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ABSTRACT Five bis-arylimidamides were assayed as anti-Trypanosoma cruzi agents
by in vitro, in silico, and in vivo approaches. None were considered to be pan-assay
interference compounds. They had a favorable pharmacokinetic landscape and were
active against trypomastigotes and intracellular forms, and in combination with ben-
znidazole, they gave no interaction. The most selective agent (28SMB032) tested
in vivo led to a 40% reduction in parasitemia (0.1 mg/kg of body weight/5 days in-
traperitoneally) but without mortality protection. In silico target fishing suggested
DNA as the main target, but ultrastructural data did not match.
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According to the World Health Organization (1), more than 6 million people world-
wide are infected with Trypanosoma cruzi, the etiological agent of Chagas disease

(CD), and less than 1% are treated with the current available drugs, nifurtimox and
benznidazole (Bz), which exhibit several limitations, including low efficacy at the later
disease stage and toxic events (2, 3). There is an urgent need to develop alternatives for
the treatment of this silent and progressive neglected agent of disease. Aromatic
diamidines have antitumor and broad-spectrum antimicrobial activities, and some of
their analogues, such as arylimidamides (AIAs), have greater potency and selectivity
against intracellular parasites (4). Thus, our aim was to evaluate the biological effects of
five novel bis-AIAs (Table 1) against T. cruzi by integrating in vitro, in silico, and in vivo
tools. 2EVK008, 36DAP015, 27SMB078, 28SMB032, and 31DAP069 were synthesized (see
Fig. S1 in the supplemental material) as reported previously (5–8), and experimental
details are provided in the supplemental material.

The first evaluation of bloodstream trypomastigotes (BTs) from the Y strain (discrete
typing unit II [DTU II]) showed that 4 out of 5 compounds are more active than Bz after
24 h of incubation. 2EVK008, 31DAP069, and 36DAP015 also are “fast killers” (with a
50% effective concentration [EC50] of �10 �M after 2 h of incubation), displaying high
potency (Table 1). The activity against intracellular forms (e.g., the Tulahuen strain [DTU
VI], which expresses the Escherichia coli �-galactosidase [�-Gal] gene) demonstrated
that 2EVK008, 28SMB032, 36DAP015, and 31DAP069 have EC50s lower than that of Bz
(Table 1). 31DAP069 and 36DAP015 exhibit considerable mammalian host cell toxicity
(with a 50% lethal concentration [LC50] ranging between 9 and 12 �M against mouse
L929 fibroblasts), while 28SMB032 is less toxic according to alamarBlue assays (9) and
exhibits high selectivity indexes (SIs) of �54 and 285 for BT and intracellular forms,
respectively. The trypanocidal effect of 28SMB032 was confirmed toward different
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parasite forms and strains. It is as active (EC50, 1.59 �M; SI � 200) as Bz in cardiac cell
cultures infected with the Y strain, and the Giemsa readout by light microscopy showed
a trypanocidal effect rather than a trypanostatic effect, important to avoid parasite
relapses (Fig. 1 and Table 1) (10, 11). The AIA combination with Bz assessed using a
fixed-ratio method (12) gave a mean sum of fractional inhibitory concentration indexes
(x�FICI) of 0.95, conferring a status of no interaction (Table S1).

In silico adsorption, distribution, metabolism, excretion, and toxicity (ADMET) anal-
ysis and analysis with pan-assay interference compounds (PAINS) were done under
different Web services: those of admetSAR (http://lmmd.ecust.edu.cn:8000), ACD/I-Lab,
Pred-hERG (http://labmol.com.br/predherg/), PROTOX (http://tox.charite.de/tox/), and
False Positive Remover (13–21). All compounds were predicted to be noncarcinogenic,
nongenotoxic, non-human-ERG (hERG) blockers, and noninhibitors of most cyto-
chrome P450 isoforms, besides having acceptable rodent toxicity by the oral route,
moderate human intestinal absorption, and a favorable volume of distribution (Table
S2). None contain PAINS substructures, and consequently, there is little probability that
their biological activities are artifacts; they thus have a low probability of binding/
inhibiting nonspecific targets (22).

For in silico prediction, a pool of potential targets in T. cruzi was generated. First, all
three-dimensional (3D) structures available in the Protein Data Bank (PDB; http://www
.rcsb.org/pdb/) with cocrystallized ligands were selected. Then, a bibliographic search
with similar bioisosteric characteristics of the studied amidines was performed. Based
on the concept that similar ligands bind to similar targets, three targets involved in the
metabolism of putrescine or spermidine (23) and four known targets of pentamidine
and analogues were identified. Homology models were built for trypanothione syn-
thetase, POT1.1, POT1.2, and aquaporin (Fig. S2; Table S3). They were validated statis-
tically using PROCHECK analysis (Fig. S3) (24). The overall stereochemical properties of
the generated models are highly reliable and useful for a prospective target-fishing
study. The final target pool is summarized in Table S4 and consisted of 30 potential
targets, including enzymes and regulatory proteins. Molecular docking studies (Table 2)
showed by the GlideScore energies the AIAs’ high affinity to DNA, with energies
ranging between �12.08 and �9.62 kcal/mol, which is next to that of pentamidine
(�11.17 kcal/mol), a well-known DNA binder. Following in sequence of binding energy
values were farnesyltransferase (PFT), spermidine synthase (SdpS), sterol 14-alpha
demethylase (CYP51), and UDP-galactopyranose mutase (UGM). To explore earlier
cellular insults induced by the AIAs, ultrastructural analysis was done on BT forms
exposed for 2 h (using the EC50 from 24 h) with the best fast killers, 31DAP069 and

