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Marie-France Sagot6,7, Ana Tereza R. de Vasconcelos2, Ana Cristina Gales8,  
Marcelo Marti3,4,5, Adrián G. Turjanski3,4,5 & Marisa F. Nicolás2

Klebsiella pneumoniae (Kp) is a globally disseminated opportunistic pathogen that can cause life-
threatening infections. It has been found as the culprit of many infection outbreaks in hospital 
environments, being particularly aggressive towards newborns and adults under intensive care. 
Many Kp strains produce extended-spectrum β-lactamases, enzymes that promote resistance 
against antibiotics used to fight these infections. The presence of other resistance determinants 
leading to multidrug-resistance also limit therapeutic options, and the use of ‘last-resort’ drugs, such 
as polymyxins, is not uncommon. The global emergence and spread of resistant strains underline 
the need for novel antimicrobials against Kp and related bacterial pathogens. To tackle this great 
challenge, we generated multiple layers of ‘omics’ data related to Kp and prioritized proteins that could 
serve as attractive targets for antimicrobial development. Genomics, transcriptomics, structuromic 
and metabolic information were integrated in order to prioritize candidate targets, and this data 
compendium is freely available as a web server. Twenty-nine proteins with desirable characteristics 
from a drug development perspective were shortlisted, which participate in important processes such as 
lipid synthesis, cofactor production, and core metabolism. Collectively, our results point towards novel 
targets for the control of Kp and related bacterial pathogens.

Antibiotic resistance in bacteria represents a global health concern. Every year, over 136,000 deaths are attrib-
utable to infections caused by these type of microorganisms in healthcare settings in the USA and Europe 
alone1. Drug resistance can be associated to a multitude of factors that comprise the misuse of antimicrobials; 
poor-quality medicines; and insufficient regulation on the prescription of drugs1, issues that are easy to identify 
but complex to resolve. As an installed phenomenon, besides the focus on improving regulation policies, efforts 
to tackle antibiotic-resistant pathogens should also turn to the discovery of new compounds. However, we cur-
rently face a low output antibiotic development pipeline that, coupled to the unattractive costs and the regulatory 
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challenges of developing and launching new drugs, led to many pharmaceutical companies exiting the field2. A 
major limitation of traditional high-throughput screening (HTS) approaches is that only a finite amount of chem-
icals in a limited number of conformations are available in any given HTS library. As this chemical space limita-
tion will hardly be overcome, novel approaches are needed to tackle the rising problem of bacterial resistance to 
current treatments. Our study provides a framework for which such novel strategies can be developed and further 
adapted to use. With sheer amounts of high-throughput genomic, structural and transcriptomic data from many 
important bacterial pathogens openly available in biological databases, an approach based on multidimensional 
data integration towards pinpointing new drug targets represents a more rapid and cost-effective strategy than 
traditional screening techniques. In line with this, previous efforts have been employed to in silico detect drug 
targets in the proteomes of clinically relevant bacteria such as Corynebacterium spp.3, Mycobacterium tubercu-
losis4–8, Streptococcus pneumoniae9, M. leprae10, Helicobacter pylori11, Clostridium botulinum12,13, Pseudomonas 
aeruginosa14, E. coli15 and other Enterobacteriaceae family members16, as well as Staphylococcus epidermidis17. 
Building upon some of these genome mining works, others have successfully set out to find inhibitors of targets 
of interest, such as those acting on S. aureus wall teichoic acid biogenesis components (for which the identified 
compounds potentiated the action of β-lactams)18, quorum-sensing components in P. aeruginosa19, and histidine 
kinases of Shigella flexneri20 and S. epidermidis21. While the application of computational techniques alone does 
not envisage a definitive identification of drug targets, it does permit shortlisting more plausible targets, effec-
tively reducing the search space to candidates with increased probability of serving as targets for either a new or 
a repositioned drug.

In this work, we concentrated our efforts towards target detection in the Klebsiella pneumoniae proteome. This 
non-motile, rod-shaped, Gram-negative enterobacterium occupies diverse ecological niches ranging from soil to 
water, but from a human health perspective, it represents one of the most important pathogenic bacteria22,23. K. 
pneumoniae is commonly reported as an etiologic agent of either community-acquired urinary tract infections 
or bacterial pneumonia. However, it can cause any type of infection in hospital settings, including outbreaks in 
newborns and adults under intensive care, which is likely associated with its ability to spread rapidly in the hos-
pital milieu.

Among the K. pneumoniae antimicrobial resistance repertoire, the production of carbapenemase is particu-
larly worrisome since it confers resistance to all beta-lactams. Infections caused by carbapenem-resistant K. pneu-
moniae represent a high burden of disease worldwide especially in countries like Argentina, Brazil, Colombia, 
Greece, Israel, and Italy, where KPC-2-producing K. pneumoniae are endemic. For example, according to the last 
report of the Brazilian Health Surveillance Agency, Klebsiella spp. was the most frequent microorganism causing 
3,805 (16.9%) catheter-related bloodstream infections in adult patients hospitalized at the Brazilian intensive 
care units in 201524. Nearly 43% of these isolates were resistant to both broad-spectrum cephalosporins and car-
bapenems24. In this way, polymyxins have become last resort antimicrobials for treatment of serious infections 
caused by KPC-2-producing K. pneumoniae. Unfortunately, to make things even worse, an important increase 
in the resistance rates to polymyxins has been observed among carbapenem-resistant K. pneumoniae. Braun and 
collaborators have observed an increase in polymyxin B resistance rates from 0 to 30.6% among  K. pneumoniae 
isolates recovered from blood cultures between 2009 and 2015 in a tertiary Brazilian hospital25. Similar results 
have been reported by Bartolleti et al.26. Because of this, the search for new strategies to counter these infections 
is ongoing, and include the use of novel approaches such as nanoparticles in combination with antibiotics27, as 
well as immunotherapy based on monoclonal antibodies targeted towards components of the bacterial outer 
polysaccharide capsule28.

In here, we report the application of a multidimensional data integration strategy in order to prioritize drug 
targets in K. pneumoniae. By combining various layers of information into a multi-omics approach, which 
included genomic, transcriptomic, metabolic and protein structural data sources, we were able to delineate 
candidate proteins with features that are relevant to target selection in K. pneumoniae and related pathogens. 
Particularly, we incorporated information about polymyxin resistance in our analyses, in order to enrich for tar-
gets that would also be useful against the so-called ‘superbugs’.

Methods
Bacterial strain and annotations.  Klebsiella pneumoniae Kp13 (referred to as Kp13 throughout the text) 
was first isolated by our group during a nosocomial outbreak in an intensive care unit that occurred in 2009 in 
South Brazil. This strain is resistant to many antibiotics, including polymyxin B. We have previously reported 
minimum inhibitory concentrations (MICs) for Kp13 against several antibiotics29. In addition, Kp13 is a carbap-
enemase producer, harbouring the gene coding for KPC-2 in plasmid pKp13d30. Our group has determined its 
complete genome, which comprises one 5.3 Mbp circular chromosome and six plasmids (totalling 0.43 Mbp), and 
we have manually annotated its predicted coding sequences (CDS), composed of 5,736 predicted peptides30. All 
annotations and sequences for this bacterium are available at the BioProject/NCBI (https://www.ncbi.nlm.nih.
gov/bioproject/) under accession no. PRJNA78291. Subcellular localization was predicted for each protein using 
PSORTb v3.0.2 running in Bacterial, Gram-negative mode31.

Generation of structural homology-based models.  394 unique crystal structures for K. pneumoniae 
proteins were retrieved from the Protein Data Bank (PDB)32. For all remaining predicted peptide sequences, we 
tried to build homology-based models using our previously developed structural genomic pipeline33. Protein 
sequences were used as input for PSI-BLAST searches (parameters -j 3 -e 1e-05)34 against the UniRef50 (UniProt 
trimmed at 50% redundancy)35. Once a position-specific scoring matrix (PSSM) was obtained, this PSSM was 
used to search against the PDB95 (non-redundant PDB at 95% level) using PSI-BLAST (parameter -e 1e-05). Up 
to five recovered PDB models were used as templates for the homology-based reconstruction, and MODELLER36 
was employed to construct five models per template for each Kp13 protein. One representative model was chosen 
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based on the GA341 score (>0.7) and maximization of the QMEAN Z-score function37. With this strategy, we 
were able to build a total of 3,194 structural models for K. pneumoniae Kp13 sequences.

Classification of K. pneumoniae Kp13 proteins according to their druggability.  The druggability 
concept describes the capacity of a peptide to bind to a drug, leading to protein modulation in a desired manner, 
such as inhibition in the case of antibiotic drugs. Part of our group has developed a methodology for druggability 
prediction33 based on the open source pocket detection algorithm fpocket38, which combines several physico-
chemical descriptors to estimate the pocket druggability and can be used on a large, genomic scale3. Based on 
previous analysis of druggability score (DS) distribution for all pockets that are found to host a drug-like com-
pound in the PDB, pockets were classified into four categories: non-druggable (0.0 ≤ DS < 0.2), poorly druggable 
(0.2 ≤ DS < 0.5), druggable (0.5 ≤ DS < 0.7) and highly druggable (0.7 ≤ DS ≤ 1.0). All proteins for which we 
obtained structural models were subject to this classification (refer to http://target.sbg.qb.fiocen.uba.ar/patho/
user/methodology for further details).

Construction of the whole-genome metabolic network of K. pneumoniae Kp13.  To build the 
metabolic network of Kp13 (referred as Kp13-MN), we used the PathoLogic module of Pathway Tools v. 18.039. 
This tool accepts an annotated genome in Genbank format as input and creates a Pathway/Genome Database 
(PGDB) containing the predicted metabolic pathways of a given organism. Metabolic reconstruction included 
determining gene-protein-reaction associations, which are primarily based on the corresponding enzyme com-
mission (EC) number. Annotation of metabolic enzymes was performed manually during the genomic anno-
tation of Kp13 strain, described elsewhere30, and this annotation was complemented using PRIAM40. After 
automatic reconstruction, a detailed manual curation of the metabolic network was performed, which comprised 
the following steps: 1) inclusion of missing pathways with biological evidence for their presence; 2) removal 
of false positively predicted pathways; and 3) filling of enzymatic ‘holes’ in predicted but incomplete pathways 
assisted by the Pathway Hole Filler module within Pathway Tools. After the construction and curation processes, 
the metabolic network was exported in systems biology markup language (SBML) format for downstream anal-
yses. Reactions involving macromolecules (such as DNA, RNA, and proteins, as per the BioCyc ontology) were 
filtered, as were transporter proteins, and only reactions involved in small-molecules metabolism were consid-
ered. The rationale for this strategy was that since most of the current antibiotics target macromolecules (such as 
proteins, ribosomes, lipids), the focus on enzymatic activities not related to these molecules would comprehend 
a largely unexplored universe suitable for the discovery of novel targets. With these premises, only 110 unique 
genes were left out of the analyses, being therefore of little impact considering the total metabolic and genomic 
space that was effectively included in our analyses.

