
Contents lists available at ScienceDirect

Acta Tropica

journal homepage: www.elsevier.com/locate/actatropica

Time series analysis of dengue surveillance data in two Brazilian cities

Fanny Cortesa,⁎, Celina Maria Turchi Martellib, Ricardo Arraes de Alencar Ximenesa,c,
Ulisses Ramos Montarroyosa, João Bosco Siqueira Juniord, Oswaldo Gonçalves Cruze,
Neal Alexanderf, Wayner Vieira de Souzab

aUniversity of Pernambuco, Recife, Brazil
bAggeu Magalhaes Institute, Fiocruz Recife, Brazil
c Federal University of Pernambuco, Recife, Brazil
d Federal University of Goias, Goiania, Brazil
eOswaldo Cruz Institute, Fiocruz Rio de Janeiro, Brazil
f London School of Hygiene and Tropical Medicine, United Kingdom

A R T I C L E I N F O

Keywords:
Dengue
Time series analysis
Arima
Brazil
Forecasting
America region

A B S T R A C T

The aim of the study was to evaluate the temporal patterns of dengue incidence from 2001 to 2014 and forecast
for 2015 in two Brazilian cities. We analysed dengue surveillance data (SINAN) from Recife, 1.6 million po-
pulation, and Goiania, 1.4 million population. We used Auto-Regressive Integrated Moving Average (ARIMA)
modelling of monthly notified dengue incidence (2001–2014). Forecasting models (95% prediction interval)
were developed to predict numbers of dengue cases for 2015. During the study period, 73,479 dengue cases were
reported in Recife varying from 11 cases/100,000 inhab (2004) to 2418 cases/100,000 inhab (2002). In Goiania,
253,008 dengue cases were reported and the yearly incidence varied from 293 cases/100,000 inhab (2004) to
3927 cases/100,000 inhab (2013). Trend was the most important component for Recife, while seasonality was
the most important one in Goiania. For Recife, the best fitted model was ARIMA (1,1,3)12 and for Goiania
Seasonal ARIMA (1,0,2) (1,1,2)12. The model predicted 4254 dengue cases for Recife in 2015; SINAN registered
35,724 cases. For Goiania the model predicted 33,757 cases for 2015; the reported number of cases by SINAN
was 74,095, within the 95% prediction interval. The difference between notified and forecasted dengue cases in
Recife can be explained by the co-circulation of dengue and Zika virus in 2015. In this year, all cases with rash
were notified as “dengue-like” illness. The ARIMA models may be considered a baseline for the time series
analysis of dengue incidence before the Zika epidemic.

1. Introduction

Dengue is an important vector-borne disease, transmitted by urban
adapted Aedes mosquitoes and a major global public health threat. Four
distinct serotypes (DENV-1 to DENV-4) cause both asymptomatic in-
fections and a wide spectrum of clinical forms, ranging from mild to
severe (Guzman and Harris, 2015; Messina et al., 2014; The Trung and
Wills, 2014). The epidemiology of dengue is modulated by the sus-
ceptible population of humans, mosquito density, the profile of circu-
lating serotypes, and environmental conditions (Brady et al., 2015,
2012; Stanaway et al., 2016). There is no specific antiviral treatment for
dengue. Control relies mainly on surveillance and integrated vector
interventions in urban areas (Guzman and Harris, 2015; Wilder-Smith
et al., 2016). A dengue vaccine (CYD-TDF) was recently tested and

licensed in six countries (Asian and Latin America) (Ferguson et al.,
2016) but not yet recommended by World Health Organization (WHO)
(WHO, 2016a). Another new dengue vaccine (TetraVax-DV) is being
evaluated in several Brazilian settings (ClinicalTrials.gov, 2016).

