
Contents lists available at ScienceDirect

Molecular Immunology

journal homepage: www.elsevier.com/locate/molimm

Susceptibility of dendritic cells from individuals with schistosomiasis to
infection by Leishmania braziliensis

Diego Mota Lopesa,b, Tarcísio Vila Verde S. de Almeidaa,c, Robson da Paixão de Souzaa,
Luís Eduardo Viana Ribeiroa, Brady Paged, Jamille de Souza Fernandese, Edgar M. Carvalhoa,b,f,
Luciana Santos Cardosoa,b,g,⁎

a Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil
b Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT- DT) -CNPQ/MCT, Brazil
c Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
d Tulane University School of Medicine, New Orleans, LA, USA
e ProAR - Núcleo de Excelência em Asma, UFBA, Salvador, Bahia, Brazil
f Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brazil
g Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, UFBA, Salvador, Bahia, Brazil

A R T I C L E I N F O

Keywords:
Schistosomiasis
Leishmaniasis
Dendritic cells
Leishmania braziliensis

A B S T R A C T

Coinfection with leishmaniasis and schistosomiasis has been associated with increased time to healing of cu-
taneous lesions of leishmaniasis. The objective of this study was to evaluate the effect of Leishmania braziliensis
infection on co-cultures of monocyte-derived dendritic cells (MoDCs) with autologous lymphocytes from patients
with schistosomiasis and patients with cutaneous leishmaniasis. MoDCs were differentiated from peripheral
blood monocytes, isolated by magnetic beads, infected with L. braziliensis, and co-cultured with autologous
lymphocytes. Expression of HLA-DR, CD1a, CD83, CD80, CD86, CD40, and the IL-10 receptor (IL-10R) on
MoDCs as well as CD28, CD40L, CD25, and CTLA-4 on lymphocytes were evaluated by flow cytometry. The
production of the cytokines IL-10, TNF, IL-12p40, and IFN-γ were evaluated by sandwich ELISA of the culture
supernatant. The infectivity evaluation was performed by light microscopy after concentration of cells by cy-
tospin and Giemsa staining. It was observed that the frequency of MoDCs expressing CD83, CD80, and CD86 as
well as the MFI of HLA-DR were smaller in the group of patients with schistosomiasis compared to the group of
patients with leishmaniasis. On the other hand, the frequency of IL-10R on MoDCs was higher in patients with
schistosomiasis than in patients with leishmaniasis. CD4+ and CD8+ T lymphocytes from patients with schis-
tosomiasis presented a lower frequency of CD28 and a higher frequency of CTLA-4 compared to lymphocytes
from patients with leishmaniasis. Levels of IL-10 were higher in the supernatants of co-cultures from individuals
with schistosomiasis compared to those with leishmaniasis. However, levels of TNF, IL-12p40, and IFN-γ were
lower in the group of individuals with schistosomiasis. Regarding the frequency of MoDCs infected by L. bra-
ziliensis after 72 h in culture, it was observed that higher frequencies of cells from patients with schistosomiasis
were infected compared to cells from patients with leishmaniasis. It was concluded that MoDCs from patients
with schistosomiasis are more likely to be infected by L. braziliensis, possibly due to a lower degree of activation
and a regulatory profile.

1. Introduction

Parasitic infectious diseases, such as schistosomiasis caused by
Schistosoma mansoni and cutaneous leishmaniasis (CL) are a serious
public health problem presenting a high morbidity rate. The im-
munopathogenesis of chronic schistosomiasis is predominated by the
Th2/regulatory immune response, which is important for the

elimination of the worm and the containment of Schistosoma mansoni
eggs. At the same, this immune response appears to be associated with
the long-term survival of the parasite in host tissues (Pearce and
MacDonald, 2002). In cutaneous leishmaniasis the predominant im-
mune response is the Th1/inflammatory type that is associated with
parasitic elimination, but is also responsible for the development of the
characteristic lesion observed in the disease (Ribeiro-de-Jesus et al.,
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1998; Antonelli et al., 2005). Studies have demonstrated that helminth
infection has the ability to modulate the immune response in immune-
mediated diseases, such as asthma (Medeiros et al., 2003; Araujo et al.,
2004a,b), Crohn’s disease (Elliott et al., 2007), type 1 diabetes mellitus
(Cooke et al., 1999), HTLV infection (Porto et al., 2005; Lima et al.,
2013), and leishmaniasis (O'Neal et al., 2007; Bafica et al., 2011). It has
been shown that infection by Schistosoma mansoni or its products are
able to modulate the Th1 inflammatory response (Actor et al., 1993;
Sabin et al., 1996) involved in some immune-mediated diseases. In an
experimental model, animals coinfected with Leishmania and Schisto-
soma had larger lymph nodes than monoinfected animals (Yole et al.,
2007). Another study using BALBc mice coinfected with L. major and S.
mansoni showed a reduction in lesion size after the combined treatment
with a pentavalent antimonial and praziquantel compared to separately
treated animals (Khayeka-Wandabwa et al., 2013).

