Costar, 
Cambridge, MA, USA) to remove adherent cells. Cells on super-
natants were then recovered and cell viability was determined 
by trypan blue exclusion (>95%; data not shown). Nonadherent 
cells were stained with anti-Gr-1 and Ly-6G to assess neutrophil 
purity and were subsequently analyzed by flow cytometry using 
CellQuest software (BD Immunocytometry Systems, San Jose, 
CA, USA). Gr-1+Ly-6G+ cells were routinely >95% pure.

Human neutrophils were obtained from blood of healthy 
donors from Hemocentro do Estado da Bahia (Salvador, Brazil) 
after donors had given written, informed consent. This approach 
was approved by the Research Ethics Committee of FIOCRUZ-
Bahia. Human neutrophils were isolated by gradient separation 
with polymorphonuclear medium (PMN) according to the 
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manufacturer’s instructions (Robbins Scientific, Sunnyvale, CA, 
USA). Briefly, blood collected was added to vials contained PMN 
medium and then centrifuged for 30 min at 300 g at room tem-
perature. Neutrophils were collected and washed three times with 
saline by centrifugation for 10 min at 200 g.

For in vitro assays, mice or human neutrophils (5 × 105/well) 
were cultured in 200 μl RPMI-1640 medium, supplemented with 
1% Nutridoma-SP, 2 mM l-glutamine, 100 U/ml penicillin, and 
100 g/ml streptomycin in 96-well plates (Nunc, Denmark).

necroptosis and Leishmania infection 
assays
Neutrophils were infected in vitro with L. infantum promastigotes 
stationary-phase at a ratio of 1:2 (neutrophil:parasites). For assays 
of cell death, mouse and human neutrophils were pretreated for 
30 min with zVAD-fmk (100 µM) (R&D Systems, Minneapolis, 
MN, USA) or zIETD-fmk (100 µM) (R&D Systems, Minneapolis, 
MN, USA) to block caspase activation before infection. In some 
experiments, Nec-1 (50 µM), GSK’872 (3 µM), or NSA (10 µM), 
necroptosis inhibitors (all from Merck Millipore’s Calbiochem®, 
Darmstadt, Germany) were used. DMSO (vehicle) 0.4% (Cayman 
Chemical; Ann Arbor, MI, USA) was used as control. After 18 h, 
mouse infected neutrophils, or after 3 h, human infected neutro-
phils, were centrifuged, supernatants containing noninternalized 
promastigotes were collected, and medium was replaced by 250 µl 
Schneider insect medium (Sigma-Aldrich, St. Louis, MO, USA), 
supplemented with 20% inactive FBS, 2 mM l-glutamine, 100 U/ml  
penicillin, and 100  g/ml streptomycin. After that, infected 
neutrophils were cultured at 25°C for an additional 3 days and 
intracellular load of L. infantum was estimated by production 
of proliferating extracellular motile promastigotes in Schneider 
medium (43).

lDh Quantification
Lactate dehydrogenase activity on supernatants from L. infantum- 
cultured neutrophils was measured spectrophotometrically 
using a commercial LDH Cytotoxicity Detection Kit (Boehringer 
Mannheim) to access plasma membrane integrity. According to 
the manufacturer’s instructions, the absorbance was recorded at 
490 nm using a microELISA plate reader (490 nm). Blank LDH 
levels were subtracted from experimental LDH values and total 
LDH activity was determined by lysing the cells with 1% Triton 
X. The percentage of LDH release was calculated by [(LDH) 
sample × 100]/total (LDH).

Serum LDH was measured using an ELISA kit from Wuxi 
Douglin Sci. (Wuxi, China). Serum of patients with classical VL 
before leishmaniasis chemotherapy (n = 33) and HC (n = 25) was 
obtained from an endemic area in northeastern Brazil. The clini-
cal and epidemiological characteristics of the study population 
have been previously described in detail (31, 44).

riPK3 elisa assay
For the quantitative determination of human receptor interact-
ing protein kinase 3 (RIPK3) concentrations in cell lysates we 
used a Human Receptor-Interacting Serine/Threonine-Protein 
Kinase 3 (RIPK3) ELISA Kit (CUSABIO). Human neutrophils 

(106/well) pretreated with for 30 min with zVAD-fmk (100 µM) 
were infected with L. infantum in the presence of GSK’872 
(3 µM) as described above. After 3 h, human infected neutro-
phils were collected, diluted with 1× PBS (pH 7.2–7.4), until 
cell concentration reached 100 million/ml, and stored overnight 
at −20°C. After two freeze-thaw cycles to break up the cell 
membranes, lysates were centrifuged for 5 min at 5,000 × g, 4°C 
and used to RIPK3 ELISA assay according to the manufacturer’s 
instructions.

Western Blot
Total cell protein was isolated from pelleted neutrophils using cell 
lysis buffer. Absolute protein content of lysates was determined 
by Bradford assay (Bio-Rad, Hercules, CA, USA). Samples were 
boiled at 95°C for 5 min and then were run on 12% SDS-PAGE 
gels. Proteins were transferred onto nitrocellulose membranes, 
blocked with 5% fat-free milk in TBST for 1  h, and detected 
using rabbit anti-MLKL antibody-N-terminal (Abcam), mouse 
anti-caspase-8 (Enzo Life Sciences), and mouse anti-Hsp90 (BD 
Biosciences) monoclonal primary antibodies. Anti-rabbit MLKL, 
anti-mouse caspase-8, and anti-mouse-Hsp90 secondary anti-
bodies (all from Abcam) were then applied to membrane, which 
were subsequently incubated with Western Blotting Detection 
Reagent (Thermo Scientific) and imaged using ImageQuant LAS 
4000 System (GE Healthcare).