Worldwide, dengue cases increased from 2.2 million in 2010–3.2
million in 2015, with transmission detected in new areas and large
outbreaks in 2015. Approximately half a million severe dengue cases
are estimated to require hospitalization each year, with 2.5% resulting
in death (WHO, 2016b). Other estimates indicated an even higher
magnitude of dengue infection and disease worldwide, ranging from 60
million (Stanaway et al., 2016) to 96 million of symptomatic cases in
2010 (Bhatt et al., 2013). The Americas accounted for 2.35 million
cases (∼73.4%) of dengue; with more than 10 thousand severe cases
and 1181 deaths being estimated (WHO, 2016b). Brazil and Mexico had
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the bulk of cases in the Americas (Bhatt et al., 2013). Reducing mor-
tality and morbidity are among the goals of WHO global strategy for
dengue prevention and control for the period 2012–2020 (WHO, 2012).
In 2013, the global burden of dengue was estimated as 1.14 million
disability-adjusted life-years, based on both fatal and non-fatal out-
comes (Stanaway et al., 2016). A multicentre study conducted in
2012–2013 in Brazil showed a high economic impact of dengue at so-
cietal level during epidemic and endemic periods (Martelli et al., 2015).

Surveillance of infectious disease is defined as the systematic re-
porting, monitoring and data analysis of cases, aimed at public health
prevention and control (Porta, 2014). Brazil reported a dramatic in-
crease in dengue incidence in 2015, with over 1.5 million cases, ap-
proximately three times higher than the previous year (Brasil, 2016;
WHO, 2016b). Brazil has one of the most comprehensive dengue sur-
veillance systems (Brady et al., 2015), which has been widely used to
describe the epidemiology of dengue (Coelho et al., 2016; Ruberto
et al., 2015; Siqueira et al., 2005; Teixeira et al., 2013), define out-
breaks (Brady et al., 2015; Runge-Ranzinger et al., 2008) and dynamics
of dengue infection in different urban areas of the country (Amaku
et al., 2016, 2015). Mathematical and statistical models are frequently
used to describe dynamics of dengue transmission (Amaku et al., 2016,
2015; Chen et al., 2015; Silawan et al., 2008). Time series models can
evaluate trend and seasonality patterns of dengue incidence and are
useful for forecasting. Several time series analysis of dengue described
patterns of dengue in Brazilian cities, such as: Rio de Janeiro (Luz et al.,
2008), Campinas and Ribeirao Preto (Martinez et al., 2011; Martinez
and Da Silva, 2011). The performance of infectious diseases forecasts
was recently evaluated for Mexico showing that climate data did not
significantly improve the seasonal autoregressive model (Johansson
et al., 2016).

Recently, cocirculation of other arboviruses, in particular chi-
kungunya (2014) and Zika (2015), was detected in Brazil. These vector-
borne diseases have similar epidemiology and symptoms which might
lead to misclassification of dengue cases and a possible overestimation
of dengue notification (Faria et al., 2016; Musso and Gubler, 2016;
Silva et al., 2016; Wilder-Smith et al., 2016). Cocirculation of dengue,
Zika and/or chikungunya viruses might occur in areas infested with
Aedes aegypti mosquitoes since this competent vector has a widespread
distribution in Brazil (Musso and Gubler, 2016). Zika cases were not a
notifiable disease before 2016, therefore cases were registered as
“dengue-like” disease in the previous year in Brazil (Brito et al., 2016;
Pessôa et al., 2016).

Our study aimed to evaluate the temporal patterns of dengue in-
cidence from 2001 to 2014 in Recife in the Northeast region and
Goiania in the Midwest region using Autoregressive Integrated Moving
Average (ARIMA) models. We constructed time series models for
dengue and forecasted the dengue incidence for 2015. This analysis is
invaluable to evaluate temporal trend of dengue incidence before the
introduction of these other arboviruses and any dengue vaccine.