In human cutaneous leishmaniasis, the modulation of the immune
response induced by helminth infection, including infection by
Schistosoma mansoni, has been associated with changes in the immune
response and an increase in healing time of cutaneous lesions in hu-
mans (O'Neal et al., 2007). A human study showed that a total of 51.1%
of patients coinfected with helminths and L. braziliensis had persistent
lesions on day 90 of antimonial treatment compared to 62.2% in the
group who first had their helminths treated. The failure rate in both
groups was 57%. The mean cure time was 88 days in the control group
and 98 days in the group that received anthelmintic treatment. Al-
though there was no statistically significant difference, patients who
received early anthelmintic treatment took longer to heal their lesions
than patients in the untreated group. This study shows that the early
introduction of anthelmintic therapy does not improve clinical out-
comes in patients coinfected with helminths and L. braziliensis (Newlove
et al., 2011). A recent study showed that patients coinfected with in-
testinal helminths and Leishmania braziliensis had a higher frequency of
tegumentary lesions and took longer to heal compared to patients
without helminth infection (Azeredo-Coutinho et al., 2016). These co-
infected individuals also presented more therapeutic failures or relapses
than patients not infected with helminths. These results suggest that
intestinal infections with helminths interfere with the clinical course of
tegumentary leishmaniasis (Azeredo-Coutinho et al., 2016).

Dendritic cells (DCs) are recognized for their ability to sensitize
naïve T lymphocytes and for contributing to the functional differ-
entiation of regulatory T cells (Yamazaki et al., 2003), as well as being
important sources in the production of cytokines and the presentation
of parasite antigens to T cells (de Saint-Vis et al., 1998). Early events in
Leishmania infection involving macrophages and dendritic cells in the
presentation of parasite antigens to T cells and in the production of
cytokines likely influence host response and the course of infection. It is
understood that the Th1 response is important for infection control, but
Th1 cytokines may also be related to the pathogenesis of disease.
Therefore, it is important to have a balance between Th1 cells and
regulatory T cells, not a single polarized type of response, as these
regulatory mechanisms are important in maintaining the tissue in-
tegrity of the host against an exaggerated inflammatory response
(Baratta-Masini et al., 2007; Reis et al., 2007). The Th2-type response
may also be dependent on DCs. Several pathogens such as Schistosoma
sp. and fungi provoke DCs to induce a Th2 response. This response
appears to be the result of the action of some parasitic antigens on DCs
(d'Ostiani et al., 2000; MacDonald et al., 2001; Bacci et al., 2002).

Experimental infection of dendritic cells by L. braziliensis promas-
tigotes induces the production of high levels of TNF, which may con-
tribute to a local parasitic control response (Carvalho et al., 2008). The
type 1 immune response pattern with IFN-γ, TNF, and IL-12 production
has been associated with the control of infection by macrophage acti-
vation and parasitic destruction in human leishmaniasis (Roberts, 2005;
Ameen, 2010). On the other hand, cytokines such as IL-4, IL-10, and
TGF-β favor parasitic multiplication, inhibiting the production of NO by
IFN-γ-activated macrophages and also inhibiting the differentiation of T

lymphocytes into Th1 cells and their consequent production of IFN-γ
and TNF (Baratta-Masini et al., 2007; Matos et al., 2007). CD4+ and
CD8+ T lymphocytes act as a source of cytokines involved in the pro-
cess of macrophage activation in leishmaniasis (Da-Cruz et al., 2002).
DCs may influence CD4+ T cell responses whether they be type 1 (Th1)
or type 2 (Th2) (Moser and Murphy, 2000). The objective of this study
was to evaluate the effect of Leishmania braziliensis infection on
monocyte-derived dendritic cells (MoDCs) co-cultured with autologous
lymphocytes from patients with schistosomiasis and cutaneous leish-
maniasis.

Since studies have shown that lesions of individuals coinfected by
Leishmania sp. and helminths take longer to heal (O'Neal et al., 2007)
and since an experimental model has shown that the dual treatment of
leishmaniasis and schistosomiasis is related to a reduction in lesion size
at the onset of the disease and an increase in lesion size at later stages of
disease (La Flamme et al., 2002), the understanding of the im-
munological mechanisms that contribute to the aggravation of the in-
flammatory process mediated by DCs and lymphocytes will help in
understanding the mechanisms associated with the severity of leish-
maniasis in coinfected individuals.

2. Methods

2.1. Study population

Three groups of patients were included in the study: one group of
patients with schistosomiasis (n = 6), another group of patients with
cutaneous leishmaniasis (n = 12), and one group of healthy individuals
(n = 7). Individuals with schistosomiasis are residents of an endemic
area, located in the municipality of Conde in the state of Bahia, Brazil.
In this group, 75% of the individuals were male and 25% female, with a
mean age of 35.5 ± 22.4 years. The diagnostic criteria were based on
the presence of Schistosoma mansoni eggs in at least one fecal para-
sitological sample by the Hoffman method. All had high parasitic load
(> 200 epg) by the Kato-Katz method. Twelve patients with cutaneous
leishmaniasis (CL) living in an endemic area, known as Corte de Pedra,
located in the southeastern region of the state of Bahia, Brazil, were
included in the group of patients with leishmaniasis, with 67% of the
patients male and 33% female and a mean age of 33.5 ± 14.5 years.
Diagnostic criteria included a clinical presentation characteristic of CL
(granulomatous lesions on the skin), parasite isolation, delayed-type
hypersensitivity (DTH) in response to soluble Leishmania antigen (SLA),
or histological characteristics of CL in skin biopsy. Three fecal samples
from each individual were examined using the Hoffman sedimentation
method to exclude S. mansoni-infected individuals from the CL and
healthy control groups. To rule out the effect of previous S. mansoni
exposure in immunological assays, we also measured the levels of
serum-specific IgE to S. mansoni soluble adult worm antigen (SWAP).
Individuals from the CL group and healthy controls were negative for S.
mansoni infection or exposure to this parasite antigen. Of the 12 CL
patients evaluated, 42% had only one lesion characteristic of leishma-
niasis and 58% presented with between two and four lesions. The
healthy control group consisted of individuals residing in Salvador,
70% of whom were male and 30% of whom were female, with a mean
age of 28 ± 15 years.