FIG 1 (A) In vitro activities (EC50s) and selectivity indices (SI) of 28SMB032 (A and C) and benznidazole (A and D) against
intracellular forms of T. cruzi and the respective LC50 upon primary cardiac cell (CC) cultures. (B to D) Light microscopy images
of CC cultures infected with T. cruzi (Y strain) untreated (B) or exposed to 1.25 �M of 28SMB032 (C) and benznidazole (D).
Original magnification, �215. Values in parentheses are standard errors of the means for 95% confidence intervals.
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36DAP015, besides the most selective agent, 28SMB032. Scanning electron microscopy
showed that 31DAP069 and 36DAP015 did not induce morphological modifications
(Fig. 2B and C). Although most BTs exposed to 28SMB032 exhibited a profile similar to
that of untreated ones (Fig. 2A1 and A2), some morphological alterations included
shortening (Fig. 2D1 and D4) and twisting (Fig. 2D2 and D3) of the parasite bodies.
Transmission electron microscopy (TEM) revealed that untreated parasites presented
characteristic morphology (Fig. 3A1 and A2). BTs exposed to amidines exhibited similar
cellular alterations regardless of the in vitro potency (EC50s), including distension of the
flagellar pocket, plasmatic and nuclear membrane dilation, distortions of the Golgi
apparatus, the presence of concentric membranes and myelin figures, a large number
of intracellular vesicles, and an altered profile of the endoplasmic reticulum surround-
ing cytoplasmic components (Fig. 3B1 to D8), suggestive of an autophagy phenotype
that deserves further analysis.

Literature data demonstrate that classical amidines, such as pentamidine (25) and
some analogues (26), strongly interact with DNA in a binding mode very similar to
those of hydrophobic methylene groups and with rings tightly bound to the minor
groove. Additionally, findings revealed that although some of the most active AIAs
were not good DNA binders, some AIAs strongly altered DNA topology, impairing
functionality (27). Even the fast and potent AIAs did not induce ultrastructural altera-
tions of the DNA, and it may be possible that TEM is not sensitive enough for detecting
minor topology alterations detected in silico and/or that there is a lack of translation
among in silico and whole-cell-based assays. In order to deeply explore the binding
mode and effect, thermodynamic studies are needed. Plus, the observed in vitro activity
can involve other predicted targets, such as UGM, CYP51, PFT, and SdpS, related to
T. cruzi fitness and pathogenesis; some of their inhibitors, such as the CYP51 inhibitors

TABLE 2 Docking score results of amidines with T. cruzi targets

Target candidate

EC50 (�M)a against bloodstream trypomastigotes (24 h at 37°C) with the ligand:

2EVK008 at
1.21 kcal/mol

27SMB078 at
0.46 kcal/mol

28SMB032 at
10.48 kcal/mol

31DAP069 at
0.88 kcal/mol

36DAP015 at
0.35 kcal/mol

DNA –11.21 –10.14 –9.62 –11.45 –12.80
UDP-galactopyranose mutase –8.27 –8.90 –4.38 –10.10 –7.15
Sterol 14-alpha demethylase –9.76 –8.21 –7.25 –9.16 –8.74
Farnesyltransferase –9.73 –7.66 –9.35 –8.51 –8.39
Spermidine synthase –8.83 –9.48 –9.50 –8.11 –6.39
Pteridine reductase 2 –7.45 –7.49 –5.98 –7.69 –7.08
Trypanothione reductase –6.91 –6.77 –5.51 –7.09 –8.21
Cruzain –6.12 –6.22 –5.16 –6.95 –6.58
Phosphodiesterase –7.06 –6.38 –5.29 –6.78 –7.20
POT1.1 –8.82 –6.28 –7.18 –6.50 –6.18
Acidocalcisomal pyrophosphatase –6.20 –6.45 –6.93 –6.45 –5.37
Prostaglandin F2a synthase –6.09 –5.69 –5.94 –6.27 –6.62
Farnesyl diphosphate synthase –4.77 –7.06 –4.24 –6.23 –5.73
Glucokinase –5.02 –7.63 –6.58 –6.23 –6.46
POT1.2 –5.47 –6.90 –6.57 –6.19 –6.27
Histidyl-tRNA synthetase –5.86 –6.43 –6.79 –6.18 –5.43
Dihydrofolate reductase-thymidylate synthase –6.47 –5.81 –7.94 –6.00 –6.74
Trans-sialidase –6.90 –5.70 –6.14 –5.73 –5.73
Hypoxanthine phosphoribosyltransferase –6.22 –5.57 –5.54 –5.68 –4.87
Trypanothione synthetase –4.70 –5.11 –5.16 –5.32 –4.22
Glucose-6-phosphate isomerase –3.66 –5.49 –5.02 –5.23 –4.11
Glyceraldehyde-3-phosphate dehydrogenase –6.08 –4.66 –4.78 –4.96 –5.06
Triosephosphate isomerase –5.93 –5.17 –5.44 –4.70 –4.13
Pyruvate kinase –4.41 –4.29 –4.06 –4.45 –2.93
Dihydroorotate dehydrogenase –4.64 –6.20 –4.67 –4.32 –4.21
Arginine kinase –5.06 –5.00 –5.05 –4.26 –5.36
Ribose 5-phosphate isomerase type B –3.93 –3.87 –4.50 –3.83 –3.25
Cyclophilin –5.36 –3.81 –5.97 –3.59 –4.32
Superoxide dismutase –4.54 –4.59 –5.83 –3.49 –4.53
Aquaporin –3.05 –3.98 –4.23 –3.45 –4.29
aBold values indicate the most probable targets according to score energies.
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recently assayed in clinical trials for the chronic stage of CD, are considered anti-T. cruzi
drug candidates (28), but again, their potency in preclinical studies did not translate
into clinical outcomes (29, 30).