2. Material and methods

2.1. Study areas

We analysed dengue surveillance data from two Brazilian cities:
Recife, capital of Pernambuco State, and Goiania, capital of Goias State.
Recife is located in the Northeast region, on the Atlantic coast (08° 03′
South latitude and 34° 52′ West longitude), with annual average tem-
perature of 25.8 °C and 1804mm precipitation. The estimated 2015
population was approximately 1.6 million inhabitants, with a popula-
tion density 7040 inhabitants/km2 (Instituto Brasileiro de Geografia e
Estatistica, 2015). Goiania, located in the Midwest region (16° 41′
South latitude 49° 15′ West longitude) at an altitude of 749m, has
annual average temperature of 23.1 °C and 1414mm precipitation. Its
estimated 2015 population was approximately 1.4 million inhabitants,
with a population density of 1777 inhabitants/km2 (Instituto Brasileiro

de Geografia e Estatistica, 2015). These cities are located in two distinct
regions of Brazil and have distinct pattern of dengue disease. Although
both cities present high dengue incidence, the DENV-1 serotype was
introduced to Recife seven years before Goiania (1987 and 1994 re-
spectively) (Amaku et al., 2016; Barcellos and Lowe, 2014; Siqueira
et al., 2005; Teixeira et al., 2013). These distinct epidemiological
characteristics offer opportunity to assess the generalizability of mod-
elling techniques.

2.2. Data collection

We used the dengue data extracted from the Brazilian National
Notifiable Diseases Information System (SINAN) for Recife and Goiania,
from 2001 to 2015. All suspected outpatient and inpatients dengue
cases from public and private health services are included in the SINAN
database (Teixeira et al., 2013). This electronic data is transmitted from
municipal to state and national levels. The surveillance report include
data on: demographic, days since onset of symptoms, clinical findings,
serologic tests (IgM antibodies, NS1 detection), virus isolation, RT-PCR,
DENV serotype, histopathology and imunohistochemistry, case classi-
fication according to disease severity and outcome. In this dataset, the
laboratory results were rarely available since it is not a required data
for dengue notification. According to the Brazilian Ministry of Health
(MoH) and WHO, dengue case is defined as fever (2–7 days) and two of
the following criteria: nausea/vomiting, rash, aches and pains, positive
tourniquet test, leukopenia and any warning sign. Laboratory con-
firmation is done by virological, molecular and/or serological methods.
(Brasil, 2013, 2009). During the period 2001–2013, cases were classi-
fied as: dengue fever, dengue with complications, dengue haemorrhagic
fever or dengue shock syndrome. Since 2014, Brazilian MoH adopted
the revised 2009 WHO classification: dengue fever, dengue with
warning signs and severe dengue (Brasil, 2013, 2009; WHO, 2009). We
included all dengue cases confirmed by clinical/epidemiological and/or
laboratorial, registered in Recife and Goiania.

2.3. Data standardization

During the study period, the dataset for the years 2001–2006,
2007–2013 and 2014 had differences regarding number and variables
names, requiring harmonization. After checking and cleaning the da-
taset was standardized for the entire period to perform time series
analysis for Recife and Goiania. Duplicated and missing records were
identified and deleted by SINAN automated routine (Coelho et al.,
2016). We excluded dengue cases coded as discarded, i.e. an initial
dengue diagnosis having superseded, using the dengue classification
variable.

2.4. Data management and statistical analysis

We explored the temporal patterns of dengue cases for each city by
plotting monthly incidence for the study period. We evaluated the
overall features of the data using this graphical approach: trends (in-
crease, decrease), seasonality, outliers, smooth changes in structure
(Chatfield, 2000).

We performed Seasonal Decomposition of Time Series by Loess
(STL). Time series were decomposed into three components: trend,
seasonal and remainder (residual). STL decomposition data were
graphed on four panels: data (monthly dengue incidence), seasonal
(variation in the data within a year), trend (variation in the data in the
long-term period) and remainder (variation that remains after re-
moving seasonal and trend components) (Cleveland et al., 1990;
Silawan et al., 2008).

When seasonality was an important component we applied ex-
ploratory data analysis to display the variation of the monthly dengue
incidence (2001–2014). The seasonal box-plot allows to show the in-
cidence of dengue distribution, including median values, the first and
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third quartile ranges, expected minimum and maximum values, outliers
and extreme values (Tukey, 1977).