Measurement of intracellular rOs 
Production
Intracellular ROS detection in L. infantum-infected neutrophils 
cultured was performed using dihydroethidium (DHE) fluores-
cent probe (Invitrogen, Carlsbad, CA, USA) following analyses 
by FACS, according to the manufacturer’s instructions. For inves-
tigation of ROS production, the purified neutrophil population 
was analyzed by forward- and side-scatter parameters following 
application of the DHE probe.

Transmission electron Microscopy
Neutrophils were fixed at room temperature for 2  h in 2.5% 
glutraraldehyde and paraformaldehyde 2% in 0.1 M cacodylate 
buffer, pH 7.4. Postfixed with 1% OsO4, 0.8% potassium ferri-
cianide, 5 mM CaCl2 in 0.1 M cacodylate buffer. Samples were 
washed, dehydrated in acetone, and then embedded in PolyBed 
812 (Polysciences, Inc.) resin. Ultrathin sections were stained 
with uranyl acetate and lead citrate and examined on a Zeiss109 
transmission electron microscope operating at 80 kV.

statistical analyses
Each experiment was performed using at least five mice/group 
and it was repeated at least three times. In vitro assays using 
human neutrophils were performed with n = 6. All results are 
reported as mean ± SE of representative experiments and were 
analyzed using GraphPad Prism 5.0 (GraphPad Software, San 
Diego, CA, USA). Data distribution from different groups was 
compared using the Kruskal–Wallis test with Dunn’s multiple 
comparisons, and comparisons between two groups were 
explored using the Mann–Whitney test.
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DiscUssiOn

The physiological role of neutrophils is directed toward the eradi-
cation of invading pathogens (45). In leishmanial infections, the 
role of neutrophils is controversial. Neutrophil can play a positive 
(46) or negative role (47) in the outcome of the infection. We 
previously demonstrated the sophisticated interplay between 
innate immune response and different cell death pathways in 
Leishmania infection (28, 36, 48, 49). Moreover, neutrophils can 
undergo necroptosis followed by the ligation of adhesion recep-
tors under inflammatory conditions (50, 51).

Most studies have focused on the role of necroptosis in viral 
and bacterial infections (52) [reviewed in Ref. (53, 54)]. There are 
very few studies focusing on infectious diseases caused by proto-
zoan parasites. Our group carried out a study investigating the 
involvement of necroptosis in the control of different Leishmania 
species (28). RIPK1 and PGAM5 are involved in the control of 
Leishmania replication in macrophages. Interestingly, in that 
study, the control of parasite replication was dependent on RIPK1 
kinase activity. Collectively, these data suggest a potential role for 
necroptosis in the control of Leishmania viability by different cell 
types. Nevertheless, histology sections of wild type, Ripk1kd/kd,  
and Pgam5−/− mice infected with Leishmania amazonensis 
revealed tissue inflammation marked by neutrophil infiltration 
(28), indicating the importance of these cells in the context of 
Leishmania infection. However, the precise mechanisms or 
molecules involved in this cell death pathway could be distinct 
in different cells.

Despite the importance of neutrophils in human VL, the role 
of neutrophil necroptosis upon Leishmania infection had not 
been investigated. Assessment of a biomarker of cell/tissue dam-
age related to inflammatory cell death, revealed high circulating 
levels of LDH in VL patients. LDH is a systemic biomarker of 
cell damage that could be related to necroptosis (29, 30). Because 
inflammatory imbalance and neutropenia are hallmarks of 
human VL, we investigated the mechanisms involved in neutro-
phil cell death when caspases are pharmacologically inhibited 
before infection with Leishmania infantum. We found that 
specific caspase-8 inhibition contributes to L. infantum killing by 
RIPK1–RIPK3–MLKL-dependent necroptosis, in both human 
and mouse neutrophils.

In the presence of the pan-caspase inhibitor zVAD-fmk, we 
noticed human and mouse neutrophil cell death with an early 
release of LDH. We have previously demonstrated that L. chagasi  
(syn. infantum) induces mouse neutrophil apoptosis (36), a 
non-inflammatory programmed form of cell death involving 
caspases. In the context of caspase inhibition, these serine pro-
teases could switch apoptosis to necroptosis, a pro-inflammatory 
and regulated form of cell death, characterized by loss of plasma 
membrane permeability and release of intracellular contents, as 
LDH. In this regarding, our data obtained with mouse neutrophils 
combined with our previous data (36) reinforce the possibility of 
the use of specific pharmacological inhibitors of caspases such as 
zVAD-fmk to promotes a switch from apoptosis to others types of 
regulated cell death on mammalian system (55, 56).

Herein, inhibition of human and mouse neutrophil apoptosis 
by zVAD-fmk or zIETD-fmk reduced the number of viable 

parasite within those cells. zVAD-fmk is the most commonly 
used pan-caspase inhibitor and it has been demonstrated to have 
low cytotoxicity in vitro and in vivo (57–60). However, zVAD-fmk 
can induce necrotic cell death in certain cell lines (61, 62). We 
rule out the possibility of zVAD-fmk being involved in neutrophil 
necrotic death by performing cytotoxicity assays (data not shown). 
Moreover, we also analyzed whether there is any cytotoxic effect 
of zVAD-fmk on L. infantum promastigotes. Indeed, we did not 
observe alteration on Leishmania parasites grow curve. Using a 
specific caspase-8 inhibitor zIETD-fmk, we reinforce the idea 
that in the absence of caspase-8, L. infantum-infected neutrophils 
cell death switches from apoptosis to necroptosis with a pro-
inflammatory profile, represented by increased ROS production. 
ROS contribute to the execution of necroptosis (41). It has been 
observed that ROS triggers necroptosis by promoting peroxyla-
tion of lipids, proteins, and DNA, or as second messengers in the 
signaling pathways of death receptors (41, 63).