Our findings corroborate previous studies related to the potent in vitro activities of

FIG 2 Scanning electron microscopy examination of T. cruzi bloodstream trypomastigotes (Y strain). (A) Control
with no compound exposure. Treatment with 0.88 �M 31DAP069 (B), 0.35 �M 36DAP015 (C), and 10.48 �M
28SMB032 (D) resulted in no morphological alteration for the parasites shown in panel B or C, but the parasites in
panels D1 to D4 exhibited body retraction, and those in panels D2 and D3 exhibited a twist of the parasite body.
Bars � 1 �m.
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AIAs against intracellular trypanosomatids meeting the expectations of a hit compound
(an EC50 of �10 �M and an SI of at least 10) (31) and having a favorable pharmaco-
kinetic profile. All of this background encouraged us to conduct in vivo assays.
28SMB032 was moved to an in vivo assay using a mouse (male Swiss Webster, 18 to 20
g) model of acute infection (104 BTs from the Y strain) under different compound
concentrations (10 to 0.1 mg/kg of body weight) diluted with two vehicles (0.5%

FIG 3 Ultrastructural effects of AIAs in T. cruzi bloodstream trypomastigotes (Y strain). (A1 and A2) Controls with no compound
exposure display the characteristic morphology. Treatment with 0.88 �M 31DAP069 (panels B), 0.35 �M 36DAP015 (panels C),
and 10.48 �M 28SMB032 (panels D) resulted in several insults, including dilatation of the flagellar pocket (black star in panels
B1, C4, and D6), concentric membranar structures and myelin figures in the cytosol (black arrows in panels B2, B3, C3, and D4),
disruption of the Golgi apparatus (asterisk in panels C1 and D7), an endoplasmic reticulum surrounding cytosolic structures
(arrowheads in panels C2 and D3), and detachment of the nuclear (short arrow in panel D8) and plasma (short arrow in panel
D6) membranes. No alterations were detected in subpellicular microtubules (thin arrows in panel D5) and on the parasite
kinetoplast DNA (kDNA) (double arrows in panels D1 and D2). G, Golgi cisternae; M, mitochondria; N, nuclei; F, flagellum.
Bars � 500 nm.
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carboxymethylcellulose and 10% dimethyl sulfoxide [DMSO]), given intraperitoneally
(i.p.) and orally (p.o.). Animals were handled ethically (CEUA Fiocruz protocol number
LW-16/14). Mice with confirmed parasitemia were treated (with single and combined
therapy) at the 5th and 8th days postinfection (p.i.), which in this experimental model
correspond to the times of parasitemia onset and peak, respectively (32). Regardless of
the vehicle, 0.1 mg/kg 28SMB032 given i.p. and p.o. did not reduce the mortality rates
induced by parasite infection. 28SMB032 alone (10 and 1 mg/kg, i.p., DMSO) or
combined with Bz (p.o.) showed a toxic profile, leading to �83% of the animals dying
less than 24 h after drug administration. Gross pathology showed a large amount of
yellow deposits of the AIA at the peritoneum as well as gastrointestinal bleeding and
signs of acute renal failure with kidney atrophy (data not shown). However, this AIA,
given as monotherapy at 0.1 mg/kg (i.p., with DMSO as the vehicle), led to a 40%
reduction of the parasite load at the peak (8 days p.i.). Although in vitro outcomes did
not fully translate in the experimental animal models, the molecule optimization may
reduce the toxicity issues of this class of compounds and contribute to alternative
treatments for CD.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/AAC
.02205-17.

SUPPLEMENTAL FILE 1, PDF file, 2.9 MB.
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