The Ethics Committee of the Universidade do Estado da Bahia
(UNEB) has approved the present study. All individuals who were re-
cruited and agreed to participate in the study signed an informed
consent form.

2.2. In vitro generation of monocyte-derived dendritic cells (MoDCs), L.
braziliensis infection, and co-culture with autologous lymphocytes

Dendritic cells from patients with schistosomiasis and leishmaniasis
were differentiated from monocytes (monocyte-derived dendritic cells,
MoDCs). Whole blood was collected by venipuncture and collected in a
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tube containing sodium heparin. Peripheral blood mononuclear cells
(PBMCs) were obtained by the Ficoll-Hypaque gradient and adjusted to
a concentration of 1 × 107 cells/mL in complete RPMI 1640 (100 μL/
mL gentamicin, 2 mM L-glutamine, 30 mM HEPES) containing 10%
inactivated fetal bovine serum (Life Technologies GIBCO BRL,
Gaithersburg, MD). Monocytes (CD14+) were isolated from PBMCs
using magnetic beads (Monocyte Isolation Kit II human, MACS,
Miltenyi Biotec) by negative selection, using anti-CD3, CD56, CD16,
CD19, and Glycophorin A monoclonal antibodies. Lymphocytes re-
sulting from monocyte separation by magnetic beads were stored at
−70 °C in DMSO + 10% fetal bovine serum (FBS) for 7 days for further
co-cultivation with MoDCs. Monocytes were incubated at 37 °C and 5%
CO2 for 7 days with 3 mL/well of complete RPMI containing 800IU/mL
IL-4 (Peprotech) and 50 ng/mL GM-CSF (Peprotech) in 6-well plates
where they were cultured at a concentration of 2 × 106 monocytes/mL
(50 μL) for differentiation into dendritic cells. The purity of the
monocytes was> 80%. Purity of the lymphocytes was>90%. After
7 days of culture, the MoDCs (CD11c+) were collected by washing the
wells 3x with RPMI medium. Then, the MoDCs were infected by pro-
mastigotes of L. braziliensis that were previously incubated with RPMI
+ 10% FBS medium, at a concentration of 1:5 for a period of 2 h at
37 °C and 5% CO2. After this time the cells were washed 3x with
complete RPMI medium in order to remove those promastigotes that
did not infect any cells. Lymphocytes were then thawed slowly in a
water bath at 37 °C, washed with 1x PBS, and adjusted for co-cultiva-
tion with the dendritic cells for a ratio of 10 lymphocytes to one MoDC.

2.3. Evaluation of the phenotype and activation status of dendritic cells and
lymphocytes after infection with Leishmania braziliensis

Expression of activation and regulation molecules by MoDCs and
lymphocytes was evaluated by flow cytometry. The percentage of
CD11c+ cells (MoDCs) for all experiments was ≥90% (data not
shown). Briefly, MoDCs and lymphocytes were collected after 24 h of
culture and labeled with fluorochrome-conjugated antibodies to eval-
uate cell surface molecules. MoDCs were collected by centrifugation at
1100 rpm for 10 min and resuspended in RPMI 1640 medium con-
taining 10% fetal bovine serum (FBS, heat inactivated) (Gibco,
Invitrogen). Dendritic cells (DCs) were stained with fluorochrome-
conjugated anti-human monoclonal antibodies against the following
cell surface molecules: CD11c-APC (clone 3.9), CD1a-FITC (clone
HI149), IL-10Rα-PE (polyclonal), CD40-PerCP-e Fluor 710 (clone 5C3),
CD80-PerCP-e Fluor 710 (clone 2D10.4), CD86-PE (clone IT2.2), CD83-
PE-Cy7 (clone HB15e), and HLA-DR-PerCP-Cy5.5 (clone LN3) (all from
eBioscience, California). Lymphocytes were stained with fluorochrome-
conjugated anti-human monoclonal antibodies against the following
cell surface molecules: CD3-PE-Cy7 (clone UCHT1) or CD3-PerCP-Cy5.5
(clone SK7), CD4-APC (clone OKT4), CD8-FITC (clone RPA-T8), CTLA-
4-PE (clone 14D3), CD40L-PE (clone 24–34), CD25-PE-Cy7 (clone
BC96), and CD28-PerCP-Cy5.5 (clone CD28.2) (all from eBioscience,
California). They were then analyzed for 100,000 events per sample by
flow cytometer (FACSCanto, Becton Dickinson). Limits for positive
markers were defined based on negative populations and isotype con-
trols (data not shown).

The frequency of positive cells was analyzed using the FlowJo™
program (Tree Star, USA). The region containing the population of
MoDCs and lymphocytes was defined by non-specific fluorescence using
forward scatter (FSC) and side scatter (SSC) signal intensities, mea-
suring cell size and granularity, respectively (Fig. 1A). Dendritic cells
were defined based on their granularity and CD11c expression
(Fig. 1B), whereas lymphocytes were defined based on their granularity
and CD3 expression (Fig. 1C). CD4+ or CD8+ T lymphocyte sub-
populations evaluated within the lymphocyte population (Fig. 1D). A
representative gating of surface cell markers on dendritic cells and
lymphocytes of one experiment are shown in the same figure (Fig. 1E
and F, respectively).