2.5. The ARIMA models

Estimating parameters
We used the Box-Jenkins approach to fit Auto-Regressive Integrated

Moving Average (ARIMA) models, which are defined by three terms (p,
d, q) and used for non-seasonal time series. The first step of the model
identification was to evaluate the trend component (d). We explored the
monthly incidence of dengue cases with 12 months periodicity (S= 12
observations per year). We transformed the series by differencing the
scores (months) to make it stationary, if appropriate. The number of
differencing operations is the d parameter. Logarithmic transformation
(logarithm natural, ln) was applied to stabilize the variance in one city
(Goiania). As a second step, we identified the auto-regressive (AR)
component (value of p). As a third step, we identified the moving
average (MA) component, value of q (Box and Jenkins, 1976; Hyndman
and Khandakar, 2008; Nobre et al., 2001).

We included the seasonal component using Seasonal Auto-
Regressive Integrated Moving Average (SARIMA) model if the previous
analysis indicated evidence of seasonality. This component has three
more parameters denoted P, D and Q (Hyndman and Athanasopoulos,
2013; Nobre et al., 2001). These parameters are similar to p, d and q but
operate on the scale of the periodicity (12 months). For example, P=1
means an autoregressive term of order 1 on the annual scale, i.e. the
value in any month depends, in part, on the value in the same month of
the previous year.

Analysis of the shape of the autocorrelation functions (ACF) and
partial autocorrelation functions (PACF) allowed estimation of the AR
and MA parameters and therefore identification of plausible models
(Hamilton and Watts, 1978).

In order to identify the best model, we fitted several ARIMA models
and carried out diagnostic validation considering the distribution of
standardized residuals. We applied diagnosis checks (Ljung-Box test) to
the residuals for each estimated model; residuals must be equivalent to
white noise (Box and Pierce, 1970; Ljung and Box, 1978). We compared
the models by the corrected Akaike Information Criterion (AICc) and
selected the one with the lowest AICc value (Akaike, 1974). We used
the final ARIMA models to predict monthly dengue cases for the year of
2015 (12 months), with 95% prediction interval (95% PI). We com-
pared these predictions with the observed data (SINAN).

The statistical analysis for STL decomposition, estimation of ARIMA
models and figures were performed using the package stats, software R
version 3.3.3 (The R Foundation for Statistical Computing, Vienna,
Austria; http://www.r-project.org).

3. Results

In the city of Recife the yearly incidence of dengue varied from 139
cases in 2004–35,044 cases in 2002, during the study period
(2001–2014). The higher incidences were registered in the years: 2002
(n=35,044) considered epidemic year, 2010 (n= 9900) and 2012
(n=10,146). During the study period, 73,479 dengue cases were re-
ported in Recife. We pointed out the only peak of cases in 2002 with
around 98% of cases between January and May followed by several
years with lower occurence of dengue cases. (Fig. 1A)

In the city of Goiania the yearly incidence of dengue varied from
3462 in 2004–54,724 in 2013. The epidemic years were: 2002
(n=15,437), 2008 (n=22,088), 2009 (n= 23,992), 2010
(n=43,360), 2013 (n= 54,724) and 2014 (n=26,547). During the
study period, 253,008 dengue cases were reported in Goiania (Fig. 1B).

Fig. 2 presents the monthly cases (ln data for Goiania), trend, sea-
sonal and residual (remainder) components derived from seasonal-
trend decomposition for Recife (A) and Goiania (B). The STL decom-
position based on loess showed that trend is the most important

component for the city of Recife (Fig. 2A), while seasonality is the most
important one in Goiania (Fig. 2B).

Considering that seasonality was an important component for the
city of Goiania we performed exploratory analysis of dengue incidence
(ln data) for the period 2001–2014. The analysis showed that highest
incidence was registered from December to May with one outlier of
13,985 dengue cases registered in January 2010; lowest incidence from
July to September, and cases increased from October (Fig. 3).

Legend. The box encompasses 50% of the distribution, line within
the box represents median values, border lines represent the first and
the third quartile and dot represents outliers.