Metabolic network analysis.  After exporting the Kp13-MN reconstruction, we calculated the frequency 
with which all compounds were involved in reactions using in-house Python scripts. Those that most frequently 
appeared as reaction participants were considered a potential currency compound (such as protons, water, ATP, 
NAD, NADH and other cofactors). After manual inspection, a total of 27 compounds were filtered out in order to 
avoid the creation of artificial links on the reaction graph41. Cytoscape v. 3.1.0 was then used for network visuali-
zation and calculation of topological metrics42. In this representation, nodes represent reactions and there exists 
an edge between two nodes if a product of a reaction is used as a substrate on the reaction that follows. Analysis 
of choke-points (reactions that uniquely consume or produce a given substrate or product, respectively)43 was 
conducted in order to identify potential drug targets from the metabolic perspective. Choke-point blockade may 
lead to the accumulation of a potentially toxic metabolite in the cell or the lack of production of an essential 
compound; thus, choke-point reactions have great significance in drug targeting. Betweenness centrality (BC) 
was also calculated for each node in Kp13-MN, and this topological metric was also used for prioritization of 
metabolic functions within the network. High values of BC for a reaction node indicate its participation as an 
important communication path, bridging different metabolic parts. For a given node v in Kp13-MN, BC(v) was 
calculated as

∑=
≠ ≠ ∈ −

v Qst v
Qst

BC( ) ( ) ,
s v t Kp13 MN

where Qst is the number of shortest paths between nodes s and t in the network and Qst(v) is the number of short-
est paths between nodes s and t using node v as intermediate.

Essentiality criteria.  To consider whether a gene was essential, we used a recently available large-scale study 
identifying essential growth genes in K. pneumoniae described by Ramage et al.44. Furthermore, we also ana-
lyzed an experimentally validated in silico genome-scale metabolic reconstruction available for K. pneumoniae 
MGH 78578 described by Liao et al.45. This work predicted 118 essential genes for this strain based on in silico 
knock-outs. Bi-directional Best Hit (BBH) criterium was used to map MGH 78578 genes onto the Kp13 genome. 
Based on these data sources, we assigned a given gene as essential if it was reported as such either in the Ramage 
et al. or the Liao et al. data.

Non-host homologous proteins analysis and microbiome conservation.  The Kp13 proteome 
was used as query in BLASTp against the predicted human proteome (from version GRCh38.p10) to identify 
non-host homologous targets. Hits with E-value smaller than 10−5 were conserved. For further target prioritiza-
tion, hits with identity ≥40% with a human protein were filtered out, as they could share a high degree of struc-
tural conservation that could lead to cross-interference if the bacterial protein was used as a target. A number 
of organisms are known to inhabit the healthy individual’s gut. Inadvertent inhibition of proteins of the normal 
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flora is also likely to result in adverse effects. In order to mitigate this possibility, Kp13 proteins were compared 
to the proteins of the gut flora sequenced by the Human Microbiome Project46. The full list of 226 organisms is 
provided in Supplementary Table S1. For each sequence present in the Kp13 proteome, we analyzed the number 
of organisms that present at least one significant hit (E-value ≤10−5; identity ≥40%).

Analysis of genes conserved among pathogenic K. pneumoniae.  Mauve47 was used to search for 
groups of orthologs among different K. pneumoniae proteomes (with identity ≥60% and coverage ≥70%). The 
conservation of a protein in multiple K. pneumoniae genomes implies that a drug binding such target could be 
used to control multiple strains of this bacterium, including from different sequence types (STs), an important 
trait to consider given the heterogeneity of STs circulating in different regions of the world. Thus, while we used 
K. pneumoniae subsp. pneumoniae str. Kp13 as a reference organism, our results can be broadly expanded to K. 
pneumoniae bacteria disseminated in various geographical regions. The complete list and genome accessions for 
the organisms used are available in Supplementary Table S2.

Expression data of K. pneumoniae Kp13 under polymyxin B exposure.  We have previously deter-
mined the transcriptional response of K. pneumoniae Kp13 in view of various alterations in the culture medium 
and in the presence of polymyxin B (PB)48. In here, we used this data focusing only on the expression profile of 
the PB-resistant bacteria compared to the control condition. Briefly, Kp13 was grown in modified Muller-Hinton 
broth as control. In parallel, we have induced an increased, high-level resistance to this antibiotic by growing 
the bacteria in solid Luria-Bertani medium (LB, Oxoid, Basingstoke, England) in the presence of crescent pol-
ymyxin B (Sigma-Aldrich, St. Louis, MO, USA) concentrations and passaging the bacteria in serial dilutions of 
PB beginning with a concentration of 8 μg mL−1 up to 64 μg mL−1. Before and after the induction of resistance, 
PB MICs were confirmed by CLSI broth microdilutions. Total RNA was extracted from cultures using RNeasy 
Protect Bacteria (Qiagen, USA) as per manufacturer’s instructions. cDNA sequencing was performed by Fasteris 
(Genève, Switzerland) on a HiSeq 2000 instrument. Bioinformatics analyses included mapping of reads to the 
reference Kp13 genome using Bowtie (GenBank accession nos. CP003994.1-CP004000.1), counting of reads cor-
responding to gene features in the annotated genome using HT-Seq49. and evaluating differentially expressed 
genes using edgeR50. Expression of a gene in a given condition was considered if the mean count per million 
yielded more than five (cpm > 5). Gene up-regulation in exposure to PB was considered during target prior-
itization as the corresponding protein could be related to the response against this antibiotic (considered a ‘last 
resort’ drug). The basis for this rationale is that these overexpressed genes and their respective proteins would be 
potential candidates for the development of combination therapies, since the overexpressed proteins may play a 
role in antibiotic inactivation. As such, their targeting would produce a synergistic effect with the antibiotic itself.

Target prioritization pipeline.  All previously calculated data were integrated into Target-Pathogen (TP)51. 
TP is a platform developed by our group, which includes a database and web server for drug targets prioritization. 
Using this tool we obtained a ranked list of proteins with desirable features for drug targets. Firstly, we filtered 
out proteins with DS < 0.5 (non-druggable and poorly druggable proteins) and those that could cross-react with 
the human host (as per the above-stated criteria). Then, we defined three scoring functions as follows in order to 
assign a score to each protein in the Kp13 proteome. Equation (1) defines the importance of a protein as a target 
according to essentiality, conservation and metabolic context criteria, which we called ‘general targets’. Thus, for 
each protein we defined its score based on the following function:
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where the first term of the equation incorporates essentiality analysis as described, with Emgh and Ekpn assumed to 
be 1 if the protein has a hit with an essential gene (as defined in Section 2.6), otherwise these terms are zeroed. Cv
is the proportion of hits of the protein in different pathogenic Kp. Cy is the ratio between the node betweenness 
centrality of the associated reaction and the node with the highest centrality in Kp13-MN and chk defines if the 
protein is associated with a chokepoint reaction ( =chk 1, otherwise =chk 0). Equations (2) and (3) incorporate 
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where Pb is 1 if the protein is overexpressed in PB presence and GM is the number of gut microbiome organisms 
that have at least one homologous protein in Kp13 genome, normalized by the total number of analyzed organ-
isms. We have intentionally not set any a priori weights on each of the terms that compose the scoring functions 
in order to avoid incurring in possible representation biases, as we posited that all considered variables play an 
important role in defining a suitable target. A general schema of our target prioritization pipeline is shown in 
Fig. 1.
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Availability of materials and data.  All the data generated and integrated in this study, including protein 
structures, metabolic annotations, essentiality information and related meta-data is openly available at the Target 
Pathogen51 web server interface. The access URL is http://target.sbg.qb.fcen.uba.ar/patho/genome/Kp13.

Results and Discussion
Klebsiella pneumoniae protein structures are enriched for druggable pockets.  Our analysis 
began by classifying all obtained domain structures of K. pneumoniae Kp13 (which included those retrieved 
from PDB and our own generated homology-based models) according to their structural druggability. For this, 
we first grouped the structural domains into four categories. The first one includes proteins from the PDB which 
have been experimentally obtained bound to a drug-like compound or an inhibitor (we refer to these as the 
Experimentally-determined Structures With Drug [ESWD] group). The second category corresponds to those 
proteins which structure was experimentally determined without a binding drug (Experimentally-determined 
Structures Without Drug group [ESWOD]). The remaining two categories include modeled structures obtained 
with our homology pipeline. The Modeled With Drug group (MPWD) includes models where the used template 
was crystallized in the presence of an inhibitor or drug-like compound. The last one includes all modeled struc-
tures that bear no relation to any structure hosting a drug-like compound (Modeled Without Drug [MPWOD]). 
For all structures, we computed all the possible pockets and their corresponding druggability score (DS) using 
fpocket. According to their DS, we classified all the structures in each category into four druggability groups 
(Table 1) (see Methods for criteria). As expected, most of the K. pneumoniae available structures crystallized in 
the presence of a drug possess high DS. For comparison, we calculated the DS for all ligand-bound structures 
in PDB95, a non-redundant subset of PDB, revealing an enrichment of predicted druggable pockets in the Kp13 
models, as well as confirming that our method indeed produces results that are consistent in terms of detecting 
proteins able to host a drug-like compound (Fig. 2).
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Figure 1.  A general sketch of the prioritization pipeline. All outputs, steps, and summaries are available for 
download and customized analyses; see Availability of materials and data section.

ESWD ESWOD MPWD MPWOD Total

Non-druggable 1 27 10 30 68

Poorly druggable 14 36 57 71 178

Druggable 43 50 261 281 635

Highly druggable 115 134 874 1,190 2,313

Total 173 247 1,202 1,572 3,194

Table 1.  Klebsiella pneumoniae Kp13 proteins classified according to their druggability score. ESWD: 
Crystallized proteins with drugs; ESWOD: Crystallized proteins without drugs; MPWD: Proteins modeled with 
templates harboring a drug; MPWOD: Proteins modeled without drug.

http://target.sbg.qb.fcen.uba.ar/patho/genome/Kp13
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Reconstruction of the K. pneumoniae Kp13 metabolic network allows pathway contextualiza-
tion of prioritized protein targets.  We performed a whole-genome-based reconstruction of the Kp13 
metabolic network (Kp13-MN) using Pathway Tools algorithm and incorporating evidence from a previously 
curated K. pneumoniae metabolic network45, followed by manual inspection and curation of the resulting Kp13 
network. Once constructed, this network was analyzed from a graph-theoretic point of view as a reaction graph, 
allowing the calculation of topological metrics that relate to node importance. A total of 1,969 reactions compose 
the Kp13-MN, with 1,847 being enzyme-catalyzed and forming part of 321 predicted metabolic pathways. 1,523 
enzymes take part in these transformations. For comparison, the Escherichia coli K-12 substr. MG1655 meta-
bolic network (a highly curated reconstruction available within Pathway Tools) is composed by 1,564 enzymes 
assigned to 1,884 reactions that further group into 339 pathways. We also identified choke-points (CPs) in the 
Kp13-MN, i.e. reactions that uniquely consume (input CPs) or produce (output CPs) a given compound. A total 
of 145 reactions were strictly classified as input CPs, while 154 reactions were strictly output CPs. On the other 
hand, 149 reactions were classified as CPs on both producing and consuming sides of the reaction. Mapping 
these CPs reactions to proteins resulted in a total of 841 proteins. Since many CPs involve the transformation 
of indispensable compounds, they have been proposed as attractive drug targets43,52. We identified that while 
6% of the Kp13 proteome is composed by experimentally predicted essential proteins (from the projection of a 
large-scale transposon mutant library onto the Kp13 proteome)44, 34% of identified CPs are associated to essen-
tial proteins, a significant enrichment of almost six-fold (p-value ≤ 10−5, hypergeometric test) reinforcing the 
relevance of this parameter in our target prioritization strategy. The projection of Kp13-MN onto a reaction 
graph allowed the calculation of topological metrics. Particularly, betweenness centrality was used during our 
analyses. Figure 3 depicts the resultant Kp13-MN graph, with node sizes proportional to this metric. The presence 
of few high-centrality nodes indicates that these hubs may be of special importance to the cohesiveness of the 
network. We did not limit our analysis to solely filtering choke-point nodes or hubs identification. Rather, this 
information was incorporated into the scoring function that allowed ranking of the potential Kp13 targets within 
the proteome of this organism, which were then contextualized into metabolic subparts. The complete list of 
choke-points and centrality measures is also available within Target-Pathogen51, as well as the complete metabolic 
annotation of Kp13.