It is known that superoxide anion ( )O2
−  and NO are two 

important molecules critical in controlling Leishmania infection 
(64, 65). L. infantum replication in macrophages was controlled 
through distinct mechanisms involving NO and IL-1β (28). Here, 
we did not find detectable IL-1β in our assays in neutrophils, 
discarding the possibility of canonical pyroptosis. Neutrophils, 
monocytes, and macrophages can control parasites by ROS that 
are produced by the respiratory burst after phagocytosis (66, 67). 
Moreover, recently our group shows that heme drives oxidative 
stress-associated cell death in human neutrophils infected by  
L. infantum (49). Also, in hemorrhagic shock models, it was dem-
onstrated that exosomes released from macrophages promote 
neutrophil necroptosis mainly by NADPH oxidase-derived ROS 
production within neutrophils (68). Whether ROS are involved 
in L. infantum viability control during neutrophil necroptosis 
remains to be investigated.

Here, RIPK3 was released extracellularly after treatment with 
zVAD-fmk. Although RIPK3 is an intracellular protein which 
acts in programmed cell death pathways, extracellular release of 
RIPK3 following necroptosis was previously related on plasma 
and/or culture supernatants (69). Nevertheless, recently it was 
described that RIPK1 and RIPK3 could be involved in inflam-
matory process independently of necroptosis induction (70). 
RIPK1 and RIPK3 pharmacological inhibition was found to 
restore L. infantum growth in murine neutrophils pretreated 
with zVAD-fmk or zIETD-fmk. We performed in  vitro assays 
using pharmacological inhibitors: Nec-1 (RIPK1 inhibitor) or 
GSK’872 (RIPK3 inhibitor). We came to the conclusion that 
reduced parasite grown inside neutrophil, in the context of 
caspase inhibition was due to induction of necroptosis.

Electron microscopy (EM) remains an important qualitative 
method to detect cell death morphological features. On EM 
images, necrotic/necroptotic cells display loss of membrane 
integrity, low cytoplasm density, disintegrated cell membrane, 
loss of chromatin, increase in cell volume, swelling of organelles, 
and cellular collapse (53, 71). Herein, EM images revealed mor-
phological features of necroptosis in L. infantum-infected neu-
trophils subsequent to zVAD-fmk treatment. Interestingly, these 
morphological aspects of necroptosis were prevented by using 
Nec-1 and GSK’872. Nec-1 is an allosteric RIPK1 kinase inhibitor 
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able to prevent the formation and activation of RIPK1–RIPK3 
complexes (17), whereas GSK’872 inhibits specifically RIPK3 
phosphorylation (72). Here, we provide evidence that RIPK1 and 
RIPK3 are activated in L. infantum-infected neutrophils in the 
absence of caspase-8, thereby promoting neutrophil necroptotic 
death and killing of L. infantum parasites.

Recent evidence described that necroptotic cell death 
occurs upon the assembly of a large, signal-induced multipro-
tein complex containing RIPK1, RIPK3, and MLKL, namely 
necrosome (73). Active MLKL either directly or indirectly 
destabilizes plasma membrane integrity leading to cell swell-
ing, membrane rupture, and DAMPs release (33, 74, 75). Since 
MLKL inhibitors specific for mouse cells are not available, we 
tested here the participation of MLKL using human neutro-
phils treated with the NSA, a human MLKL inhibitor. Indeed, 
we found that caspase inhibition contributes to the control of 
parasite viability in neutrophils via MLKL. Moreover, as in 
the process of necroptosis, MLKL functions as a substrate to 
RIPK3, it seems that RIPK3 inhibition reduced the expression 
of MLKL and, consequently the necroptotic L. infantum-
infected neutrophils.

In summary, our data suggest that interference of neutrophil 
apoptosis by inhibition of caspases contributes to elimination of 
L. infantum parasites, probably by stimulating an inflammatory 
response associated with RIPK1–RIPK3–MLKL-dependent 
necroptosis. In this context, targeting neutrophil cell death path-
ways by necroptosis may be new strategies to treat human VL.

eThics sTaTeMenT

This study was carried out in accordance with the recommenda-
tions of Institutional Review Board of the Federal University of 
Sergipe, Brazil with written informed consent from all subjects. 
All subjects gave written informed consent in accordance 
with the Declaration of Helsinki. The protocol was approved 
by the Institutional Review Board of the Federal University of 
Sergipe, Brazil (license number: 04587312.2.0000.0058). All 
experimental procedures using animals were approved and 
conducted according to the Brazilian Committee on the Ethics 

of Animal Experiments of the Centro de Pesquisas Gonçalo 
Moniz—Fundação Oswaldo Cruz (CPqGM-FIOCRUZ, license 
number: 004/2014).

aUThOr cOnTriBUTiOns

LAB, PF, MA, NL, MB, VB, and DP conceived and designed the 
study. LAB, PF, LJB, FR, MA, NL, GQ-C, JL, and DP performed 
the experiments. LAB, PF, LJB, FR, MA, NL, MB, FC, VB, and DP 
contributed with data analysis. MB, RA, VB, and DP provided 
materials and infrastructural support. LAB, NL, MB, FC, VB and 
DP wrote and revised the manuscript.

acKnOWleDgMenTs

The authors thank Mrs. Elze Leite and Mrs. Andrezza Souza 
(FIOCRUZ, Bahia) for technical and logistic support.