2.4. Determination of cytokine levels

Levels of IL-10, IL-12p40, IFN-γ, and TNF were evaluated in the
supernatants of co-cultures of MoDCs and lymphocytes, according to
the manufacturer's instructions (Pharmingen, San Diego, CA). Briefly,
plates (Nunc-Immuno Plate MaxiSorp Surface, Denmark) were sensi-
tized for 4 h at 4 °C with 4 μg/mL of human anti-cytokine monoclonal
antibody (anti-IL-10, IL-12p40, IFN-γ, and TNF). The following day,
after washing the plates with PBS/Tween 0.05%, blockade of non-
specific binding was performed with PBS + 0.01% bovine albumin for
2 h at room temperature. Three washes were performed with PBS/
Tween 0.05% and then the samples, blanks, and standards were added
which were incubated at room temperature for 2 h. The plate was
washed again 3 times and biotinylated human anti-cytokine detection
antibody (2 μg/mL) was added. After incubating for one hour at room
temperature the plates were washed 4 times and the conjugate (strep-
tavidin-conjugated peroxidase) was added. The plate was incubated for
30 min at room temperature. After washing, the substrate
(3,3′,5,5′-tetramethylbenzidine + H2O2 + dimethyl sulfoxide) was
added and the plate was incubated for 20 min at room temperature. The
reaction was interrupted by the addition of H2SO4 (8 M). Optical den-
sity (OD) was read at 450 nm (Spectramax, Molecular Devices
Corporation, Sunnyvale, CA) and the values were converted to pg/mL
based on the standard curve (Soft Max Pro 5.0 Molecular Devices
Corporation, Sunnyvale, CA).

2.5. Statistical analysis

Data were analyzed using the program GraphPadPrism 5.0
(GraphPad Software, San Diego, CA USA). Differences between fre-
quencies and infectivity of MoDCs, lymphocyte frequencies, and cyto-
kine levels between groups were assessed by non-parametric ANOVA
(Kruskal Wallis test with Dunns post test). The frequencies of positive
cells were expressed as a median (minimum and maximum) of the
percentage or by mean fluorescence intensity (MFI). Cytokine con-
centrations were expressed as a mean and standard deviation (pg/mL).
Statistical significance was established in the 95% confidence interval.

3. Results

3.1. Profile of activation, maturation, co-stimulatory, and regulatory
molecules in MoDCs from patients with schistosomiasis, leishmaniasis, and
controls

MoDCs from patients with schistosomiasis and control subjects in-
fected with L. braziliensis had a lower mean fluorescence intensity (MFI)
of the HLA-DR activation molecule [36.6 (9.04–64.30 MFI); 31.3
(16–93 MFI), respectively] compared to MoDCs from patients with
leishmaniasis [46.7 (5.37–76.6 MFI); p < 0.05, Fig. 2A]. The fre-
quency of MoDCs expressing CD80 co-stimulatory molecules was lower
in patients with schistosomiasis [CD80: 7.29% (5.09–12.70)] compared
to patients with leishmaniasis [CD80: 24.75% (19.00–53.60%);
p < 0.05, Fig. 2B]. It was also observed that the frequency of MoDCs
expressing CD86 co-stimulatory molecules was lower in patients with
schistosomiasis [CD86: 49.45% (37.60–59.90%)] compared to patients
with leishmaniasis or healthy controls [CD86: 86.85%
(41.40–97.805%); 75% (42–90%), respectively; p < 0.05, Fig. 2C].
When evaluating the maturation of MoDCs we observed that the fre-
quency of cells expressing CD83 was lower in patients with schistoso-
miasis [CD83: 17.6% (5.73–28.60%)] compared to patients with
leishmaniasis [CD83: 29.60% (16.10–62.60%); p < 0.05, Fig. 2D].
The frequency of MoDCs expressing CD40 co-stimulatory molecules was
higher in patients with schistosomiasis [CD40: 21% (14–39%)] and
patients with leishmaniasis [CD40: 29% (17–60%)] compared to
healthy controls [CD40: 7% (6–8%); p < 0.005, Fig. 2E]. Finally, in
the phenotypic evaluation of MoDCs, we observed an increase in the
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frequency of these cells expressing the IL-10 receptor (IL-10R) reg-
ulatory molecule in patients with schistosomiasis [34.45%
(16.80–63.10%)] compared to patients with leishmaniasis [16.15%
(7.18–25.40%); p < 0.05, Fig. 2F]. The frequency of MoDCs expres-
sing IL-10R was greater in patients with schistosomiasis and patients
with leishmaniasis compared to healthy controls [9% (3–19%);
p < 0.05, Fig. 2F]. There was no difference in the frequency of MoDCs
expressing CD1a between the groups of patients evaluated (data not
shown).