Incorporation of gene essentiality, pathogen conservation, and metabolic data into the pri-
oritization function allows identification of general targets against Kp.  After integration of the 
generated multi-omic datasets, we sought to score individual proteins according to their potential as target for the 
control of pathogenic Kp. For this, two a priori filters were applied: firstly, proteins with orthologs in the human 
genome were discarded in order to minimize the chances of cross-reactivity (and toxicity) of a drug with the host 
protein; the second filter discarded proteins for which we could not obtain a representative structural model that 
harbored at least one druggable pocket. By applying these filters we obtained 2,950 candidate druggable proteins 
with no close homologs in the human genome (Supplementary Fig. S1). Afterward, we further ranked these 
proteins by taking into account different empirical features that a protein should exhibit in order to serve as an 
attractive target. These include its presence in related pathogens (for which the degree of conservation ultimately 

Figure 2.  Histogram of the druggability score. All ligand-bound structures in the PDB (red line) and all the 
modeled structures of Kp13 (green line) are represented in the histogram. The scores were computed using the 
fpocket program for all pockets present in all unique proteins in the PDB, which were crystallized in complex 
with a drug-like compound. A Gaussian fit of the data made to define these sets was performed in Radusky et 
al.33. The sets are: non-druggable proteins (ND; DS < 0.2), poorly druggable (PD; 0.2 ≤ DS < 0.5), druggable (D; 
0.5 ≤ DS < 0.7), and highly druggable (HD; DS ≥ 0.7).
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leads to narrow- or broad-spectrum activities), its essentiality, and the contextualization of its function into one 
or many metabolic pathways. When comparing all Kp13 proteins against pathogenic Kp, conservation revolves 
mainly in chromosomally-encoded features (Supplementary Fig. S2), which represents the most stable genetic 
element, as plasmids can be gained/lost or undergo extensive rearrangements. Based on the gathered data, we 
considered these parameters in a scoring function (see equation (1)) that allowed a first ranking of Kp proteins, a 
set of candidates which we called ‘general targets’. The 15 highest-ranking proteins, along with their druggability 
features, are presented in Table 2. This analysis can also be replicated and customized through the web interface 
of Target-Pathogen (see URL and reference in Availability of materials and data section).

Among the shortlisted candidates, it is interesting to note metabolic pathway activities that are currently tar-
geted by antimicrobials, a positive indicator that the data generated and integrated using our methodology allows 
the recovery and contextualization of biologically relevant metrics that can be used as a proxy for enriching can-
didate proteins with desirable characteristics for the control of Kp. The pathways identified included fatty acids, 
lipopolysaccharide (LPS), peptidoglycan, pyrimidine deoxyribonucleotides and purine nucleotides biosynthesis. 
Proteins involved in fatty acid biosynthesis components pathways (e.g. 3-oxoacyl-[acyl-carrier-protein] synthase 
1 and 3 and enoyl-[acyl-carrier-protein] reductase [NADH]) are druggable, essential, conserved and majorly 
related to important reactions from the metabolic point of view and principally are choke-points (Fig. 4). This 
pathway allows homeostasis of the bacterial membrane53,54. Particularly, the enoyl-[acyl-carrier-protein] reduc-
tase [NADH] (FabI) has been targeted for development of new antibacterial agents55,56. Synthesis of lipopolysac-
charide (LPS), an essential component of the Gram-negative outer membrane, also appeared top-ranked, with 
cytoplasmic enzymes LpxA, LpxC and LpxD involved in the initial steps of lipid A production through the Raetz 
pathway57. They also fulfil most of the above-defined criteria that make a protein attractive for drug targeting 
(Fig. 5). In the past two decades numerous LpxC inhibitors have been developed as bactericidal agents against 
pathogenic Gram-negative organisms including K. pneumoniae, with recent comprehensive reviews detailing 

ACETATE--COA-LIGASE-RXN
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PYRUVFORMLY-RXN

ADPREDUCT-RXN

RXN0-6948

MALTACETYLTRAN-RXN
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GLYOHMETRANS-RXN

RXN-15650

S-ADENMETSYN-RXN

RXN3O-1803

RXN-9632

ANTHRANSYN-RXN

CTPSYN-RXN

Figure 3.  Metabolic network of K. pneumoniae Kp13 represented as a reaction graph. Nodes depict reactions in 
the network, and there exists an edge between two nodes when the product of a reaction is used as the substrate 
in the following reaction. Node size is proportional to betweenness centrality, and MetaCyc accessions (http://
metacyc.org) for hub reactions are shown.
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these developments58,59. However, only a single molecule (ACHN-975) entered human clinical trials, being later 
discontinued during Phase I due to unwanted inflammatory effects at the injection site60. However, the research 
for LpxC inhibitors has not been discontinued and recently a novel inhibitor promising to be of value for clinical 
development (LPC-069, a biphenylacetylene-based LpxC inhibitor) was proposed to combat a broad panel of 
Gram-negative clinical isolates, including several multiresistant and extremely drug-resistant strains with no 
known adverse effects in mice61. Accordingly, our results showed that the gene encoding LpxC protein is con-
served in all studied pathogenic strains of K. pneumoniae and does not present close homologs within the human 
proteome.

Incorporation of a polymyxin B overexpression term allows identification of drug-related tar-
gets in resistant Kp.  Once targets that complied with rules associated with gene essentiality, metabolic 
importance and broad Kp conservation were identified, we incorporated in our scoring function a term related to 
overexpression during polymyxin B (PB) exposure. PB is an antibiotic considered as ‘last resort’ in the treatment 
of infections caused by CRE pathogens. We reasoned that Kp proteins that are overexpressed when exposed to the 
antibiotic may have a role in counteracting the deleterious effects of the drug in the bacterial cell, as was shown 
for other pathogens62. Further, these proteins need not be necessarily resistance-related or involved in alterations 
to outer membrane components. Notably, polymyxins have been shown to induce rapid killing at concentrations 
considerably lower than that required for cytoplasmic membrane permeabilization or depolarization, which sug-
gest that other bactericidal effects may be involved63. We have previously shown that the gene expression response 

Rank
Locus 
number^ Gene Product

Product size 
(aa)

Structural 
druggability* Essential

Choke-
point

Network 
centrality

Presence in 
pathogenic 
Kp (%) Pathways involved#

DrugBank 
Inhibitor&

1 01032 fabB 3-oxoacyl-[acyl-carrier-
protein] synthase 1 407 0.74 Yes Yes 0.64 100.0 Biotin [B], Fatty 

acids [B]
Approved 
(DB01034)

2 02296 argA Amino-acid 
acetyltransferase 443 0.75 Yes Yes 0 100.0 L-arginine [B] ND

3 01798 lpxA UDP-N-acetylglucosamine 
O-acyltransferase 263 0.88 Yes Yes 0.29 100.0 Lipopolysaccharide 

[B]
Experimental 
(DB08558)

4 01899 lpxC
UDP-3-O-[3-
hydroxymyristoyl] 
N-acetylglucosamine 
deacetylase

306 0.78 Yes Yes 0.29 100.0 Lipopolysaccharide 
[B]

Experimental 
(DB07861)

5 04921 fabH 3-oxoacyl-[acyl-carrier-
protein] synthase 3 318 0.77 No Yes 0.64 100.0 Biotin [B], Fatty 

acids [B]
Approved 
(DB01034) 
Cerulenin

6 01814 dapD
2,3,4,5-tetrahydropyridine-
2,6-dicarboxylate 
N-succinyltransferase

274 0.96 Yes Yes 0.08 100.0 L-lysine [B] Experimental 
(DB01856)

7 01909 murF
UDP-N-acetylmuramoyl-
tripeptide–D-alanyl-D-
alanine ligase

452 0.75 Yes Yes 0.08 100.0 Peptidoglycan [B] Experimental 
(DB06970)

8 03831 dapE succinyl-diaminopimelate 
desuccinylase 375 0.81 Yes Yes 0.08 100.0 L-lysine [B] ND

9 01800 lpxD
UDP-3-O-[3-
hydroxymyristoyl] 
glucosamine 
N-acyltransferase

341 0.82 Yes Yes 0.07 100.0 Lipopolysaccharide 
[B] ND

10 05433 fabI Enoyl-[acyl-carrier-
protein] reductase [NADH] 262 0.72 Yes Yes 0.06 100.0 Biotin [B], Fatty 

acids [B]
Approved 
(DB08604) 
Triclosan

11 01797 lpxB Lipid-A-disaccharide 
synthase 383 0.92 Yes Yes 0.06 100.0 Lipopolysaccharide 

[B] ND

12 01905 murG
undecaprenyl-PP-MurNAc-
pentapeptide-UDPGlcNAc 
GlcNAc transferase

356 0.80 Yes Yes 0.06 100.0 Peptidoglycan [B] Murgocil 
(Ref.106)

13 00662 asd Aspartate-semialdehyde 
dehydrogenase 368 0.58 Yes Yes 0.05 100.0

L-lysine [B], 
L-threonine [B], 
L-methionine [B], 
L-homoserine [B]

Experimental 
(DB03502)

14 04866 purB Adenylosuccinate lyase 456 0.84 Yes Yes 0.05 100.0 Purine nucleotides 
[B] ND

15 04914 tmk Thymidylate kinase 213 0.58 Yes Yes 0.05 100.0
Pyrimidine 
deoxyribonucleotides 
[B]

Experimental 
(DB03280)

Table 2.  List of prioritized protein targets considering gene essentiality, pathogenic Kp scope and metabolic 
network metrics (ranked according to equation (1)). ^The K. pneumoniae Kp13 locus suffix ‘KP13_’ is omitted; 
*druggability of the protein considering the highest scoring pocket. #B: biosynthesis. &Data gathered from 
http://www.drugbank.ca for orthologs of each protein with relevance studied on a per-target basis. ND, not 
determined.

http://www.drugbank.ca
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elicited by PB treatment in Kp affects a myriad of transcriptional regulators such as two-component systems, 
which in turn impact the expression of a broad and diverse set of genes48. In this report, we also showed that PB 
induces, along with alterations of genes involved in the biosynthesis of outer membrane components, various 
metabolic shifts in K. pneumoniae48, which are in the same line of earlier evidence showing that this compound 
also has intracellular enzymatic targets64. In this sense, the targets identified using this strategy could also be of 
interest in a combination therapy perspective when dealing with resistant Kp infections, possibly acting synergis-
tically with other drugs, in a fashion involving a non-antimicrobial with a bactericidal compound. As proof of this 
concept, in other infectious diseases, such as bacteremia caused by Pseudomonas aeruginosa, the combination of 
efflux proteins inhibitors (such as phenyl-arginine-β-naphthylamide) and iron chelators have been proposed to 
control the infection process in view of the overexpression of the MexAB-OprM efflux system during iron depri-
vation65. Table 3 presents the list of protein targets resulting from this analysis.