FUnDing

This work was supported by grants from Fundação de Amparo 
à Pesquisa do Estado da Bahia-FAPESB (JCB0047/2013 to DP,  
5760/2015 to VB) and from Conselho Nacional de Desenvolvi-
mento Científico e Tecnológico-CNPq (482722/2013-4 to DP,  
552721/2011-5 and 019.203.02712/2009-8 FAPITEC/CNPq to  
RA). RA also received a grant from Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior (CAPES: 23038. 
005304/2011-01). NFL received funding from CAPES (grants 
88887.142000/2017-00 and 88887.137958/2017-00). FC is sup-
ported by NIH grant AI119030. LAB and LJB received a fellowship 
from CNPq. VB, MB, and RA are senior investigators from CNPq. 
The funders had no role in study design, data collection and analy-
sis, decision to publish, or preparation of the manuscript.

sUPPleMenTarY MaTerial

The Supplementary Material for this article can be found online at 
https://www.frontiersin.org/articles/10.3389/fimmu.2018.01818/
full#supplementary-material.

reFerences

1. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis 
worldwide and global estimates of its incidence. PLoS One (2012) 7(5): 
e35671. doi:10.1371/journal.pone.0035671 

2. WHO. WHO: Weekly epidemiological record: global leishmaniasis update, 
2006–2015, a turning point in leishmaniasis surveillance. World Health 
Organization (2017) 92(38):557–72. doi:10.1186/1750-9378-2-15

3. Costa PL, Dantas-Torres F, da Silva FJ, Guimarães VCFV, Gaudêncio K, 
Brandão-Filho SP. Ecology of lutzomyia longipalpis in an area of visceral 
leishmaniasis transmission in north-eastern Brazil. Acta Trop (2013) 
126(2):99–102. doi:10.1016/j.actatropica.2013.01.011 

4. Belić A, Pejin D, Stefanović N, Spasojević J, Đurković D. Hematologic charac-
teristics of leishmaniasis. Med Pregl (2000) 53(1-2):89–91.

5. De Queiroz A, Cavalcanti NV. Risk factors for death in children with visceral 
leishmaniasis. PLoS Negl Trop Dis (2010) 4(11):e877. doi:10.1371/journal.
pntd.0000877 

6. Peters NC, Egen JG, Secundino N, Debrabant A, Kamhawi S, Lawyer PG, et al.  
In vivo imaging reveals an essential role for neutrophilis in leishmaniasis transmit-
ted by sand flies. Science (2009) 321(5891):970–4. doi:10.1126/science.1159194 

7. Gueirard P, Laplante A, Rondeau C, Milon G, Desjardins M. Trafficking of 
Leishmania donovani promastigotes in non-lytic compartments in neutrophils 
enables the subsequent transfer of parasites to macrophages. Cell Microbiol 
(2008) 10(1):100–11. doi:10.1111/j.1462-5822.2007.01018.x 

8. Guimara AB. Leishmania amazonensis promastigotes induce and are killed 
by neutrophil extracellular traps. Proc Natl Acad Sci U S A (2009) 106(16): 
6748–53. doi:10.1073/pnas.0900226106 

9. Mcfarlane E, Perez C, Allenbach C, Carter KC, Alexander J, Tacchini-cottier F.  
Neutrophils contribute to development of a protective immune response 
during onset of infection with Leishmania donovani. Infect Immun (2008) 
76(2):532–41. doi:10.1128/IAI.01388-07 

10. Rousseau D, Demartino S, Ferrua B, Michiels JF, Anjuère F, Fragaki K, et al. In 
vivo involvement of polymorphonuclear neutrophils in Leishmania infantum 
infection. BMC Microbiol (2001) 1(1):17. doi:10.1186/1471-2180-1-17

11. van Zandbergen G, Klinger M, Mueller A, Dannenberg S, Gebert A, Solbach W,  
et al. Cutting edge: neutrophil granulocyte serves as a vector for Leishmania 
entry into macrophages. J Immunol (2004) 173(11):6521–5. doi:10.4049/
jimmunol.173.11.6521 

12. Yizengaw E, Getahun M, Tajebe F, Cervera EC, Adem E, Mesfin G, et al. Visceral 
leishmaniasis patients display altered composition and maturity of neutrophils 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive
https://www.frontiersin.org/articles/10.3389/fimmu.2018.01818/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2018.01818/full#supplementary-material
https://doi.org/10.1371/journal.pone.0035671
https://doi.org/10.1186/1750-9378-2-15
https://doi.org/10.1016/j.actatropica.2013.01.011
https://doi.org/10.1371/journal.pntd.0000877
https://doi.org/10.1371/journal.pntd.0000877
https://doi.org/10.1126/science.1159194
https://doi.org/10.1111/j.1462-5822.2007.01018.x
https://doi.org/10.1073/pnas.0900226106
https://doi.org/10.1128/IAI.01388-07
https://doi.org/10.1186/1471-2180-1-17
https://doi.org/10.4049/jimmunol.173.11.6521
https://doi.org/10.4049/jimmunol.173.11.6521


9

Barbosa et al. Necroptosis, Neutrophils, and L. infantum Infection

Frontiers in Immunology | www.frontiersin.org August 2018 | Volume 9 | Article 1818

as well as impaired neutrophil effector functions. Front Immunol (2016) 7:517. 
doi:10.3389/fimmu.2016.00517 

13. Sharma S, Davis RE, Srivastva S, Nylén S, Sundar S, Wilson ME. A subset 
of neutrophils expressing markers of antigen-presenting cells in human 
visceral leishmaniasis. J Infect Dis (2016) 214(10):1531–8. doi:10.1093/infdis/ 
jiw394 

14. Kearney CJ, Martin SJ. Perspective an inflammatory perspective on necro-
ptosis. Mol Cell (2017) 65(6):965–73. doi:10.1016/j.molcel.2017.02.024 

15. Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. 
Nature (2015) 517(7534):311–20. doi:10.1038/nature14191 