3.2. Evaluation of the profile of activation and regulatory molecules in
CD4+ helper T lymphocytes from patients with schistosomiasis,
leishmaniasis, and controls

When evaluating T lymphocyte profiles between the groups, it was
observed that patients with leishmaniasis presented a higher frequency
of CD4+ T lymphocytes [58.00% (36.00–82.50%)] compared to
healthy controls [45% (18–65%); p < 0.05, Fig. 3A]. Regarding the
activation profile of these CD4+ T lymphocytes, we observed that pa-
tients with schistosomiasis presented a lower frequency of the CD28
activation molecule [17.80% (12.60–65.20%)] compared to leishma-
niasis patients or healthy controls [52.70% (16.70–76.20%); 69%
(22–97%); p < 0.05 and p < 0.005, respectively, Fig. 3B]. Regarding
the frequencies of CD4+CD40L+ lymphocytes, patients with schisto-
somiasis had a higher frequency of these surface markers [7.59%
(1.15–19.30%)] compared to patients with leishmaniasis [2.40%
(1.27–4.96%); p < 0.05, Fig. 3C]. Concerning CD4+CD25+ lympho-
cytes, it was observed that patients with schistosomiasis had a lower

frequency of these surface markers [5.4% (4.6–5.5%)] compared to
healthy controls [8.1% (2.0–22%); p < 0.05, Fig. 3D]. There was no
difference between the three groups of patients regarding
CD4+CD25high T lymphocyte frequency (Fig. 3E). Regarding CTLA-4, a
molecule associated with regulation of the immune response, patients
with schistosomiasis had a higher frequency of CD4+CTLA-4+ lym-
phocytes [7.72% (3.93–10.80)] when compared to patients with
leishmaniasis or healthy controls [1.93% (0.10–4.50), 2.5% (0.4–6.8);
p < 0.001 and p < 0.05, respectively, Fig. 3F].

3.3. Evaluation of the profile of activation and regulatory molecules in
CD8+ cytotoxic T lymphocytes from patients with schistosomiasis,
leishmaniasis, and controls

When we evaluated the profile of CD8+ T lymphocytes between
groups, we observed that patients with schistosomiasis presented a higher
frequency of these lymphocytes [22% (18–28%)] compared to healthy
controls [14% (8–24%); p < 0.05, Fig. 4A]. Regarding the frequency of
CD8+CD28+ T lymphocytes, we observed that patients with schistoso-
miasis presented a lower frequency of these cells [9.02% (6.81–17.70%)]
compared to patients with leishmaniasis [34.55% (23.70–60.90%);
p < 0.05, Fig. 4B]. We also observed a lower frequency of CD40L in
CD8+ T lymphocytes from patients with schistosomiasis [1.21%
(1.12–3.01%)] compared to patients with leishmaniasis [8.44%
(5.30–23.50%); p < 0.05, Fig. 4C]. Concerning to CD8+CD25+ T lym-
phocytes, we observed a higher frequency of these cells in the group of
patients with leishmaniasis [8.34% (5.13–14.20%)] compared to the
group of patients with schistosomiasis or healthy controls [3.20%

Fig. 1. (A) Selection strategy via a non-specific fluorescence densitometry plot for size (FSC) and cell granularity (SSC) to identify populations of dendritic cells and lymphocytes; (B) The
marker of MoDCs (CD11c+) evaluated within the MoDC population; (C) Total T cell populations. (D) The subpopulations CD4+ and CD8+ gated within the T lymphocytes; (E) A
representative gating of cell surface markers at the dendritic cells (HLA-DR, CD86, CD40, and IL-10R); (F) A A representative gating of surface cell markers at TCD4+ lymphocytes (CD28,
CD40L, CD25, CTLA-4).
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(2.52–5.31%), 2% (1–8%); p < 0.005 and p < 0.05, respectively,
Fig. 4D]. In contrast, CD8+ T lymphocytes from patients with schistoso-
miasis presented a greater frequency of CTLA-4 expression [11.3%
(9.61–16.5%)] compared to patients with leishmaniasis or healthy con-
trols [6.45% (2.25–11.80%), 3% (3–7%), respectively; p < 0.05, Fig. 4F].
We observed a higher frequency of CD8+CTLA-4+ T lymphocytes in pa-
tients with leishmaniasis than in healthy controls (Fig. 4F).

3.4. Evaluation of cytokine production in co-cultures of dendritic cells
infected with L. braziliensis and autologous lymphocytes from patients with
schistosomiasis, leishmaniasis, and healthy controls

When we evaluated the production of cytokines in the supernatants
of co-cultures of MoDCs infected with Leishmania braziliensis and au-
tologous lymphocytes, we observed that the cultures of patients with
schistosomiasis presented higher levels of IL-10 (1090 ± 134.6 pg/
mL) compared to patients with leishmaniasis or healthy controls

[171 ± 134 pg/mL; 52 ± 59 pg/mL, respectively; p < 0.001,
Fig. 5A). We observed that cultures from patients with leishmaniasis
presented higher IL-10 levels compared to healthy controls (Fig. 5A).
Concerning IL-12p40, TNF, and IFN-γ in supernatants from infected
MoDCs and autologous lymphocyte co-cultures, we observed lower le-
vels of IL-12p40 (235.9 ± 8.3 pg/mL), TNF (15.9 ± 0.83 pg/mL),
and IFN-γ (92.7 ± 87.9 pg/mL) in cultures from the schistosomiasis
patient group compared to cultures from patients with leishmaniasis
(IL-12p40: 1405 ± 1003 pg/mL; TNF: 746.8 ± 38.67 pg/mL; IFN-γ:
1810 ± 684 pg/mL; p < 0.05 and p < 0.005; Fig. 5A, B, C, and D,
respectively). We observed that cultures from patients with schistoso-
miasis presented lower levels of IL-12p40 (235.9 ± 8.3 pg/mL) than
healthy controls (426.2 ± 174.6 pg/mL; p < 0.05, Fig. 5B). We also
observed that cultures from leishmaniasis patients had higher levels of
TNF (746.8 ± 38.67 pg/mL) and IFN-γ (1810 ± 684 pg/mL) com-
pared to healthy controls (TNF: 17 ± 3 pg/mL; IFN-γ: 63 ± 27 pg/
mL; p < 0.05 and p < 0.005; Fig. 5C and D, respectively).