Structural druggable: Yes
Essential: Yes
Choke-point: Yes
Network centrality: High
Presence in pathogenic Kp: 100%

FabG

Structural druggable: Yes
Essential: No
Choke-point: Yes
Network centrality: High
Presence in pathogenic Kp: 100%

Structural druggable: Yes
Essential: Yes
Choke-point: Yes
Network centrality: High
Presence in pathogenic Kp: 100% 

Fatty acids
biosynthesis

Structural druggable: Yes
Essential: Yes
Choke-point: Yes
Network centrality: Low
Presence in pathogenic Kp: 100%

FabA

FabI

FabB
FabH

FabB
FabH

Figure 4.  A subset of the fatty acid elongation pathway. Structures correspond to FabB, FabI and FabH, three 
among the 15 top-ranked candidates in the scoring pipeline for drug target selection in Kp. Representation of 
the most druggable pocket is shown in yellow within the structures. Green nodes indicate proteins that were 
top-ranked in our analyses. Conservation (in percent) of each protein in 38 pathogenic Kp genomes is also 
shown.
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Of notice, many of the metabolic roles involving the identified targets are also important to cellular home-
ostasis, such as L-lysine (performed by tetrahydropicolinate succinylase, dihydrodipicolinate synthase and 
aspartate-semialdehyde dehydrogenase) and isoprenoid biosynthesis through 2C-methyl-D-erythritol 
4-phosphate (MEP) pathway (by the intermediate CDP-ME kinase IspE), besides other previously detected met-
abolic roles such as fatty acid biosynthesis (3-oxoacyl-[acyl-carrier-protein] synthase 1; 3-hydroxydecanoyl-[
acyl-carrier-protein] dehydratase; malonyl CoA-acyl carrier protein transacylase) and membrane components 

Structural druggable: Yes
Essential: Yes
Choke-point: Yes
Network centrality: Low
Presence in pathogenic Kp: 100%  

Structural druggable: Yes
Essential: Yes
Choke-point: Yes
Network centrality: Low
Presence in pathogenic Kp: 100% 

Structural druggable: No
Essential: No
Choke-point: Yes
Network centrality: Low
Presence in pathogenic Kp: 0%

Structural druggable: Yes
Essential: Yes
Choke-point: Yes
Network centrality: Low
Presence in pathogenic Kp: 100% 

Structural druggable: Yes
Essential: Yes
Choke-point: Yes
Network centrality: High
Presence in pathogenic Kp: 100% 

Structural druggable: Yes
Essential: Yes
Choke-point: Yes
Network centrality: High
Presence in pathogenic Kp: 100%

LpxA

LpxC

LpxD

LpxH

LpxB

LpxK

Lipopolysaccharide
biosynthesis

Figure 5.  Lipid IVA biosynthesis, an attractive metabolic pathway for drug targeting. Structures correspond 
to candidate target proteins, LpxA, LpxC and LpxD. Representation of the most druggable pockets is shown in 
yellow within the structures. Green nodes indicate proteins that were top-ranked in our analyses. Conservation 
(in percent) of each protein in 38 pathogenic Kp genomes is also shown.
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metabolism (LpxA, LpxC, LpxD, GalU, KdsA, GlmM, GlmS, PssA). For several of these protein targets, some 
inhibitors have already been determined, as shown in Table 3. In the following, we discuss some aspects of the 
candidate proteins IspE and PssA, which are attractive either in monotherapy or in polymyxin combination 
therapy.

IspE is a cytoplasmic kinase of the MEP pathway that is involved in the biosynthesis of the isoprenoids used 
by many Gram-negative bacteria (including E. coli, Salmonella enterica, P. aeruginosa and H. influenzae), as 
well as Gram-positive bacteria such as Clostridium difficile and Bacillus subtilis, M. tuberculosis, and even few 
apicoplast protozoa such as Plasmodium falciparum66. Because isoprenoids are involved in a wide variety of 
vital biological functions, the seven enzymes without close human homologs that participate in their metabo-
lism (Dxs, IspC, IspD, IspE, IspF, IspG, IspH) are favorable candidate drug targets and several inhibitors have 
been already reported67, mainly as antimalarial targets68,69. In Gram-negative bacteria, compounds from the 
isoxazol-5(4 H)-one series have been evaluated (e.g. PubChem compound ID 3768522 and DrugBank DB03687, 
Table 3) showing inhibitory activities against IspE/Ipk from E. coli and Y. pestis70, and the study of its effect in 
Klebsiella bacteria is also appealing in the light of our results.

The active form of phosphatidylserine (PtdSer) synthase (PssA) from some bacteria is a cytoplasmic 
membrane-associated enzyme that converts cytidine diphosphate diacylglycerol (CDP-DAG) and serine (L-Ser) 
to PtdSer, a negatively charged phospholipid that is rapidly decarboxylated by PtdSer decarboxylase (Psd) to 
generate phosphatidylethanolamine (PtdEtn), the major phospholipid of membranes71. PssA has been shown 
to play a significant role in virulence of Brucella abortus in a mouse model of infection with a ΔpssA mutant72. 
Interestingly, the Brucella cell envelope is normally resistant to the bactericidal action of polycationic peptides 
such as PB, but the ΔpssA mutant of B. abortus showed loss of PtdEtn and increased sensitivity to this drug, 
without any changes in its LPS structure72. Thus, an evaluation of a combination of PB and an inhibitor against 
PssA seems as a plausible approach. Polymyxin combination therapy is engaging since it has been reported 
to increase bacterial killing and reduce the development of polymyxin-resistant subpopulations73, even in 

Rank
Locus 
number^ Gene Product

Product size 
(aa)

Structural 
druggability* Essential

Choke-
point

Network 
centrality

Presence in 
pathogenic 
Kp (%) Pathways involved#

DrugBank 
Inhibitor&

1 01032 fabB 3-oxoacyl-[acyl-carrier-
protein] synthase 1 407 0.76 Yes Yes 0.64 100.0 Biotin [B], Fatty acids [B] Approved 

(DB01034)

2 01798 lpxA UDP-N-acetylglucosamine 
O-acyltransferase 263 0.88 Yes Yes 0.29 100.0 Lipopolysaccharide [B] Experimental 

(DB08558)

3 01899 lpxC
UDP-3-O-[3-
hydroxymyristoyl] 
N-acetylglucosamine 
deacetylase

306 0.78 Yes Yes 0.29 100.0 Lipopolysaccharide [B] Experimental 
(DB07861)

4 01814 dapD
2,3,4,5-tetrahydropyridine-
2,6-dicarboxylate 
N-succinyltransferase

274 0.96 Yes Yes 0.08 100.0 L-lysine [B] Experimental 
(DB01856)

5 01800 lpxD
UDP-3-O-[3-
hydroxymyristoyl] 
glucosamine 
N-acyltransferase

341 0.82 Yes Yes 0.07 100.0 Lipopolysaccharide [B] ND

6 00662 asd Aspartate-semialdehyde 
dehydrogenase 368 0.58 Yes Yes 0.05 100.0

L-lysine [B], L-threonine 
[B], L-methionine [B], 
L-homoserine [B]

Experimental 
(DB03502)

7 03824 dapA Dihydrodipicolinate 
synthase 292 0.81 Yes Yes 0.03 100.0 L-lysine [B] Experimental 

(DB02370)

8 01459 kdsA
2-dehydro-3-
deoxyphosphooctonate 
aldolase

284 0.71 Yes Yes 0.03 100.0
3-deoxy-D-manno-
octulosonate [B], 
lipopolysaccharide [B]

Experimental 
(DB02433)

9 00796 pssA CDP-diacylglycerol–serine 
O-phosphatidyltransferase 451 0.86 Yes Yes 0.06 97 Phosphatidylethanolamine 

[B] ND

10 01108 glmM Phosphoglucosamine 
mutase 445 0.54 Yes Yes 0.01 100.0 UDP-N-acetyl glucosamine 

[B] ND

11 31485 fabD Malonyl CoA-acyl carrier 
protein transacylase 309 0.70 Yes Yes 0.0 100.0 Fatty acids [B] ND

12 00029 glmS
Glucosamine–fructose-6-
phosphate aminotransferase 
isomerizing

609 0.91 Yes Yes 1.0 100.0
UDP-N-acetyl-D-
glucosamine [B], O-antigen 
[B]

Experimental 
(DB02445)

13 04702 galU UTP–glucose-1-phosphate 
uridylyltransferase 300 0.57 Yes Yes 0.17 100.0 UDP-glucose [B] ND

14 01466 ispE 4-diphosphocytidyl-2-C-
methyl-D-erythritol kinase 283 0.55 Yes Yes 0.12 100.0 Isoprenoid [B] Experimental 

(DB03687)

15 03868 fabA 3-hydroxydecanoyl-[acyl-
carrier-protein] dehydratase 188 0.93 Yes Yes 0.10 100.0 Biotin [B], Fatty acids [B] Experimental 

(DB03813)

Table 3.  List of prioritized protein targets by incorporating protein overexpression in PB exposure (ranked 
according to equation (2)). ^The K. pneumoniae Kp13 locus suffix ‘KP13_’ is omitted; *druggability of the 
protein considering the highest scoring pocket. #B: biosynthesis. &Data gathered from http://www.drugbank.ca 
for orthologs of each protein with relevance studied on a per-target basis. ND, not determined.

http://www.drugbank.ca
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multidrug-resistant K. pneumoniae isolates74. This type of polytherapy may enhance bacterial killing via subpop-
ulation and/or mechanistic synergy75. Indeed, in vitro tests combining PB and the carbapenem tigecycline using 
a hollow-fiber infection model have shown a bactericidal effect against CRE while suppressing the emergence of 
PB resistance76. Also, a combination of PB with a non-antibiotic drug like selective estrogen receptor modula-
tors (SERMs) demonstrated excellent antibacterial killing kinetics against polymyxin-resistant P. aeruginosa, A. 
baumannii, and K. pneumoniae77. Given the benefit of polymyxin combination therapy, future studies could be 
performed to validate the activity of other polymyxin-based combinations, such as those described hereinafter.

Comparing these results with the general targets set (Table 2), there was an overlap of six candidate targets, 
which was not unexpected since the scoring function used to rank both lists differed by a single parameter (Pb 
term in Eq. 2) related to overexpression in PB, although it corresponded to half of the total contribution to the 
ranking scheme. It is interesting to see the presence of proteins related to highly central reactions in the Kp13-MN 
such as glucosamine–fructose-6-phosphate aminotransferase isomerizing (GlmS; reaction betweenness central-
ity = 1.0) and 3-oxoacyl-[acyl-carrier-protein] synthase (FabB; reaction betweenness centrality = 0.64). When 
considering structural druggability as predicted by fpocket, eleven out of the 15 top-ranked proteins have at least 
one pocket considered highly druggable (DS ≥ 0.7).