16. Chan FKM, Baehrecke EH. RIP3 finds partners in crime. Cell (2012) 
148(1–2):17–8. doi:10.1016/j.cell.2011.12.020 

17. Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, et  al. 
Identification of RIP1 kinase as a specific cellular target of necrostatins.  
Nat Chem Biol (2008) 4(5):313–21. doi:10.1038/nchembio.83 

18. Dondelinger Y, Darding M, Bertrand MJM, Walczak H. Poly-ubiquitination 
in TNFR1-mediated necroptosis. Cell Mol Life Sci (2016) 73(11–12): 
2165–76. doi:10.1007/s00018-016-2191-4 

19. Wang L, Miao L, Wang T, Du F, Zhao L, Wang X. Receptor interacting pro-
tein kinase-3 determines cellular necrotic response to TNF-a. Cell (2009) 
137(6):1100–11. doi:10.1016/j.cell.2009.05.021 

20. Chan FKM, Shisler J, Bixby JG, Felices M, Zheng L, Appel M, et al. A role 
for tumor necrosis factor receptor-2 and receptor-interacting protein 
in programmed necrosis and antiviral responses. J Biol Chem (2003) 
278(51):51613–21. doi:10.1074/jbc.M305633200 

21. Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, et  al. 
Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates 
programmed necrosis and virus-induced inflammation. Cell (2009) 137(6): 
1112–23. doi:10.1016/j.cell.2009.05.037 

22. Lyon CB, Umr C, Lyon D. Review roles of caspases in necrotic cell death.  
Cell (2016) 167(7):1693–704. doi:10.1016/j.cell.2016.11.047 

23. Chan FKM, Luz NF, Moriwaki K. Programmed necrosis in the cross talk of cell 
death and inflammation. Ann Rev Immunol (2014) 33:79–106. doi:10.1146/
annurev-immunol-032414-112248 

24. Jorgensen I, Rayamajhi M, Miao EA. Programmed cell death as a defence 
against infection. Nat Publ Group (2017) 17(3):151–64. doi:10.1038/
nri.2016.147

25. Mocarski ES, Guo H, Kaiser WJ. Necroptosis: the Trojan horse in cell auton-
omous antiviral host defense. Virology (2015) 47(9–480):160–6. doi:10.1016/ 
j.virol.2015.03.016 

26. Moriwaki K, Chan FKM. RIP3: a molecular switch for necrosis and inflam-
mation. Gen Dev (2013) 27(15):1640–9. doi:10.1101/gad.223321.113 

27. Pfeiffer T, Morley A. An evolutionary perspective on the Crabtree effect. Front 
Mol Biosci (2014) 1:17. doi:10.3389/fmolb.2014.00017 

28. Farias Luz N, Balaji S, Okuda K, Barreto AS, Bertin J, Gough PJ, et al. RIPK1 
and PGAM5 control Leishmania replication through distinct mechanisms. 
J Immunol (2016) 196(12):5056–63. doi:10.4049/jimmunol.1502492 

29. Chtourou Y, Slima AB, Makni M, Gdoura R. Naringenin protects cardiac 
hypercholesterolemia-induced oxidative stress and subsequent necroptosis  
in rats. Pharmacol Rep (2015) 67(6):1090–7. doi:10.1016/j.pharep.2015.04.002 

30. Takemoto K, Hatano E, Iwaisako K, Takeiri M, Noma N, Ohmae S, et  al. 
Necrostatin-1 protects against reactive oxygen species (ROS)-induced hepa-
totoxicity in acetaminophen-induced acute liver failure. FEBS Open Bio (2014) 
4:777–87. doi:10.1016/j.fob.2014.08.007 

31. Luz NF, Andrade BB, Feijo DF, Araujo-Santos T, Carvalho GQ, Andrade D,  
et  al. Heme oxygenase-1 promotes the persistence of Leishmania chagasi 
infection. J Immunol (2012) 188(9):4460–7. doi:10.4049/jimmunol.1103072 

32. Orzalli MH, Kagan JC. Apoptosis and necroptosis as host defense strategies 
to prevent viral infection. Trends Cell Biol (2017) 27(11):800–9. doi:10.1016/ 
j.tcb.2017.05.007 

33. Sun L, Wang H, Wang Z, He S, Chen S, Liao D, et al. Mixed lineage kinase 
domain-like protein mediates necrosis signaling downstream of RIP3 kinase. 
Cell (2012) 148(1–2):213–27. doi:10.1016/j.cell.2011.11.031 

34. Zhao J, Jitkaew S, Cai Z, Choksi S, Li Q, Luo J, et al. Mixed lineage kinase 
domain-like is a key receptor interacting protein 3 downstream component  
of TNF-induced necrosis. Proc Natl Acad Sci U S A (2012) 109(14):1–6. 
doi:10.1073/pnas.1200012109 

35. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, et al. Chemical 
inhibitor of nonapoptotic cell death with therapeutic potential for ischemic 
brain injury. Nat Chem Biol (2005) 1(2):112–9. doi:10.1038/nchembio711 

36. Prates DB, Araujo-Santos T, Luz NF, Andrade BB, Franca-Costa J, Afonso L,  
et  al. Lutzomyia longipalpis saliva drives apoptosis and enhances parasite 
burden in neutrophils. J Leukoc Biol (2011) 90(3):575–82. doi:10.1189/
jlb.0211105 

37. Silke J, Rickard JA, Gerlic M. The diverse role of RIP kinases in necroptosis 
and inflammation. Nat Immunol (2015) 16(7):689–97. doi:10.1038/ni.3206 

38. Thapa RJ, Nogusa S, Chen P, Maki JL, Lerro A, Andrake M, et al. Interferon-
induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by 
FADD and caspases. Proc Natl Acad Sci U S A (2013) 110(33):E3109–18.  
doi:10.1073/pnas.1301218110 