We tested several models for the city of Recife; however, none was
adequate according to the model diagnosis. We opted to exclude the
peak year of 2002 due to its outlier value. This epidemiological pattern
was also reported by Amaku et al., indicating different intensity of
transmission after 2002 (Amaku et al., 2016). After the exclusion of
2002 and the previous year (2001), it was possible to build-up an ad-
justed model for the period 2003–2014 and forecasting for 2015. For
Recife, the autocorrelation functions (ACFs) and partial autocorrelation
functions (PACFs) suggested that the best fit model was ARIMA
(1,1,3)12. Surveillance data registered 35,467 dengue cases between
2003 and 2014; our model fitted 33,372 cases for the same period. After
fitting the model for the period 2003–2014 we used the model to the
forecast monthly dengue number of cases for the year 2015. (Fig. 4A
and Table 1)

For the city of Goiania, we used the natural logarithm of dengue
incidence for 2001–2014. Four ARIMA models were tested; three were
excluded by model diagnosis. Analysis of ACFs and PACFs suggested
that the best fit model was SARIMA (1,0,2) (1,1,2)12. In this time series,
there was a strong seasonal component (1,1,2) together with the
aseasonal component (1,0,2), considered mixed model. This final
SARIMA model was auto-fitted with drift by R software. Between 2001
and 2014 SINAN registered 253,008 dengue cases; our model estimated
235,080 cases for this period. (Fig. 4B and Table 1)

Blue line represents the observed monthly dengue cases; Red dotted
line represents fitted monthly dengue cases; Black line and shaded area

Fig. 1. Reported monthly dengue case data in Recife (A) and Goiania (B), Brazil
(2001–2014).
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show forecast for 2015 with 95% prediction interval.
AR: autoregressive; MA: moving average; SAR: seasonal auto-

regressive; SMA: seasonal moving average; AICc: corrected Akaike
Information Criterion

Table 2 shows the monthly forecast of dengue cases according to the
model in 2015 with 95% prediction interval (95% PI) for both cities.
For Recife, the model predicted total number of dengue cases for 2015

was 4254 varying from 440 in January to 325 cases in December. In
2015, the maximum predicted number of dengue cases was 15,543. The
surveillance system (SINAN) registered a total of 35,724 dengue cases
and/or “dengue-like” illness for the city of Recife; the peak months
were March (5426 cases) and April (6138 cases), June-September 2015
has the lowest incidence recorded, from 1302 to 1948 cases. For
Goiania, the forecasting model varied from 5874 dengue cases in March

Fig. 2. Trend, seasonal and residual (remainder) components derived from STL decomposition of monthly dengue cases for the city of Recife (A) and Goiania (B) (ln data), during
2001–2014.

Fig. 3. Seasonal box-plot distribution of monthly dengue cases (ln data) in Goiania, Brazil (2001–2014).
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2015–737 cases in September 2015. For the entire year of 2015, the
forecasted was 33,757 dengue cases, with a maximum of 127,191 cases.
In 2015, a total of 74,095 dengue cases and/or “dengue-like” illness
were registered by SINAN in Goiania.

4. Discussion

In our study the time series analysis of dengue incidence
(2001–2014) suggested that large variation of transmission patterns in
two Brazilian cities. For Recife, Northeast region, the data showed one
large peak in the year 2002 with more than 35 thousand cases, followed
by two small peaks in 2010 and 2012. For Goiania, Midwest region,
there was an increase in the incidence of dengue with several epidemic
peaks years reaching more than 54 thousand cases in 2013. While the
best fitted model for the city of Recife was non seasonal ARIMA
(1,1,3)12; for the city of Goiania the seasonal component was strong and
the best fitted model was SARIMA (1,0,2)(1,1,2)12. During the study
period, December to May were the months with higher dengue in-
cidence in Goiania, coinciding with the rainy season regionally. In
contrast, the city of Recife has fairly constant climate values of high

Fig. 4. Monthly time series 2003–2014 for Recife for observed and fitted dengue cases, and forecast dengue cases for 2015 (A); Monthly time series 2001–2014 for Goiania for observed
and fitted dengue cases (ln data), and forecast monthly dengue cases for 2015 (B).

Table 1
ARIMA models, coefficients and corrected Akaike Information Criterion for Recife and Goiania, Brazil.