Gut microbiota conservation allows prioritization of protein targets less likely to interfere with 
commensal gut bacteria.  As the last step in our Kp target prioritization pipeline, we sought to identify 
candidate proteins for which developed drugs would present enhanced selectivity towards bacterial pathogens, 
thus minimizing the impact to the commensal gut microbiota. This was achieved by modifying the scoring func-
tion in order to include a term that penalizes the score of a protein in up to 50% with the increasing presence 

Rank
Locus 
number^ Gene Product

Product 
size (aa)

Structural 
druggability* Essential

Choke-
point

Network 
centrality

Presence in 
pathogenic 
Kp (%) Pathways involved#

DrugBank 
Inhibitor&

1 02296 argA Amino-acid 
acetyltransferase 443 0.75 Yes Yes 0.89 100 L-ornithine [B], 

L-arginine [B] ND

2 01032 fabB 3-oxoacyl-[acyl-carrier-
protein] synthase 1 407 0.74 Yes Yes 0.64 100 Biotin [B], Fatty acids [B] Approved 

(DB01034)

3 00796 pssA CDP-diacylglycerol–serine 
O-phosphatidyltransferase 451 0.86 Yes Yes 0.06 97 Phosphatidylethanolamine 

[B] ND

4 01800 lpxD
UDP-3-O-[3-
hydroxymyristoyl] 
glucosamine 
N-acyltransferase

341 0.82 Yes Yes 0.07 100 Lipopolysaccharide [B] ND

5 01909 murF
UDP-N-acetylmuramoyl-
tripeptide–D-alanyl-D-
alanine ligase

452 0.76 Yes Yes 0.08 100 Peptidoglycan [B] Experimental 
(DB06970)

6 01907 murD
UDP-N-
acetylmuramoylalanine–
D-glutamate ligase

438 0.71 Yes Yes 0.02 100 Peptidoglycan [B] Experimental 
(DB03801)

7 01797 lpxB Lipid-A-disaccharide 
synthase 383 0.92 Yes Yes 0.06 100 Lipopolysaccharide [B] ND

8 05359 trpA Tryptophan synthase alpha 
chain 270 0.63 Yes Yes 0.52 100 L-tryptophan [B] ND

9 00662 asd Aspartate-semialdehyde 
dehydrogenase 368 0.58 Yes Yes 0.05 100

L-lysine [B], L-threonine 
[B], L-methionine [B], 
L-homoserine [B]

Experimental 
(DB03502)

10 01899 lpxC
UDP-3-O-[3-
hydroxymyristoyl] 
N-acetylglucosamine 
deacetylase

306 0.78 Yes Yes 0.29 100 Lipopolysaccharide [B] Experimental 
(DB07861)

11 04194 lpxK Tetraacyldisaccharide 
4′-kinase 326 0.69 Yes Yes 0 100 Lipopolysaccharide [B] ND

12 01905 murG
undecaprenyl-PP-
MurNAc-pentapeptide-
UDPGlcNAc GlcNAc 
transferase

356 0.8 Yes Yes 0.06 100 Peptidoglycan [B] Murgocil (ref.106)

13 31828 murE
UDP-N-acetylmuramoyl-
L-alanyl-D-glutamate–2,6-
diaminopimelate ligase

495 0.85 Yes Yes 0.03 97 Peptidoglycan [B] Experimental 
(DB03801)

14 05226 hpxT 5-hydroxyisourate 
hydrolase 109 0.6 Yes Yes 0.007 100 Purine metabolism ND

15 03831 dapE Succinyl-diaminopimelate 
desuccinylase 375 0.81 Yes Yes 0.08 100 L-lysine [B] ND

Table 4.  List of prioritized protein targets by incorporating protein conservation among gut microbiomes 
(ranked according to equation (3)). ^The K. pneumoniae Kp13 locus suffix ‘KP13_’ is omitted; *druggability of 
the protein considering the highest scoring pocket. #B: biosynthesis. &Data gathered from http://www.drugbank.
ca for orthologs of each protein with relevance studied on a per-target basis. ND, not determined.

http://www.drugbank.ca
http://www.drugbank.ca
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of orthologs in gut commensal species (see equation (3)). A total of 803,381 proteins sequences present in the 
compared proteomes were used in this analysis. Table 4 presents the 15 top-ranked targets taking this concept 
into account. These prioritized proteins are variably present, albeit in low frequency, among the 226 commen-
sal genomes, with their occurrence ranging from 0.4–22%. As a comparison, current antibiotics targets such as 
DNA gyrase (gyrA [KP13_00955]), targeted by fluoroquinolones, and RNA polymerase (rpoB [KP13_01360]), 
target of rifamycins, are present in 99.6% and 99.1%, respectively, of the gut genomes using the same criteria 
(Supplementary Table S3).

Our strategy of ranking protein targets in pathogenic Kp while minimizing possible deleterious effects to the 
commensal microbiome led to the identification, among the top 15 highest-ranking proteins, of four cytoplasmic 
candidates (FabB, LpxC, LpxD, Asd) that we had previously identified using the first two approaches (Fig. 6), and 
could thus be considered as high-value targets. These represent proteins that comply not only with our employed 
structural druggability criterium (presenting DS ≥ 0.7, highly druggable), but that also possess features desirable 
from the genomic point of view, such as being classified as essential and conserved in all pathogenic Kp consid-
ered. They are also important from a metabolic perspective being classified as choke-points in the Kp13-MN; one 
of them (FabB) is also related to a high-centrality reaction in the network (0.64 normalized betweenness central-
ity). These proteins participate in fundamental processes of the Kp13-MN, including LPS biosynthesis (LpxC, 
LpxD), biotin and fatty acids production (FabB). The candidate targets shortlisted in Tables 2, 3 and 4 and their 
interrelations (Fig. 6) comprise twenty-nine unique proteins with characteristics that are desirable from a drugga-
bility perspective, and their follow-up could be promising given the need of novel drugs developed for controlling 
infections caused by resistant bacteria. In this sense, proteins that are high-ranking all display interesting features 
that could be exploited in future drug development works. For instance, the integrated analysis of the 29 unique 
candidates reveals the emergence of a core metabolic subset shared between many of them, comprising biosyn-
thesis of amino acids, fatty acids, and cell wall components. These represent fundamental metabolic aspects of the 
bacterial cellular machinery, and the specific proteins identified here represent a good starting point for further 
experimental exploration as well as confirmation of their relevance in ongoing efforts against some of these.

Beyond the upper rank: assessing intermediate-value targets.  In this section, we explore candidates 
that, although did not rank in the Top 15 in any of the three previous ranking strategies, present biological evi-
dence that would be suitable from a druggability perspective. We refer to these candidates as intermediate-value 
targets. These were identified by studying the ranked list of 100 candidates beyond the previously discussed 
top-ranked in all three equations. For instance, intermediate-value targets common between the three equations 
that are druggable, essential, highly conserved in pathogenic Kp, overexpressed in PB, metabolic choke-points 
and have low microbiome representation (around 10%) are MurI (KP13_31500, glutamate racemase) and cyto-
plasmic membrane protein FtsI (KP13_01911, peptidoglycan synthase FtsI/PBP-3) (Supplementary Table S3). 
These targets could be attractive in a polymyxin combination perspective addressing drug resistance in early 
stages of antimicrobial drug discovery. Also, these protein targets participate in peptidoglycan biosynthesis, and 

Figure 6.  Venn diagram showing the number of unique and shared targets identified using the three different 
ranking strategies for drug targeting. Targets that have been experimentally tested with inhibitors in K. 
pneumoniae are marked with an asterisk: LpxA101,102, LpxD101, FabB/FabH103, LpxC104, and MurG/MurE105.
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targets directed towards them would have a broad Gram-positive and Gram-negative spectrum, which is the case 
for the third-generation cephalosporin cefdinir (DrugBank ID DB00535), the cognate inhibitor of FtsI (PBP3). 
We did not find reports in the literature of using polymyxin B or colistin in combination therapy with cefdinir for 
the treatment of MDR infections. For glutamate racemase (MurI) experimental inhibitors are under investigation 
in Helicobacter pylori (DrugBank ID DB08698), Listeria monocytogenes (DrugBank ID DB02343), Enterococcus 
faecalis (DrugBank ID DB07937) and Streptococcus pyogenes (DrugBank ID DB08272).

Protein targets involved in the folate biosynthesis pathway were also ranked as intermediate-value targets, 
and include the cytoplasmic protein FolE (GTP cyclohydrolase 1), which is druggable, essential, highly con-
served in pathogenic Kp, overexpressed in PB, choke-point and have intermediate microbiome representation 
(25%), as well as the cytoplasmic protein FolB (dihydroneopterin aldolase), which although not overexpressed 
in PB is druggable, essential, highly conserved, choke-point and presents low microbiome representation (8%). 
Structural studies with type IB GTP cyclohydrolase 1 (GCYH-IB) enzyme from N. gonorrhoeae showed that 
GCYH-IB exhibits marked differences in binding to its analog substrate compared to the canonical type IA GTP 
cyclohydrolase 1 involved in biopterin biosynthesis in human and other animals78. These structural differences 
could be exploited in the design of inhibitors specific for GCYH-IB. With respect to FolB, it has recently been 
demonstrated in M. tuberculosis that the gene essentiality lies in the aldolase and/or epimerase activities of the 
enzyme79, and efforts to develop inhibitors of these activities should be further pursued.

Holo-[acyl-carrier-protein] synthase (ACPS) have an essential role mediating the transfer of acyl fatty acid 
intermediates during the biosynthesis of fatty acids and phospholipids80. This cytoplasmic enzyme was classi-
fied as intermediate target, being druggable, essential, highly conserved, choke-point and with poor microbi-
ome representation (12.4%). Interestingly, ACPS enzymes from Gram-negative and Gram-positive bacteria and 
Mycoplasma pneumoniae exhibit different native structures and substrate specificities81, which could turn ACPS 
into a narrow-spectrum target. Recently, a detailed characterization of ACPS from E. coli was performed and the 
results showed that it forms a trimer, which is structurally different to that of human ACPS, a single polypeptide 
that folds into an intramolecular dimer82,83. By exploring these differences it will be possible to find specific inhib-
itors against prokaryotic ACPS enzymes.

Another candidate for prioritization is the cytoplasmic enzyme glutamate–cysteine ligase (GshA, 
KP13_02611), which appeared overexpressed in PB, is conserved among all pathogenic Kp and lowly present 
(8.4%) in the microbiome genomes, while also being a metabolic choke-point (Supplementary Table S3). GshA 
plays a role in the synthesis of glutathione, a thiol-type compound that can counter the toxic actions of reactive 
oxygen species (ROS) and other deleterious substances, thus maintaining an intracellular reducing environment. 
These can be produced by the host as a response to the infection process as well as during general stress con-
ditions including antibiotic exposure. A proof-of-principle for the targeting of bacterial thiol‐dependent anti-
oxidant systems has successfully shown the plausibility of this strategy to combat infections caused by MDR 
Gram‐negative bacteria84, and the use of combination of drugs capable of disrupting such detoxification systems 
as well as exerting a bactericidal action would help in sensitizing bacteria to oxidative stress and possibly improve 
the bacterial killing capacity.

Finally, the analysis of intermediate-value targets identified a series of enzymes which possess kinase activities. 
These also represent promising candidates for further pursuit given that kinase inhibitors are among the most 
successful drugs developed, with protein-kinases representing the largest group of targets after G-protein coupled 
receptors, although the overwhelming majority of these inhibitors are directed towards human enzymes85. Recent 
efforts have shown that inhibitors of human kinases could be repurposed for use against bacterial enzymes in 
a combination strategy and identified that the Listeria monocytogenes Penicillin-binding-protein And Serine/
Threonine kinase-Associated (PASTA) kinase PrkA could be inhibited by GSK690693, an imidazopyridine 
aminofurazan-type kinase inhibitor86. The list of intermediate-value targets includes ten kinases with potential 
for further experimental evaluation, as some of them have attractive features from the drug development perspec-
tive (Table 5). For instance, the cytoplasmic protein N-acetylglutamate (NAG) kinase (ArgB), which promotes 
phosphorylation of NAG in a rate-limiting step of bacterial L-arginine production, occurs through acetylated 
intermediates, unlike mammals which use non-acetylated intermediates, and for this reason was previously con-
sidered a candidate drug target87. The cytoplasmic protein FolK, along with previously discussed FolB and FolE, 
also participates in the folate pathway, which is already targeted by trimethoprim, an inhibitor of dihydrofolate 
reductase, although resistance to this drug is on the rise88. Positively, folK was found as essential in a transpo-
son mutant library reported by Ramage et al.44 and appeared as a choke-point in our metabolic reconstruction. 
Another interesting candidate is thiamine-monophosphate kinase (thiL), which was also found as essential in the 
Ramage et al. study and participates in the synthesis of thiamine diphosphate, which is a cofactor of several key 
enzymes including pyruvate dehydrogenase, ∝-ketoglutarate dehydrogenase, and acetolactate synthase89. Taken 
together, these results point to a plausible role of proteins at the intermediate rank positions as candidate targets 
for further prioritization to the control of Kp, particularly due to their relevant biological roles.