39. Karch J, Kanisicak O, Brody MJ, Sargent MA, Michael DM, Molkentin JD. 
Necroptosis interfaces with MOMP and the MPTP in mediating cell death. 
PLoS One (2015) 10(6):e0130520. doi:10.1371/journal.pone.0130520 

40. Sangiuliano B, Pérez NM, Moreira DF, Belizário JE. Cell death-associated 
molecular-pattern molecules: inflammatory signaling and control. Mediators 
Inflamm (2014) 2014:821043. doi:10.1155/2014/821043 

41. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. Molecular mech-
anisms of necroptosis: an ordered cellular explosion. Nat Publ Group (2010) 
11(10):700–15. doi:10.1038/nrm2970 

42. Zhang Y, Han J. Electrophysiologist shows a cation channel function of.  
Nat Publ Group (2016) 26(6):643–4. doi:10.1038/cr.2016.64 

43. Ribeiro-gomes FL, Otero AC, Gomes NA, Moniz-de-souza MCA, Cysne-
finkelstein L, Arnholdt AC, et al. Macrophage interactions with neutrophils 
regulate Leishmania major infection. J Immunol (2017) 172(7):4454–62. 
doi:10.4049/jimmunol.172.7.4454 

44. Araújo-Santos T, Andrade BB, Gil-Santana L, Luz NF, dos Santos PL,  
de Oliveira FA, et al. Anti-parasite therapy drives changes in human visceral 
leishmaniasis-associated inflammatory balance. Sci Rep (2017) 7(1):4334. 
doi:10.1038/s41598-017-04595-8 

45. Fox S, Leitch AE, Duffin R, Haslett C, Rossi AG. Neutrophil apoptosis: 
relevance to the innate immune response and inflammatory disease. J Innate 
Immun (2010) 2(3):216–27. doi:10.1159/000284367 

46. Guimarães-Costa AB, DeSouza-Vieira TS, Paletta-Silva R, Freitas-Mesquita AL,  
Meyer-Fernandes JR, Saraiva EM. 3’-nucleotidase/nuclease activity allows 
Leishmania parasites to escape killing by neutrophil extracellular traps. Infect 
Immun (2014) 82(4):1732–40. doi:10.1128/IAI.01232-13 

47. Hurrell BP, Schuster S, Grün E, Coutaz M, Williams RA, Held W, et al. Rapid 
sequestration of Leishmania mexicana by neutrophils contributes to the devel-
opment of chronic lesion. PLoS Pathog (2015) 11(5):e1004929. doi:10.1371/
journal.ppat.1004929 

48. Falcão SAC, Weinkopff T, Hurrell BP, Celes FS, Curvelo RP, Prates DB, et al. 
Exposure to Leishmania braziliensis triggers neutrophil activation and apop-
tosis. PLoS Negl Trop Dis (2015) 9(3):e0003601. doi:10.1371/journal.pntd. 
0003601 

49. Quintela-Carvalho G, Farias Luz N, Celes F, Zanette D, Andrade D, Menezes D,  
et al. Heme drives oxidative stress-associated cell death in human neutrophils 
infected with Leishmania infantum. Front Immunol (2017) 8:1620. doi:10.3389/
fimmu.2017.01620 

50. Mihalache CC, Yousefi S, Conus S, Villiger PM, Schneider EM. Inflammation-
associated autophagy-related programmed necrotic death of human neutro-
phils characterized by organelle fusion events. J Immunol (2011) 186(11): 
6532–42. doi:10.4049/jimmunol.1004055 

51. Wang X, He Z, Liu H, Yousefi S, Simon H. Neutrophil necroptosis is triggered 
by ligation of adhesion molecules following GM-CSF priming. J Immunol 
(2016) 197(10):4090–100. doi:10.4049/jimmunol.1600051 

52. Weng D, Marty-Roix R, Ganesan S, Proulx MK, Vladimer GI, Kaiser WJ, 
et  al. Caspase-8 and RIP kinases regulate bacteria-induced innate immune 
responses and cell death. Proc Natl Acad Sci U S A (2014) 111(20):7391–6. 
doi:10.1073/pnas.1403477111 

53. Belizário J, Vieira-Cordeiro L, Enns S. Necroptotic cell death signaling and 
execution pathway: lessons from knockout mice. Mediators Inflamm (2015) 
2015:128076. doi:10.1155/2015/128076