Fig. 2. Frequency of activation, co-stimulatory, maturation, and regulatory molecules in MoDCs from patients with schistosomiasis and leishmaniasis infected with L. braziliensis and co-
cultured with autologous lymphocytes. (A) CD11c+HLA-DR+ (MFI), (B) CD11c+CD80+ (%), (C) CD11c+CD86+ (%), (D) CD11c+CD83+ (%), (E) CD11c+CD40+ (%), and (F)
CD11c+IL-10R+ (%). *p < 0.05 and **p < 0.005. Kruskal Wallis test.
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3.5. Evaluation of rate of infection of MoDCs from patients with
schistosomiasis, leishmaniasis, and controls

Finally, we evaluated the frequency of MoDCs infected by L. braziliensis
and the number of intracellular amastigotes in 100 cells surveyed. After
72 h of culture, we observed a higher frequency of L. braziliensis-infected
MoDCs (78% ± 9) in the group of patients with schistosomiasis com-
pared to the cells from patients with leishmaniasis or healthy controls
[51% ± 20 and 42% ± 8, respectively; p < 0.001, Fig. 6A). There was
no statistical difference in frequency of infected MoDCs between the three
groups when cultures were evaluated at 2 h, 24 h, and 48 h post-infection.
Regarding the numbers of Leishmania braziliensis amastigotes in 100
MoDCs evaluated 2 h, 24 h, 48 h (data not shown), and 72 h (Fig. 6B)
post-infection, we observed that there was no statistical difference be-
tween groups of patients with schistosomiasis compared to those with
leishmaniasis. It was not possible to perform the evaluation after 96 h due
to the low number of cells found.

4. Discussion

Few studies have evaluated the effect of co-endemicity of
Schistosoma mansoni and Leishmania braziliensis. Some studies have
shown that the helminth Schistosoma mansoni and protozoans of the
Leishmania genus are sometimes co-endemic (Butterworth et al., 1996;
O'Neal et al., 2007). Infections with Leishmania braziliensis result in
localized skin lesions whose resolution depends on the development of
a strong effector Th1 response (Carvalho et al., 1994). Infection with S.
mansoni elicits a predominantly Th2-type immune response and during
the chronic phase of infection causes an increase in the regulatory T
response that is associated with parasitic control (Dunne et al., 2005).
The interaction between these two pathogens in vitro was evaluated in
this study by the infection of dendritic cells from patients with schis-
tosomiasis by Leishmania braziliensis. The infection of dendritic cells
from patients with schistosomiasis with L. braziliensis presented a reg-
ulatory phenotypic profile in both MoDCs and lymphocytes. We also

Fig. 3. Frequency of CD3+CD4+ T lymphocytes (A) expressing CD4+CD28+ co-stimulatory molecules (B), CD4+CD40L+ (C), CD4+CD25low (D), CD4+CD25high (E), and CD4+CTLA-4+

(F) after 24 h of co-culture with MoDCs infected for 2 h by L. braziliensis. *p < 0.05, **p < 0.005, and ***p < 0.001. Kruskal Wallis test.
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observed that cultures from patients with schistosomiasis had a higher
production of the regulatory cytokine IL-10 and a lower production of
the inflammatory cytokines IL-12p40, TNF, and IFN-γ that are im-
portant for the intracellular elimination of protozoa. This less-active
profile of dendritic cells along with a regulatory profile of lymphocytes
from patients with schistosomiasis led to a higher rate of infection in
these antigen-presenting cells compared to patients with cutaneous
leishmaniasis.

The ability of a preexisting Th2 environment to modulate the Th1
response in vitro is important in understanding how modulation of the
immune response can affect the development of the disease. The me-
chanism by which the immune response (Th2/Treg) induced by
Schistosoma mansoni modulates the Th1 response is not fully defined.
One factor that may contribute to the regulation of the Th1 response is
the production of IL-10 and TGF-β (King et al., 1996). Both cytokines

are produced at high levels during Schistosoma infection (Pearce et al.,
1991) and may prevent the killing of Leishmania sp. by macrophages
that are dependent on IFN-γ (Barral-Netto et al., 1992; Vouldoukis
et al., 1997; Louzir, 1998). Our findings demonstrate that dendritic cells
from patients with schistosomiasis are more readily infected by Leish-
mania braziliensis than those from patients with leishmaniasis. Other
studies suggest the involvement of IL-10 in this susceptibility but more
investigations are required to clarify these mechanisms. Reduced pro-
duction of the proinflammatory cytokines TNF and IL-12 in cultures
from patients with schistosomiasis may also be related to the higher
rate of infection seen in dendritic cells from these patients.