Concluding Remarks
We developed and applied an integrative analysis framework for the prioritization of protein targets using as 
model organism Klebsiella pneumoniae strain Kp13, a multidrug-resistant (including polymyxin) bacterium 
responsible for nosocomial infections. Various layers of information were combined, including whole-structural, 
metabolic, genomic and expression data as input to scoring functions that allowed a shortlisting of targets with 
desirable characteristics from a druggability standpoint. Out of 5,736 predicted proteins that form the proteome 
of Kp13, we obtained structural models for 3,194 of them and predicted the presence and location of pockets 
that were characterized by their druggability. The reconstruction and annotation of the metabolic network of 
this strain allowed the identification of the metabolic complement and enzymatic activities performed by Kp13 
and related bacteria, as well as important topological metrics in this network. This was used to contextualize the 
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functional aspects of the candidate targets identified. All this information, along with other genomic features cal-
culated for each protein, were loaded into an openly available web server51 (see Availability of materials and data 
section), that allows easy retrieval of any of the generated data, along with parameter customization.

By applying three distinct scoring schemes, each focused on one specific aspect of druggability (1 - targets that 
could be viewed as having a broad importance; 2 - targets that relate to PB resistance; and 3 - targets minimizing 
impact towards the gut microbiome), we were able to delineate an unique set of 29 proteins with no close homo-
logues in the human genome and that are of interest to the scientific community. The finding that some of these 
proteins have already been proposed, or are currently being used, as drug targets is positive evidence that our 
methodology allowed the selection of biologically relevant candidates. For instance, LpxC, involved in the first 
two steps of lipid A biosynthesis (Fig. 5), was highly ranked in all strategies. Given the lack of this compound in 
mammals (non-host homology) and the importance of lipid A to the stabilization of the Gram-negative bacterial 
membrane (broad-spectrum importance and essentiality), this pathway has been proposed as attractive for drug 
targeting57, and multiple compounds have been synthesized towards its inhibition in the last decade, with patents 
issued to various pharmaceuticals including Achaogen, Astrazeneca, Merck, Pfizer and Novartis59,90,91. While 
these candidates are yet to pass human clinical trials, novel LpxC inhibitor compounds are being developed with 
validated antibacterial activities against E. coli and P. aeruginosa92, confirming that LpxC is currently still consid-
ered an attractive target to tackle Gram-negative bacteria.

Another group of high-ranking proteins identified through our prioritization pipeline participate in fatty 
acid synthesis (FAS) processes, and include FabA, FabB, FabD, FabI, and FabH. These proteins have an essential 
role during the synthesis of bacterial phospholipid membranes, LPS, and lipoproteins, and represent attractive 
targets due to the structural differences between the human and bacterial proteins and the essentiality of FAS93,94. 
Inhibitors of some of these proteins have been previously reported, such as platencin, a dual inhibitor of FabH (an 
initiation condensing enzyme) and FabF (an enoyl-ACP reductase)95. Efforts of developing antimicrobials tar-
geting FAS have been geared mostly towards FabI, with two commercially available inhibitors of this enzyme, tri-
closan and isoniazid, the latter a first line antituberculosis drug96,97. The finding of FAS proteins as highly-ranked 
in our investigation also contributes towards validating our methodological strategy.

While previously reported drug targets were identified during our analyses, we also determined a set of pro-
teins as both high- and intermediate-value targets displaying interesting characteristics that could be further 
explored for drug development, representing novel candidate targets for the control of Kp (and related bacteria). 
These include CDP-diacylglycerol–serine O-phosphatidyltransferase (pssA), involved in phosphatidylserine syn-
thesis98, thus also participating in important transformations leading to phospholipid synthesis. Previous studies 
with a pssA mutant of B. abortus correlated the effect of increased sensitivity to PB in this Gram-negative path-
ogen72, which triggers a prospect of a polymyxin combination therapy with PssA inhibitors. Also, IspE that is 
involved in the biosynthesis of isoprenoids via the MEP pathway (absent in the human host), and for which inhib-
itory activities against the enzyme from Klebsiella and related bacteria remains to be investigated. Furthermore, 
protein targets FolE and FolB that participate in the folate biosynthesis pathway have not been extensively 
explored as drug targets in Gram-negative bacteria. A peculiar candidate is GshA that has a detoxifying role, 
maintaining an intracellular reducing environment. Drugs which disrupt such detoxification systems could be 
combined with bactericidal compounds for a more effective bacterial killing. Lastly, it is worth to mention that 
kinases also represent attractive candidates targets for further investigations, in line with recent reports showing 
that inhibitors of human kinases could be repurposed for use against bacterial enzymes. In summary, a series 
of biologically interesting targets that take part in distinct molecular processes and that cope with druggability 
features were identified in the present work.

Gene
Kp13 
Locus ID^ Product Druggability features Subcellular localization

anmK 05161 Anhydro-N-acetylmuramic acid 
kinase

CP, PB overexpressed, PathoKp: 100%, Microbiome: 
12.8% Cytoplasmic Membrane

argB 00555 Acetylglutamate kinase CP, Essential, PathoKp: 100%, Microbiome: 8.4% Cytoplasmic

bglK 03813 Beta-glucoside kinase CP, PathoKp: 97.4%, Microbiome: 1.3% Cytoplasmic

folK 01855
2-amino-4-hydroxy-6-
hydroxymethyldihydropteridine 
pyrophosphokinase

CP, Essential, PathoKp: 100%, Microbiome: 33.2% Cytoplasmic

iolC 01316 5-dehydro-2-deoxygluconokinase CP, PB overexpressed, PathoKp: 100%, Microbiome: 
4.9% Cytoplasmic

lysC 00360 Lysine-sensitive aspartokinase 3 CP, PB overexpressed, PathoKp: 100%, Microbiome: 
8% Cytoplasmic

mak 02078 Fructokinase CP, PB overexpressed, PathoKp: 100%, Microbiome: 
7.1% Cytoplasmic

selD 05414 Selenide, water dikinase CP, PB overexpressed, PathoKp: 100%, Microbiome: 
21.2% Cytoplasmic

thiL 02043 Thiamine-monophosphate kinase CP, Essential, PathoKp: 100%, Microbiome: 11.5% Unknown

thrB 01992 Homoserine kinase CP, Essential, PathoKp: 100%, Microbiome: 8% Cytoplasmic

Table 5.  List of kinases identified as intermediate-value targets and their druggability features. ^The K. 
pneumoniae Kp13 locus suffix ‘KP13_’ is omitted. CP, choke-point; PB, polymyxin B; pathoKp. % conservation 
in 38 pathogenic K. pneumoniae; Microbiome, % conservation in 226 gut genomes.
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With regards to the cellular compartment where these candidates are found, most of the top-ranked proteins 
locate either in the cytoplasm or in the cell membrane, and are a priori unavailable for external binding. This 
apparent inappropriateness of cytoplasmic proteins to serve as target should not hamper their further explora-
tion, as it is well known that many antibiotics are capable of efficiently crossing bacterial membranes (either by 
diffusion or through porin channels)99, coupled with recent developments of delivery strategies including the 
use of siderophores, cyclodextrins, metal nanoparticles, antimicrobial/cell-penetrating peptides and fusogenic 
liposomes100. Thus, that a candidate target locates cytoplasmically should not detain future design of antibacterial 
drugs directed towards their inhibition.

Further studies are warranted to follow-up experimentally on our elicited targets, and we invite the scientific 
community dedicated to this subject to help pursue these goals, thus strengthening the ongoing fight against 
pathogenic bacteria.

References
	 1.	 World Health Organization. Worldwide country situation analysis: response to antimicrobial resistance. (2015).
	 2.	 Projan, S. J. Why is big Pharma getting out of antibacterial drug discovery? Curr. Opin. Microbiol. 6, 427–430 (2003).
	 3.	 Radusky, L. G. et al. An integrated structural proteomics approach along the druggable genome of Corynebacterium 

pseudotuberculosis species for putative druggable targets. BMC Genomics 16, S9 (2015).
	 4.	 Cloete, R., Oppon, E., Murungi, E., Schubert, W.-D. & Christoffels, A. Resistance related metabolic pathways for drug target 

identification in Mycobacterium tuberculosis. BMC Bioinformatics 17, 75 (2016).
	 5.	 Kaur, D., Kutum, R., Dash, D. & Brahmachari, S. K. Data Intensive Genome Level Analysis for Identifying Novel, Non-Toxic Drug 

Targets for Multi Drug Resistant Mycobacterium tuberculosis. Sci. Rep. 7, 46595 (2017).
	 6.	 Lee, D.-Y., Chung, B. K. S., Yusufi, F. N. K. & Selvarasu, S. In silico genome-scale modeling and analysis for identifying anti-

tubercular drug targets. Drug Dev. Res. 72, 121–129 (2010).
	 7.	 Hasan, S., Daugelat, S., Rao, P. S. S. & Schreiber, M. Prioritizing genomic drug targets in pathogens: application to Mycobacterium 

tuberculosis. PLoS Comput. Biol. 2, e61 (2006).
	 8.	 Defelipe, L. A. et al. A whole genome bioinformatic approach to determine potential latent phase specific targets in Mycobacterium 

tuberculosis. Tuberculosis 97, 181–192 (2016).
	 9.	 Song, J.-H. et al. Identification of essential genes in Streptococcus pneumoniae by allelic replacement mutagenesis. Mol. Cells 19, 

365–374 (2005).
	 10.	 Shanmugam, A. & Natarajan, J. Computational genome analyses of metabolic enzymes in Mycobacterium leprae for drug target 

identification. Bioinformation 4, 392–395 (2010).
	 11.	 Neelapu, N., Mutha, N. & Akula, S. Identification of Potential Drug Targets in Helicobacter pylori Strain HPAG1 by in silico 

GenomeAnalysis. Infectious Disorders - Drug Targets 15, 106–117 (2015).
	 12.	 Bhardwaj, T. & Somvanshi, P. Pan-genome analysis of Clostridium botulinum reveals unique targets for drug development. Gene 

623, 48–62 (2017).
	 13.	 Muhammad, S. A. et al. Prioritizing drug targets in Clostridium botulinum with a computational systems biology approach. 

Genomics 104, 24–35 (2014).
	 14.	 Uddin, R. & Jamil, F. Prioritization of potential drug targets against P. aeruginosa by core proteomic analysis using computational 

subtractive genomics and protein-Protein interaction network. Comput. Biol. Chem. https://doi.org/10.1016/j.compbiolchem. 
2018.02.017 (2018).

	 15.	 Mondal, S. I. et al. Identification of potential drug targets by subtractive genome analysis of Escherichia coli O157:H7: an in silico 
approach. Adv. Appl. Bioinform. Chem. 49 (2015).

	 16.	 Hadizadeh, M. et al. Genome-Wide Identification of Potential Drug Target in Enterobacteriaceae Family: A Homology-Based 
Method. Microb. Drug Resist. https://doi.org/10.1089/mdr.2016.0259 (2017).

	 17.	 Wadood, A. et al. The methicillin-resistant S. epidermidis strain RP62A genome mining for potential novel drug targets 
identification. Gene Reports 8, 88–93 (2017).

	 18.	 Farha, M. A. et al. Inhibition of WTA Synthesis Blocks the Cooperative Action of PBPs and Sensitizes MRSA to β-Lactams. ACS 
Chem. Biol. 8, 226–233 (2012).

	 19.	 Starkey, M. et al. Identification of Anti-virulence Compounds That Disrupt Quorum-Sensing Regulated Acute and Persistent 
Pathogenicity. PLoS Pathog. 10, e1004321 (2014).