54. Moreno-Gonzalez G, Vandenabeele P, Krysko DV. Necroptosis: a novel cell 
death modality and its potential relevance for critical care medicine. Am 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive
https://doi.org/10.3389/fimmu.2016.00517
https://doi.org/10.1093/infdis/
jiw394
https://doi.org/10.1093/infdis/
jiw394
https://doi.org/10.1016/j.molcel.2017.02.024
https://doi.org/10.1038/nature14191
https://doi.org/10.1016/j.cell.2011.12.020
https://doi.org/10.1038/nchembio.83
https://doi.org/10.1007/s00018-016-2191-4
https://doi.org/10.1016/j.cell.2009.05.021
https://doi.org/10.1074/jbc.M305633200
https://doi.org/10.1016/j.cell.2009.05.037
https://doi.org/10.1016/j.cell.2016.11.047
https://doi.org/10.1146/annurev-immunol-032414-112248
https://doi.org/10.1146/annurev-immunol-032414-112248
https://doi.org/10.1038/nri.2016.147
https://doi.org/10.1038/nri.2016.147
https://doi.org/10.1016/
j.virol.2015.03.016
https://doi.org/10.1016/
j.virol.2015.03.016
https://doi.org/10.1101/gad.223321.113
https://doi.org/10.3389/fmolb.2014.00017
https://doi.org/10.4049/jimmunol.1502492
https://doi.org/10.1016/j.pharep.2015.04.002
https://doi.org/10.1016/j.fob.2014.08.007
https://doi.org/10.4049/jimmunol.1103072
https://doi.org/10.1016/
j.tcb.2017.05.007
https://doi.org/10.1016/
j.tcb.2017.05.007
https://doi.org/10.1016/j.cell.2011.11.031
https://doi.org/10.1073/pnas.1200012109
https://doi.org/10.1038/nchembio711
https://doi.org/10.1189/jlb.0211105
https://doi.org/10.1189/jlb.0211105
https://doi.org/10.1038/ni.3206
https://doi.org/10.1073/pnas.1301218110
https://doi.org/10.1371/journal.pone.0130520
https://doi.org/10.1155/2014/821043
https://doi.org/10.1038/nrm2970
https://doi.org/10.1038/cr.2016.64
https://doi.org/10.4049/jimmunol.172.7.4454
https://doi.org/10.1038/s41598-017-04595-8
https://doi.org/10.1159/000284367
https://doi.org/10.1128/IAI.01232-13
https://doi.org/10.1371/journal.ppat.1004929
https://doi.org/10.1371/journal.ppat.1004929
https://doi.org/10.1371/journal.pntd.
0003601
https://doi.org/10.1371/journal.pntd.
0003601
https://doi.org/10.3389/fimmu.2017.01620
https://doi.org/10.3389/fimmu.2017.01620
https://doi.org/10.4049/jimmunol.1004055
https://doi.org/10.4049/jimmunol.1600051
https://doi.org/10.1073/pnas.1403477111
https://doi.org/10.1155/2015/128076


10

Barbosa et al. Necroptosis, Neutrophils, and L. infantum Infection

Frontiers in Immunology | www.frontiersin.org August 2018 | Volume 9 | Article 1818

J Respir Crit Care Med (2016) 194(4):415–28. doi:10.1164/rccm.201510- 
2106CI 

55. Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam 
D, et  al. Essential versus accessory aspects of cell death: recommendations 
of the NCCD 2015. Cell Death Differ (2015) 22(1):58–73. doi:10.1038/
cdd.2014.137 

56. Marsden VS, Connor LO, Reilly LAO, Silke J, Metcalf D, Ekert PG, et  al. 
Apoptosis initiated by Bcl-2-regulated caspase activation independently of  
the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature (2002) 419:6–9. 
doi:10.1038/nature01101 

57. McComb S, Shutinoski B, Thurston S, Cessford E, Kumar K, Sad S. Cathepsins 
limit macrophage necroptosis through cleavage of rip1 kinase. J Immunol 
(2014) 192(12):5671–8. doi:10.4049/jimmunol.1303380 

58. Ni HM, McGill MR, Chao X, Woolbright BL, Jaeschke H, Ding WX. Caspase 
inhibition prevents tumor necrosis factor-α–induced apoptosis and promotes 
necrotic cell death in mouse hepatocytes in  vivo and in  vitro. Am J Pathol 
(2016) 186(10):2623–36. doi:10.1016/j.ajpath.2016.06.009 

59. Silva EM, Guillermo LVC, Ribeiro-Gomes FL, De Meis J, Nunes MP, Senra JFV,  
et  al. Caspase inhibition reduces lymphocyte apoptosis and improves host 
immune responses toTrypanosoma cruzi infection. Eur J Immunol (2007) 
37(3):738–46. doi:10.1002/eji.200636790 

60. van den Berg E, Bal SM, Kuipers MT, Matute-Bello G, Lutter R, Bos AP, 
et al. The caspase inhibitor zVAD increases lung inflammation in pneumo-
virus infection in mice. Physiol Rep (2015) 3(3):1–12. doi:10.14814/phy2. 
12332 

61. Van Noorden CJF. Editorial the history of Z-VAD-FMK, a tool for under-
standing the significance of caspase inhibition. Acta Histochem (2001) 251: 
241–51. doi:10.1078/0065-1281-00601 

62. Wu YT, Tan HL, Huang Q, Kim YS, Pan N, Ong WY, et al. Autophagy plays 
a protective role during zVAD-induced necrotic cell death. Autophagy (2008) 
4(4):457–66. doi:10.4161/auto.5662 

63. Challa S, Chan FKM. Going up in flames: necrotic cell injury and inflam-
matory diseases. Cell Mol Life Sci (2010) 67(19):3241–53. doi:10.1007/
s00018-010-0413-8 

64. Carneiro PP, Conceição J, Macedo M, Magalhães V, Carvalho EM, Bacellar O. 
The role of nitric oxide and reactive oxygen species in the killing of Leishmania 
braziliensis by monocytes from patients with cutaneous leishmaniasis.  
PLoS One (2016) 11(2):e0148084. doi:10.1371/journal.pone.0148084 

65. Channon JY, Roberts MB, Blackwell JM. A study of the differential respira-
tory burst activity elicited by promastigotes and amastigotes of Leishmania 
donovani in murine resident peritoneal macrophages. Immunology (1984) 
53(2):345–55. 