Experiments have shown that previous infection by Schistosoma
mansoni leads to a delay in the resolution of cutaneous lesions and
parasitemia during infection with Leishmania major. This coinfection
with S. mansoni resulted in a decrease in the production of IFN-γ, TNF,

Fig. 4. Frequency of CD3+CD8+ T lymphocytes (A) expressing CD8+CD28+ co-stimulatory molecules (B), CD8+CD40L+ (C), CD8+CD25+ (D), and CD8+CTLA-4+ (E) after 24 h of co-
culture with MoDCs infected for 2 h by L. braziliensis. *p < 0.05, **p < 0.005, and ***p < 0.001. Kruskal Wallis test.
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Fig. 5. Production of cytokines from dendritic cell cultures infected by L. braziliensis for 2 h after 24 h of co-culture with autologous lymphocytes from patients with schistosomiasis,
leishmaniasis, and controls. (A) IL-10, (B) IL-12p40, (C) TNF, and (D) INF-γ. *p < 0.05, **p < 0.005, and ***p < 0.001. Kruskal Wallis test.

Fig. 6. Kinetics of the frequency of MoDCs infected for 2 h by L. braziliensis
and co-cultured with autologous lymphocytes for 24h, 48h and 72h (A).
Number of intracellular amastigotes in 100 cells evaluated (B) by light
microscopy (100X). ***p < 0.001. Kruskal Wallis test.

D.M. Lopes et al. Molecular Immunology 93 (2018) 173–183

180



and NO produced by cells from draining lymph nodes after infection
with L. major. On the other hand, these cells increased their production
of IL-4 (La Flamme et al., 2002). In a study of coinfections with Schis-
tosoma mansoni and hepatitis C virus, it has been shown that persistence
of the virus and the development of chronic hepatitis are increased in
coinfected patients (Elrefaei et al., 2003). The mechanism of helminths
modulating the immune response may be related to induction of IL-10,
altering the cellular immune response and contributing to the expan-
sion of regulatory T cells (Araujo et al., 2004a,b; Taylor et al., 2005).

In this study, it was observed that MoDCs from patients with
schistosomiasis that were subsequently infected by L. braziliensis pre-
sented lower HLA-DR expression compared to MoDCs from patients
with leishmaniasis. There are studies showing that the dendritic cells
from patients infected with S. haematobium present lower levels of HLA-
DR expression compared to those not infected (Nausch et al., 2012;
Everts et al., 2010). MoDCs from healthy individuals stimulated with
soluble Schistosoma mansoni egg antigen (SEA) showed no difference in
HLA-DR expression compared to non-stimulated cells (Reis et al.,
2007). Data indicate that MoDCs stimulated with SEA in vitro exhibit a
lower level of activation compared to that induced by conventional
maturation stimuli, such as LPS (bacterial lipopolysaccharide) (Agrawal
et al., 2003). In addition to SEA, other antigens that are part of different
phases of the Schistosoma life cycle such as soluble schistosomulum
stage antigen (SSA) and soluble adult worm antigen (SWA) are also
unable to conventionally activate dendritic cells in an experimental
model (Zaccone et al., 2003; Trottein et al., 2004). DCs from mice co-
infected with S. japonicum and Plasmodium berghei show lower levels of
expression of HLA-DR and CD86 than DCs from P. berghei-monoinfected
mice (Wang et al., 2013). In our study, the frequencies of MoDCs ex-
pressing CD80 and CD86 co-stimulatory molecules and the CD83 ma-
turation molecule were lower in patients with schistosomiasis com-
pared to patients with leishmaniasis. Schistosoma antigens reduce the
expression of MHC class II, CD80, and CD86 as well as decrease the
production of IL-12 by DCs from mice stimulated with LPS (MacDonald
et al., 2002a,b; Jankovic et al., 2004; Sun et al., 2012).

There was no difference between the two groups of patients re-
garding the frequency of MoDCs expressing CD1a and CD40. Activation
of DCs by S. mansoni is promoted by the interaction CD40 and CD154
and inhibited by IL-10. DCs isolated from CD154-knockout mice in-
fected by S. mansoni exhibited low levels of activation (Straw et al.,
2003), whereas DCs isolated from IL-10-knockout mice showed a hy-
peractivated phenotype (McKee et al., 2004). Although DCs stimulated
by SEA do not increase CD40 expression (MacDonald et al., 2001), a
deficiency in this molecule or of CD154 prevents the development of a
Th2 response in these mice (MacDonald et al., 2002a,b). It is known
that IL-12 production and polarization of a Th1 response in DCs is
mediated by CD40 (Cella et al., 1996) and its involvement may be re-
lated to CD8+ T cell responses (Bennett et al., 1998; Ridge et al., 1998).

It has been demonstrated that immature dendritic cells are more
efficient in inducing regulatory T cells (reviewed by Suciu-Foca et al.,
2005) and that the co-cultivation of bone marrow-derived dendritic
cells (BMDCs) from mice with CD4+ T cells stimulated by recombinant
Schistosoma japonicum rSj16 antigen interferes in the maturation of
BMDCs, while inducing the polarization of CD4+CD25+Foxp3+ T cells
(Sun et al., 2012).

Another study evaluating DCs from Schistosoma mansoni-infected
mice showed a 2- to 3-fold increase in MHC class II, CD80, and CD40
expression compared to DCs from uninfected animals. However, IL-12
production was not noted to increase during S. mansoni infection (Straw
et al., 2003). On the other hand, Toxoplasma gondii infection resulted in
an increase in the expression of activation-associated molecules (MHC
class II, CD80, CD86, and CD40) and promoted increased production of
IL-12 by DCs (Straw et al., 2003). In this study by Straw et al., a greater
activation of DCs was observed in mice infected with T. gondii com-
pared to animals infected with S. mansoni (Straw et al., 2003).