	 20.	 Cai, X. et al. The Effect of the Potential PhoQ Histidine Kinase Inhibitors on Shigella flexneri Virulence. PLoS One 6, e23100 (2011).
	 21.	 Qin, Z. et al. Structure-based discovery of inhibitors of the YycG histidine kinase: new chemical leads to combat Staphylococcus 

epidermidis infections. BMC Microbiol. 6, 96 (2006).
	 22.	 Podschun, R. & Ullmann, U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity 

factors. Clin. Microbiol. Rev. 11, 589–603 (1998).
	 23.	 Podschun, R., Pietsch, S., Höller, C. & Ullmann, U. Incidence of Klebsiella species in surface waters and their expression of 

virulence factors. Appl. Environ. Microbiol. 67, 3325–3327 (2001).
	 24.	 Technical Report, ANVISA (Brazilian Health Surveillance Agency). Bulletin on Patient Security and Health Services Quality. 

Available online at https://www20.anvisa.gov.br/segurancadopaciente/index.php/publicacoes (2016).
	 25.	 Braun, G., Cayô, R., Matos, A. P., de Mello Fonseca, J. & Gales, A. C. Temporal evolution of polymyxin B-resistant Klebsiella 

pneumoniae clones recovered from blood cultures in a teaching hospital during a 7-year period. Int. J. Antimicrob. Agents 51, 
522–527 (2018).

	 26.	 Bartolleti, F. et al. Polymyxin B Resistance in Carbapenem-Resistant Klebsiella pneumoniae, São Paulo, Brazil. Emerg. Infect. Dis. 
22, 1849–1851 (2016).

	 27.	 Tiwari, V., Tiwari, M. & Solanki, V. Polyvinylpyrrolidone-Capped Silver Nanoparticle Inhibits Infection of Carbapenem-Resistant 
Strain of Acinetobacter baumannii in the Human Pulmonary EpithelialCell. Front. Immunol. 8, 973 (2017).

	 28.	 Diago-Navarro, E. et al. Novel, Broadly Reactive Anticapsular Antibodies against Carbapenem-Resistant Klebsiella pneumoniae 
Protect from Infection. MBio 9, e00091–18 (2018).

	 29.	 Ramos, P. I. P. et al. Pyrosequencing-based analysis reveals a novel capsular gene cluster in a KPC-producing Klebsiella pneumoniae 
clinical isolate identified in Brazil. BMC Microbiol. 12, 173 (2012).

	 30.	 Ramos, P. I. P. et al. Comparative analysis of the complete genome of KPC-2-producing Klebsiella pneumoniae Kp13 reveals 
remarkable genome plasticity and a wide repertoire of virulence and resistance mechanisms. BMC Genomics 15, 1–16 (2014).

	 31.	 Yu, N. Y. et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and 
predictive capabilities for all prokaryotes. Bioinformatics 26, 1608–1615 (2010).

	 32.	 Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).
	 33.	 Radusky, L. et al. TuberQ: a Mycobacterium tuberculosis protein druggability database. Database 2014, bau035 (2014).
	 34.	 Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 

3389–3402 (1997).

http://dx.doi.org/10.1016/j.compbiolchem.2018.02.017
http://dx.doi.org/10.1016/j.compbiolchem.2018.02.017
http://dx.doi.org/10.1089/mdr.2016.0259


www.nature.com/scientificreports/

17SCIeNtIFIC REPOrTS |  (2018) 8:10755  | DOI:10.1038/s41598-018-28916-7

	 35.	 Suzek, B. E. et al. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. 
Bioinformatics 31, 926–932 (2015).

	 36.	 Webb, B. & Sali, A. Comparative Protein Structure Modeling Using MODELLER. In Current Protocols in Bioinformatics (John 
Wiley & Sons, Inc., 2002).

	 37.	 Benkert, P., Tosatto, S. C. E. & Schomburg, D. QMEAN: A comprehensive scoring function for model quality assessment. Proteins 
71, 261–277 (2008).

	 38.	 Schmidtke, P. & Barril, X. Understanding and predicting druggability. A high-throughput method for detection of drug binding 
sites. J. Med. Chem. 53, 5858–5867 (2010).

	 39.	 Karp, P. D., Paley, S. & Romero, P. The Pathway Tools software. Bioinformatics 18(Suppl 1), S225–32 (2002).
	 40.	 Claudel-Renard, C., Chevalet, C., Faraut, T. & Kahn, D. Enzyme-specific profiles for genome annotation: PRIAM. Nucleic Acids 

Res. 31, 6633–6639 (2003).
	 41.	 Ma, H. & Zeng, A.-P. Reconstruction of metabolic networks from genome data and analysis of their global structure for various 

organisms. Bioinformatics 19, 270–277 (2003).
	 42.	 Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 

2498–2504 (2003).
	 43.	 Yeh, I., Hanekamp, T., Tsoka, S., Karp, P. D. & Altman, R. B. Computational analysis of Plasmodium falciparum metabolism: 

organizing genomic information to facilitate drug discovery. Genome Res. 14, 917–924 (2004).
	 44.	 Ramage, B. et al. Comprehensive Arrayed Transposon Mutant Library of Klebsiella pneumoniae Outbreak Strain KPNIH1. J. 

Bacteriol. 199, e00352–17 (2017).
	 45.	 Liao, Y.-C. et al. An experimentally validated genome-scale metabolic reconstruction of Klebsiella pneumoniae MGH 78578, 

iYL1228. J. Bacteriol. 193, 1710–1717 (2011).
	 46.	 NIH HMP Working Group. et al. The NIH Human Microbiome Project. Genome Res. 19, 2317–2323 (2009).
	 47.	 Darling, A. C., Mau, B., Blattner, F. R. & Perna, N. T. Mauve: Multiple Alignment of Conserved Genomic Sequence With 

Rearrangements. Genome Res. 14, 1394–1403 (2004).
	 48.	 Ramos, P. I. P. et al. The polymyxin B-induced transcriptomic response of a clinical, multidrug-resistant Klebsiella pneumoniae 

involves multiple regulatory elements and intracellular targets. BMC Genomics 17, 737 (2016).
	 49.	 Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 

166–169 (2015).
	 50.	 Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene 

expression data. Bioinformatics 26, 139–140 (2010).
	 51.	 Sosa, E. J. et al. Target-Pathogen: a structural bioinformatic approach to prioritize drug targets in pathogens. Nucleic Acids Res. 46, 

D413–D418 (2018).
	 52.	 Fatumo, S. et al. Estimating novel potential drug targets of Plasmodium falciparum by analysing the metabolic network of knock-

out strains in silico. Infect. Genet. Evol. 9, 351–358 (2009).
	 53.	 Polyak, S. W., Abell, A. D., Wilce, M. C. J., Zhang, L. & Booker, G. W. Structure, function and selective inhibition of bacterial acetyl-

coa carboxylase. Appl. Microbiol. Biotechnol. 93, 983–992 (2012).
	 54.	 Cheng, C. C. et al. Discovery and optimization of antibacterial AccC inhibitors. Bioorg. Med. Chem. Lett. 19, 6507–6514 (2009).
	 55.	 Payne, D. J. et al. Discovery of a Novel and Potent Class of FabI-Directed Antibacterial Agents. Antimicrob. Agents Chemother. 46, 

3118–3124 (2002).
	 56.	 Payne, D. J., Gwynn, M. N., Holmes, D. J. & Pompliano, D. L. Drugs for bad bugs: confronting the challenges of antibacterial 

discovery. Nat. Rev. Drug Discov. 6, 29–40 (2006).
	 57.	 Joo, S. H. L. A as a Drug Target and Therapeutic Molecule. Biomol. Ther. 23, 510–516 (2015).
	 58.	 Erwin, A. L. Antibacterial Drug Discovery Targeting the Lipopolysaccharide Biosynthetic Enzyme LpxC. Cold Spring Harb. 

Perspect. Med. 6 (2016).
	 59.	 Kalinin, D. V. & Holl, R. LpxC inhibitors: a patent review (2010-2016). Expert Opin. Ther. Pat. 27, 1227–1250 (2017).
	 60.	 Kalinin, D. V. & Holl, R. Insights into the Zinc-Dependent Deacetylase LpxC: Biochemical Properties and Inhibitor Design. CTMC 

16, 2379–2430 (2016).
	 61.	 Lemaître, N. et al. Curative Treatment of Severe Gram-Negative Bacterial Infections by a New Class of Antibiotics Targeting LpxC. 

MBio 8 (2017).
	 62.	 Peleg, A. Y., Seifert, H. & Paterson, D. L. Acinetobacter baumannii: emergence of a successful pathogen. Clin. Microbiol. Rev. 21, 

538–582 (2008).
	 63.	 Daugelavicius, R., Bakiene, E. & Bamford, D. H. Stages of Polymyxin B Interaction with the Escherichia coli Cell Envelope. 

Antimicrob. Agents Chemother. 44, 2969–2978 (2000).
	 64.	 Deris, Z. Z. et al. A secondary mode of action of polymyxins against Gram-negative bacteria involves the inhibition of NADH-

quinone oxidoreductase activity. J. Antibiot. 67, 147–151 (2014).
	 65.	 Liu, Y., Yang, L. & Molin, S. Synergistic activities of an efflux pump inhibitor and iron chelators against Pseudomonas aeruginosa 

growth and biofilm formation. Antimicrob. Agents Chemother. 54, 3960–3963 (2010).
	 66.	 Heuston, S., Begley, M., Gahan, C. G. M. & Hill, C. Isoprenoid biosynthesis in bacterial pathogens. Microbiology 158, 1389–1401 

(2012).
	 67.	 Masini, T. & Hirsch, A. K. H. Development of Inhibitors of the 2C-Methyl-d-erythritol 4-Phosphate (MEP) Pathway Enzymes as 

Potential Anti-Infective Agents. J. Med. Chem. 57, 9740–9763 (2014).
	 68.	 Saggu, G. S., Pala, Z. R., Garg, S. & Saxena, V. New Insight into Isoprenoids Biosynthesis Process and Future Prospects for Drug 

Designing in Plasmodium. Front. Microbiol. 7 (2016).
	 69.	 Kadian, K. et al. Structural modeling identifies Plasmodium vivax 4-diphosphocytidyl-2C-methyl- d -erythritol kinase (IspE) as a 

plausible new antimalarial drug target. Parasitol. Int. 67, 375–385 (2018).
	 70.	 Tang, M., Odejinmi, S. I., Allette, Y. M., Vankayalapati, H. & Lai, K. Identification of novel small molecule inhibitors of 

4-diphosphocytidyl-2-C-methyl-d-erythritol (CDP-ME) kinase of Gram-negative bacteria. Bioorg. Med. Chem. 19, 5886–5895 
(2011).

	 71.	 Zhang, Y.-M. & Rock, C. O. Membrane lipid homeostasis in bacteria. Nat. Rev. Microbiol. 6, 222–233 (2008).
	 72.	 Bukata, L., Altabe, S., de Mendoza, D., Ugalde, R. A. & Comerci, D. J. Phosphatidylethanolamine Synthesis Is Required for Optimal 

Virulence of Brucella abortus. J. Bacteriol. 190, 8197–8203 (2008).
	 73.	 Bergen, P. J. et al. Optimizing Polymyxin Combinations Against Resistant Gram-Negative Bacteria. Infectious Diseases and Therapy 

4, 391–415 (2015).
	 74.	 Deris, Z. Z. et al. The Combination of Colistin and Doripenem Is Synergistic against Klebsiella pneumoniae at Multiple Inocula and 

Suppresses Colistin Resistance in an In Vitro Pharmacokinetic/Pharmacodynamic Model. Antimicrob. Agents Chemother. 56, 
5103–5112 (2012).