66. Brüne B, Dehne N, Grossmann N, Jung M, Namgaladze D, Schmid T, et al. 
Redox control of inflammation in macrophages. Antioxid Redox Signal  
(2013) 19(6):595–637. doi:10.1089/ars.2012.4785 

67. Gantt KR, Goldman TL, Mccormick ML, Miller MA, Jeronimo SMB, Eliana T,  
et  al. Oxidative responses of human and murine macrophages during 
phagocytosis of Leishmania chagasi. J Immunol (2017) 167(2):893–901.  
doi:10.4049/jimmunol.167.2.893 

68. Jiao Y, Li Z, Loughran PA, Fan EK, Scott MJ, Li Y, et al. Frontline science: 
macrophage-derived exosomes promote neutrophil necroptosis following 
hemorrhagic shock. J  Leukoc Biol (2017) 103(2):175–83. doi:10.1189/
jlb.3HI0517-173R 

69. Qing DY, Conegliano D, Shashaty MGS, Seo J, Reilly JP, Worthen GS, et al. 
Red blood cells induce necroptosis of lung endothelial cells and increase 
susceptibility to lung inflammation. Am J Respir Crit Care Med (2014) 
190(11):1243–54. doi:10.1164/rccm.201406-1095OC 

70. Najjar M, Saleh D, Zelic M, Nogusa S, Shah S, Tai A, et al. RIPK1 and RIPK3 
kinases promote cell-death-independent inflammation by toll-like receptor 4. 
Immunity (2016) 45(1):46–59. doi:10.1016/j.immuni.2016.06.007

71. Sachet M, Yu Y, Oehler R. The immune response to secondary necrotic cells. 
Apoptosis (2017) 22(10):1189–204. doi:10.1007/s10495-017-1413-z 

72. Mandal P, Berger SB, Pillay S, Moriwaki K, Huang C, Guo H, et  al. RIP3 
induces apoptosis independent of pronecrotic kinase activity. Mol Cell (2014) 
56(4):481–95. doi:10.1016/j.molcel.2014.10.021 

73. Remijsen Q, Goossens V, Grootjans S, Haute C, Van Den Vanlangenakker N, 
Dondelinger Y, et al. Depletion of RIPK3 or MLKL blocks TNF-driven necro-
ptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis.  
Cell Death Dis (2014) 5(1):e1004–8. doi:10.1038/cddis.2013.531 

74. Wang H, Sun L, Su L, Rizo J, Liu L, Wang LF, et  al. Mixed lineage kinase 
domain-like protein MLKL causes necrotic membrane disruption upon 
phosphorylation by RIP3. Mol Cell (2014) 54(1):133–46. doi:10.1016/j.
molcel.2014.03.003 

75. Xia B, Fang S, Chen X, Hu H, Chen P, Wang H, et al. MLKL forms cation 
channels. Nat Publ Group (2016) 26(5):517–28. doi:10.1038/cr.2016.26

Conflict of Interest Statement: The authors declare that they do not have a  
commercial association that might pose a conflict of interest.

The handling Editor declared a shared affiliation, though no other collaboration, 
with one of the authors MB.

Copyright © 2018 Barbosa, Fiuza, Borges, Rolim, Andrade, Luz, Quintela-Carvalho, 
Lima, Almeida, Chan, Bozza, Borges and Prates. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License (CC BY).  
The use, distribution or reproduction in other forums is permitted, provided the 
original author(s) and the copyright owner(s) are credited and that the original 
publication in this journal is cited, in accordance with accepted academic practice. 
No use, distribution or reproduction is permitted which does not comply with 
these terms.

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive
https://doi.org/10.1164/rccm.201510-
2106CI
https://doi.org/10.1164/rccm.201510-
2106CI
https://doi.org/10.1038/cdd.2014.137
https://doi.org/10.1038/cdd.2014.137
https://doi.org/10.1038/nature01101
https://doi.org/10.4049/jimmunol.1303380
https://doi.org/10.1016/j.ajpath.2016.06.009
https://doi.org/10.1002/eji.200636790
https://doi.org/10.14814/phy2.
12332
https://doi.org/10.14814/phy2.
12332
https://doi.org/10.1078/0065-1281-00601
https://doi.org/10.4161/auto.5662
https://doi.org/10.1007/s00018-010-0413-8
https://doi.org/10.1007/s00018-010-0413-8
https://doi.org/10.1371/journal.pone.0148084
https://doi.org/10.1089/ars.2012.4785
https://doi.org/10.4049/jimmunol.167.2.893
https://doi.org/10.1189/jlb.3HI0517-173R
https://doi.org/10.1189/jlb.3HI0517-173R
https://doi.org/10.1164/rccm.201406-1095OC
https://doi.org/10.1016/j.immuni.2016.06.007
https://doi.org/10.1007/s10495-017-1413-z
https://doi.org/10.1016/j.molcel.2014.10.021
https://doi.org/10.1038/cddis.2013.531
https://doi.org/10.1016/j.molcel.2014.03.003
https://doi.org/10.1016/j.molcel.2014.03.003
https://doi.org/10.1038/cr.2016.26
https://creativecommons.org/licenses/by/4.0/

	RIPK1–RIPK3–MLKL-Associated Necroptosis Drives Leishmania infantum Killing in Neutrophils
	Introduction
	Results
	Circulating Levels of Lactate Dehydrogenase (LDH) Are 
Augmented in Patients With VL
	Caspase-8 Inhibition Induces Damage 
in Human Neutrophils Infected 
by L. infantum
	Human Neutrophils Control L. infantum Viability in an MLKL-Dependent Manner
	Necroptosis Reduces L. infantum Viability in Murine Neutrophils
	RIPK1 and RIPK3 Inhibition Abrogates 
L. infantum Killing Induced by Necroptosis

	Materials and Methods
	Ethics Statement
	Parasites Culture
	Mouse and Human Neutrophil Cultures
	Necroptosis and Leishmania Infection Assays
	LDH Quantification
	RIPK3 ELISA Assay
	Western Blot
	Measurement of Intracellular ROS Production
	Transmission Electron Microscopy
	Statistical Analyses

	Discussion
	Ethics Statement
	Author Contributions
	Acknowledgments
	Funding
	Supplementary Material
	References