ARIMA (p,d,q) (P,D,Q)S AR1 MA1 MA2 MA3 SAR1 SMA1 SMA2 Drift AICc

Recife ARIMA (1,1,3)12 0.566 −0.024 −0.535 −0.380 1,943.03
Goiania SARIMA (1,0,2) (1,1,2)12 0.666 0.422 0.184 −0.692 −0.080 −0.653 0.014 176.84

Table 2
Forecasted monthly dengue cases (95% prediction interval) for the cities of Recife and
Goiania, 2015.

2015 Recife Goiania

Predicted
cases

Lower
95% PI

Higher
95% PI

Predicted
cases

Lower
95% PI

Higher
95% PI

January 440 29 851 3744 1732 8095
February 429 – 1184 5452 1746 17,026
March 384 – 1312 5874 1543 22,360
April 358 1343 5549 1347 22,855
May 344 – 1352 4030 946 17,168
June 336 – 1354 1837 425 7940
July 331 – 1355 896 206 3897
August 328 – 1356 814 187 3551
September 327 – 1357 737 169 3218
October 326 – 1358 1115 255 4874
November 326 – 1360 1479 338 6466
December 325 – 1361 2229 510 9741
Total 4254 15,543 33,757 9404 127,191
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humidity and precipitation throughout the year (Siqueira et al., 2005;
Teixeira et al., 2013). Therefore, the time series analysis allowed to
describe different patterns of dengue distribution in two Brazilian set-
tings.

How to interpret such distinct patterns of dengue distribution
during the same time period in two Brazilian cities? Brazil is a con-
tinental country and dengue virus was introduced in the late 80′s in
Recife (Atlantic coast) and in the 90′s, seven years later, DENV-1 was
the first serotype to be detected in Goiania (Midwest). Interestingly, a
previous study of the diffusion of dengue in Brazil used dengue in-
cidence extracted from the surveillance data (SINAN), using the capital
of Recife and Goiania as examples, as in our study. The authors de-
scribed differences in the time period of achieving high intensity of
dengue transmission when taking into account the threshold over 300
cases per 100,000 inhabitants for intense dengue transmission
(Barcellos and Lowe, 2014). In Recife, a high intensity of dengue
transmission was detected earlier – before 2002 – while in Goiania this
threshold was reached later: between 2002 and 2005. In general, dif-
ferences in the incidence of dengue reflect the time period of the in-
tensity of dengue virus circulation in different urban areas, the vector
density and the remaining susceptible population (Amaku et al., 2016;
Barcellos and Lowe, 2014; Morato et al., 2015).

In Rio de Janeiro, the time series analysis of dengue incidence from
1997 to 2004 using seasonal ARIMA was considered adequate to predict
dengue incidence for the year 2005, suggesting that this model could be
expanded to other geographical areas and to monitoring dengue and
other infectious diseases (Luz et al., 2008). In concordance with the
previous study, the results from time series analysis in two Brazilian
cities (Campinas and Ribeirao Preto) in Sao Paulo State, considered that
seasonal ARIMA models were reliable for prediction of the dengue in-
cidence one year ahead. However, the authors pointed out that some-
times forecasting dengue incidence in epidemic years could be more
complex due to the possibility of the introduction or reintroduction of
dengue serotypes and the lack of immunity of population (Martinez
et al., 2011; Martinez and Da Silva, 2011). Amaku et al. (2016) ana-
lysed the dynamics of dengue transmission using Ross-Macdonald
model for the city of Recife in order to predict outbreaks of dengue
fever, using surveillance data for the last decade (Amaku et al., 2016).
The authors also described the 2001–2002 outbreak followed by years
with marginal dengue transmission. They explained this epidemiolo-
gical context by the reduced number of susceptible individuals due to
herd immunity since DENV serotypes (DENV1 to DENV4) circulated in
the last the three decades in Recife (Amaku et al., 2016, 2015; Cordeiro
et al., 2007). Seroprevalence studies for dengue antibodies assessment
conducted in Recife in 2005–2006 showed that almost 90% of Recife
population had immunity to one or more serotypes (Braga et al., 2010;
Castanha et al., 2013).