	 75.	 Bergen, P. J. et al. Clinically Relevant Plasma Concentrations of Colistin in Combination with Imipenem Enhance 
Pharmacodynamic Activity against Multidrug-Resistant Pseudomonas aeruginosa at Multiple Inocula. Antimicrob. Agents 
Chemother. 55, 5134–5142 (2011).

	 76.	 Cai, Y. et al. Evaluating Polymyxin B-Based Combinations against Carbapenem-Resistant Escherichia coli in Time-Kill Studies and 
in a Hollow-Fiber Infection Model. Antimicrob. Agents Chemother. 61, e01509–16 (2016).



www.nature.com/scientificreports/

1 8SCIeNtIFIC REPOrTS |  (2018) 8:10755  | DOI:10.1038/s41598-018-28916-7

	 77.	 Hussein, M. H. et al. From Breast Cancer to Antimicrobial: Combating Extremely Resistant Gram-Negative ‘Superbugs’ Using 
Novel Combinations of Polymyxin B with Selective Estrogen Receptor Modulators. Microb. Drug Resist. 23, 640–650 (2017).

	 78.	 Paranagama, N. et al. Mechanism and catalytic strategy of the prokaryotic-specific GTP cyclohydrolase-IB. Biochem. J 474, 
1017–1039 (2017).

	 79.	 Falcão, V. C. A. et al. Validation of Mycobacterium tuberculosis dihydroneopterin aldolase as a molecular target for anti-
tuberculosis drug development. Biochem. Biophys. Res. Commun. 485, 814–819 (2017).

	 80.	 Heath, R. J., White, S. W. & Rock, C. O. Lipid biosynthesis as a target for antibacterial agents. Prog. Lipid Res. 40, 467–497 (2001).
	 81.	 McAllister, K. A., Peery, R. B. & Zhao, G. Acyl carrier protein synthases from gram-negative, gram-positive, and atypical bacterial 

species: Biochemical and structural properties and physiological implications. J. Bacteriol. 188, 4737–4748 (2006).
	 82.	 Marcella, A. M., Culbertson, S. J., Shogren-Knaak, M. A. & Barb, A. W. Structure, High Affinity, and Negative Cooperativity of the 

Escherichia coli Holo-(Acyl Carrier Protein):Holo-(Acyl Carrier Protein) Synthase Complex. J. Mol. Biol. 429, 3763–3775 (2017).
	 83.	 Bunkoczi, G. et al. Mechanism and substrate recognition of human holo ACP synthase. Chem. Biol. 14, 1243–1253 (2007).
	 84.	 Zou, L. et al. Synergistic antibacterial effect of silver and ebselen against multidrug-resistant Gram-negative bacterial infections. 

EMBO Mol. Med. 9, 1165–1178 (2017).
	 85.	 Cohen, P. Protein kinases — the major drug targets of the twenty-first century? Nat. Rev. Drug Discov. 1, 309–315 (2002).
	 86.	 Schaenzer, A. J. et al. A screen for kinase inhibitors identifies antimicrobial imidazopyridine aminofurazans as specific inhibitors 

of the PASTA kinase PrkA. J. Biol. Chem. 292, 17037–17045 (2017).
	 87.	 Marcos, E., Crehuet, R. & Bahar, I. On the conservation of the slow conformational dynamics within the amino acid kinase family: 

NAGK the paradigm. PLoS Comput. Biol. 6, e1000738 (2010).
	 88.	 Miranda, A. et al. Emergence of Plasmid-Borne dfrA14 Trimethoprim Resistance Gene in Shigella sonnei. Front. Cell. Infect. 

Microbiol. 6, 77 (2016).
	 89.	 Webb, E. & Downs, D. Characterization of thiL, Encoding Thiamin-monophosphate Kinase, in Salmonella typhimurium. J. Biol. 

Chem. 272, 15702–15707 (1997).
	 90.	 Zhang, J. et al. Structure-based discovery of LpxC inhibitors. Bioorg. Med. Chem. Lett. 27, 1670–1680 (2017).
	 91.	 Tan, J. H. et al. In Vitro and In Vivo Efficacy of an LpxC Inhibitor, CHIR-090, Alone or Combined with Colistin against 

Pseudomonas aeruginosa Biofilm. Antimicrob. Agents Chemother. 61 (2017).
	 92.	 Ding, S. et al. Design, synthesis and structure-activity relationship evaluation of novel LpxC inhibitors as Gram-negative 

antibacterial agents. Bioorg. Med. Chem. Lett. 28, 94–102 (2018).
	 93.	 Zhang, Y.-M., White, S. W. & Rock, C. O. Inhibiting bacterial fatty acid synthesis. J. Biol. Chem. 281, 17541–17544 (2006).
	 94.	 Leibundgut, M., Maier, T., Jenni, S. & Ban, N. The multienzyme architecture of eukaryotic fatty acid synthases. Curr. Opin. Struct. 

Biol. 18, 714–725 (2008).
	 95.	 Wang, J. et al. Discovery of platencin, a dual FabF and FabH inhibitor with in vivo antibiotic properties. Proc. Natl. Acad. Sci. USA 

104, 7612–7616 (2007).
	 96.	 Banerjee, A. et al. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263, 

227–230 (1994).
	 97.	 Heath, R. J., Yu, Y. T., Shapiro, M. A., Olson, E. & Rock, C. O. Broad spectrum antimicrobial biocides target the FabI component of 

fatty acid synthesis. J. Biol. Chem. 273, 30316–30320 (1998).
	 98.	 Chen, Y.-L. et al. Phosphatidylserine synthase and phosphatidylserine decarboxylase are essential for cell wall integrity and 

virulence in Candida albicans. Mol. Microbiol. 75, 1112–1132 (2010).
	 99.	 Chopra, I. & Ball, P. Transport of Antibiotics into Bacteria. In Advances in Microbial Physiology Volume 23 23, 183–240 (Elsevier, 

1982).
	100.	 Santos, R. S., Figueiredo, C., Azevedo, N. F., Braeckmans, K. & De Smedt, S. C. Nanomaterials and molecular transporters to 

overcome the bacterial envelope barrier: Towards advanced delivery of antibiotics. Adv. Drug Deliv. Rev. https://doi.org/10.1016/j.
addr.2017.12.010 (2017).

	101.	 Postma, T. M. & Liskamp, R. M. J. Triple-targeting Gram-negative selective antimicrobial peptides capable of disrupting the cell 
membrane and lipid A biosynthesis. RSC Adv. 6, 65418–65421 (2016).

	102.	 Wu, F. et al. Design and Synthesis of Novel Antimicrobials. International patent application PCT/CA2006/000314 (2006).
	103.	 Bommineni, G. R. et al. Thiolactomycin-Based Inhibitors of Bacterial β-Ketoacyl-ACP Synthases with in vivo Activity. J. Med. 

Chem. 59, 5377–5390 (2016).
	104.	 Serio, A. W. et al. Structure, Potency and Bactericidal Activity of ACHN-975, a First-in-Class LpxC Inhibitor. In 53rd Interscience 

Conference on Antimicrobial Agents and Chemotherapy (2013).
	105.	 Pahal, V. et al. Significance of apigenin and rosmarinic acid mediated inhibition pathway of MurG, MurE and DNA adenine 

methylase enzymes with antibacterial potential derived from the methanolic extract of Ocimum sanctum. MOJ Drug Design 
Development & Therapy 2, 68–78 (2018).

	106.	 Mann, P. A. et al. Murgocil is a highly bioactive staphylococcal-specific inhibitor of the peptidoglycan glycosyltransferase enzyme 
MurG. ACS Chem. Biol. 8, 2442–2451 (2013).

Acknowledgements
MFN acknowledges grants from Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ/
CONICET, process no. E-26/110.315/2014) and from CNPq (process no. 307713/2016-4). ES, DFDP, AGT and 
MM are members of CONICET. M-FS and CCK acknowledge funding from the European Research Council 
under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement 
no. [247073]10. ATRV acknowledges funding from CNPq (process 302.768/2011-4), FAPERJ (process 
E-26/202.903/2015) and CAPES (process 23038.010041/2013-13). PIPR was recipient of a PhD fellowship 
from CAPES. DFDP acknowledges funding from the Agencia Nacional de Promoción Científica y Tecnológica 
(ANPCyT PICT-2015-1863).

Author Contributions
M.F.N., A.C.G., A.G.T. conceived the study design. P.I.P.R., D.F.D.P., E.L., A.M.P., G.F.B., E.J.S., M.M., A.G.T. 
contributed tools and performed data analysis during the structurome characterization. P.I.P.R., D.F.D.P., A.M.P., 
C.C.K., A.T.R.V., M.-F.S. contributed tools and performed data analysis during the metabolic reconstruction. 
P.I.P.R., D.F.D.P., M.F.N., A.G.T. drafted the manuscript with input from the other authors. All authors read and 
approved the final version of the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-28916-7.
Competing Interests: The authors declare no competing interests.

http://dx.doi.org/10.1016/j.addr.2017.12.010
http://dx.doi.org/10.1016/j.addr.2017.12.010
http://dx.doi.org/10.1038/s41598-018-28916-7


www.nature.com/scientificreports/

1 9SCIeNtIFIC REPOrTS |  (2018) 8:10755  | DOI:10.1038/s41598-018-28916-7

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://creativecommons.org/licenses/by/4.0/

	An integrative, multi-omics approach towards the prioritization of Klebsiella pneumoniae drug targets

	Methods

	Bacterial strain and annotations. 
	Generation of structural homology-based models. 
	Classification of K. pneumoniae Kp13 proteins according to their druggability. 
	Construction of the whole-genome metabolic network of K. pneumoniae Kp13. 
	Metabolic network analysis. 
	Essentiality criteria. 
	Non-host homologous proteins analysis and microbiome conservation. 
	Analysis of genes conserved among pathogenic K. pneumoniae. 
	Expression data of K. pneumoniae Kp13 under polymyxin B exposure. 
	Target prioritization pipeline. 
	Availability of materials and data. 

	Results and Discussion

	Klebsiella pneumoniae protein structures are enriched for druggable pockets. 
	Reconstruction of the K. pneumoniae Kp13 metabolic network allows pathway contextualization of prioritized protein targets. ...
	Incorporation of gene essentiality, pathogen conservation, and metabolic data into the prioritization function allows ident ...
	Incorporation of a polymyxin B overexpression term allows identification of drug-related targets in resistant Kp. 
	Gut microbiota conservation allows prioritization of protein targets less likely to interfere with commensal gut bacteria. 
	Beyond the upper rank: assessing intermediate-value targets. 

	Concluding Remarks

	Acknowledgements

	Figure 1 A general sketch of the prioritization pipeline.
	Figure 2 Histogram of the druggability score.
	Figure 3 Metabolic network of K.
	Figure 4 A subset of the fatty acid elongation pathway.
	Figure 5 Lipid IVA biosynthesis, an attractive metabolic pathway for drug targeting.
	Figure 6 Venn diagram showing the number of unique and shared targets identified using the three different ranking strategies for drug targeting.
	Table 1 Klebsiella pneumoniae Kp13 proteins classified according to their druggability score.
	Table 2 List of prioritized protein targets considering gene essentiality, pathogenic Kp scope and metabolic network metrics (ranked according to equation (1)).
	Table 3 List of prioritized protein targets by incorporating protein overexpression in PB exposure (ranked according to equation (2)).
	Table 4 List of prioritized protein targets by incorporating protein conservation among gut microbiomes (ranked according to equation (3)).
	Table 5 List of kinases identified as intermediate-value targets and their druggability features.