Regarding the evaluation of IL-10R expression in antigen-presenting

cells, an increase in the frequency of IL-10R+ MoDCs was observed in
the group of patients with schistosomiasis when compared to patients
with leishmaniasis. Data from our group showed that dendritic cells
from patients with cutaneous leishmaniasis increased IL-10R+ expres-
sion after stimulation with Schistosoma mansoni tegument antigen
(rSm29) and soluble Leishmania antigen (SLA) when compared to cul-
tures stimulated with SLA alone (Lopes et al., 2014).

In our study, we observed that patients with schistosomiasis have a
lower frequency of CD4+ T lymphocytes compared to healthy controls.
Regarding the activation profile of these CD4+ T lymphocytes, we
observed that patients with schistosomiasis presented a lower fre-
quency of the CD28 activation molecule compared to CD4+ T lym-
phocytes from patients with leishmaniasis. There is evidence that
B7:CD28 interaction may be important for the development of a Th2-
type response during S. mansoni infection (Subramanian et al., 1997;
Hernandez et al., 1999; Rutitzky et al., 2003). This lower expression of
the marker of CD4+ T lymphocyte activation may be associated with a
deficiency in the effector function required for the elimination of
Leishmania.

As for the expression of CD40L in these CD4+ T lymphocytes, we
observed that patients with schistosomiasis presented a higher fre-
quency of this molecule compared to patients with leishmaniasis. In
patients with schistosomiasis, we observed a higher frequency of CD4+

lymphocytes expressing CTLA-4 compared to CD4+ lymphocytes from
patients with leishmaniasis. There was no difference between the two
groups of patients regarding CD4+ lymphocytes expressing CD25low or
CD25high. Bafica et al. showed an increase in CD4+ T lymphocytes
expressing CTLA-4 in PBMCs from patients with CL when stimulated
with Schistosoma mansoni antigens (Bafica et al., 2012).

Regarding the evaluation of surface molecules in CD8+ T lympho-
cytes, as was observed with the CD4+ T lymphocytes, a lower fre-
quency of CD28-expressing cells was observed in the group of patients
with schistosomiasis compared to the group of patients with leishma-
niasis. We also observed a lower frequency of CD40L in CD8+ T lym-
phocytes from patients with schistosomiasis compared to patients with
leishmaniasis. When we evaluated the expression of CD25 we observed
a lower frequency of this molecule in CD8+ lymphocytes from patients
with schistosomiasis compared to patients with leishmaniasis. On the
other hand, CD8+ T lymphocytes from patients with schistosomiasis
presented a higher frequency of CTLA-4 than patients with leishma-
niasis. In coinfections by the helminth Heligmosomoides polygyrus and
the protozoan Toxoplasma gondii, the nematode-induced response sup-
presses CD8+ T lymphocytes with decreased IFN-γ (Marple et al.,
2017).

When we evaluated the production of cytokines in the supernatants
of cultures of dendritic cells infected with Leishmania braziliensis and co-
cultivated with autologous lymphocytes, we observed that in the group
of patients with schistosomiasis there were higher levels of IL-10 and
lower levels of IL-12p40, IFN-γ, and TNF compared to cultures from
patients with leishmaniasis. Data from our group showed that cultured
PBMCs from leishmaniasis patients after being stimulated with
Schistosoma mansoni antigens were able to increase IL-10 production
and decrease TNF and IFN-γ production (Bafica et al., 2011). IL-10
derived from DCs may limit Th1 expansion through the inhibition of IL-
12 itself (Corinti et al., 2001) or through its ability to stimulate IL-10
production from T cells (McGuirk et al., 2002), thus reducing the pro-
duction of TNF and IFN-γ. It is known that helminth infection induces
IL-10 that is capable of modulating the immune response. However, a
coinfection study by Yoshida et al. (1999) showed that infection of mice
by S. mansoni did not affect the course of L. major infection. Cells from
lymph nodes of these animals continued to produce IFN-γ, which is
important for macrophage activation and elimination of intracellular
parasites (Yoshida et al., 1999).

A higher frequency of L. braziliensis-infected MoDCs was observed in
cultures of 72 h from patients with schistosomiasis compared to pa-
tients with leishmaniasis. There was no difference between the two
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groups of patients regarding the frequency of infected MoDCs after 2 h,
24 h, or 48 h nor in the number of Leishmania braziliensis amastigotes in
100 MoDCs evaluated at different times. Upon being stimulated with
IFN-γ, macrophages isolated from S. mansoni-infected mice failed to
eliminate L. major after infection in vitro (La Flamme et al., 2002).
Despite the influence of helminth infection on the course of leishma-
niasis, it has been observed in humans that early antihelminthic treat-
ment neither improves the outcome of the lesion nor decreases the
healing time of these lesions (Newlove et al., 2011).

Due to the regulation observed in dendritic cells infected by L.
braziliensis and in lymphocytes of patients with schistosomiasis, this
study suggests that coinfection may worsen clinical outcomes of leish-
maniasis by preventing the induction of an effector Th1 response
against the protozoan.

5. Conclusion

The MoDCs of individuals with schistosomiasis are more susceptible
to L. braziliensis infection, possibly because they have a lower degree of
activation and present a regulatory profile.
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