In our study it was not possible to link the dengue outbreaks with
the predominant serotype due to the paucity of serotype data in the
surveillance system for the studied period (data not shown). A review of
the epidemiological trend of dengue disease in Brazil 2000–2010 in-
dicated that DENV-1 was the predominant serotype at the beginning of
the decade; DENV-3 from 2003 and DENV-2 from 2007 (Teixeira et al.,
2013).

The estimated ARIMA model for Goiania fitted adequately to the
observed dengue incidence data for the 2001–2014 and the exclusion of
the years 2001–2002 was necessary for model build for Recife. For
Recife, the model predicted ∼15.5 thousand dengue cases as the higher
prediction interval in 2015. This forecasting indicated at least 20,000
cases less than the total of 35,729 cases registered by SINAN. In fact,
during the year 2015, a MoH recommendation led to all cases of ex-
anthematic disease being notified as “dengue-like”, hence over-
estimating dengue incidence. This disparity between observed and
predicted cases may now be explained by the introduction of Zika virus
in the city in 2015 (Brasil, 2016). Assuming that the model prediction is
a reasonable reflection of dengue incidence, approximately 20 thousand

of Zika cases could have been misdiagnosed as dengue virus infection
during the first wave of Zika virus in Recife. A cross-sectional study,
conducted a during the peak of 2015 outbreak in Recife showed that
86% of 1046 suspected cases of arbovirus could be classified as Zika
cases (Brito et al., 2016). Our results showed that the 2015 estimated
dengue cases from the ARIMA model could be from 44% to 88% smaller
than the registered cases by SINAN. The cocirculation of Zika, chi-
kungunya, and DENV-1 was also described in this study area in 2015
(Pessôa et al., 2016). Recent surveillance-based analysis (2015–2016)
showed that approximately 80% initially suspected dengue cases have
been discarded after investigation and considered as possible Zika virus
cases (de Oliveira et al., 2017).

The present study has the inherent limitation of using secondary
data from dengue surveillance. Such data are prone to underreporting
or over-reporting during endemic or epidemic years, or bias to health
units capacity in reporting dengue cases (Barcellos and Lowe, 2014;
Morato et al., 2015; Runge-Ranzinger et al., 2008). Another drawback
of dengue surveillance is the scarce data on serotypes, hampering the
identification of the main serotypes causing outbreaks (Barcellos and
Lowe, 2014). We tested several models for the city of Recife but the
ARIMA model was considered appropriate only when we excluded the
year 2002, the largest outbreak, and consequently 2001 from the time
series. As noted in our study the introduction of Zika virus and/or other
urban vector-borne diseases like chikungunya might distort the dengue
notification as occurred in the last three years in Brazil (Brasil, 2016;
Pessôa et al., 2016). Climate variables, vector density and spatial dis-
tribution of cases were out of the scope of the analysis; however, the
seasonality patterns presented in Goiania may be due to climate var-
iation. Including climate variables in the model could give a better fit
but this has been a controversial issue in the literature, some studies
indicated an improvement while others did not find significant change
in the adjusted model (Johansson et al., 2016).

5. Conclusions

Our findings showed evidence of the heterogeneity of dengue tem-
poral patterns in two settings in Brazil during 2001–2014. The ARIMA
models fitted adequately for the time series of dengue incidence for
Recife and Goiania, the later with a seasonal component. The adequacy
of prediction might be hampered due to the co-circulation of other
arbovirus in the year of prediction. Differences between the models may
be explained by the introduction of dengue virus in the late 80′s in
Recife and in the 90′s in Goiania and important differences in the in-
tensity of transmission. The time series models may be considered as a
baseline for the time series analysis of dengue incidence before the Zika
epidemic (2015), chikungunya virus introduction (2014) and before
DENV vaccine implementation in Brazil. It was also an opportunity to
estimate the number of Zika cases in 2015 previous to the im-
plementation of the Zika notification. The time series analysis could be
applied to other settings in order to provide early warning of the in-
crease in arbovirus diseases.
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