# MANUAL DE MORFOMETRIA ESPESSURA DA MEMBRANA BASAL GLOMERULAR



FIOCRUZ Fundação Oswaldo Cruz



Instituto Gonçalo Moniz

# Manual de Morfometria da Espessura da Membrana Basal Glomerular

Débora Leal Viana Cláudio Pereira Figueira Washington LC dos-Santos

Salvador 2018

# **EQUIPE TÉCNICA**

Esta obra é resultado de um trabalho produzido durante o curso de mestrado realizado pela Bióloga Débora Viana Leal, intitulado Definição da Espessura da Membrana Basal Glomerular para o Diagnóstico de Doenças Glomerulares na Bahia: um Estudo em Biópsia, apresentado ao curso de Pós-graduação em Biotecnologia em Saúde e Medicina Investigativa do Instituto Gonçalo Moniz–Fiocruz/BA.

Autores:

Débora Leal Viana

Bióloga, graduada pelo Centro Universitário Jorge Amado (UNIJORGE), Mestre em Biotecnologia em Saúde e Medicina Investigativa, IGM-FIOCRUZ.

Cláudio Pereira Figueira

Farmacêutico, graduado pela Universidade Federal da Bahia (UFBA), Doutor em Patologia Humana, UFBA - FIOCRUZ. Técnico do Serviço de Microscopia Eletrônica - IGM-FIOCRUZ/BA

Washington LC dos-Santos

Médico, Patologista, ambos pela UFBA, Doutor em Patologia, King's College, Univ. de Londres. Pesquisador da FIOCRUZ. Professor Adjunto da Faculdade de Medicina da - UFBA



## AGRADECIMENTOS

Agradecemos aos pacientes, à direção e aos funcionários do Hospital Ana Nery, Hospital Geral Roberto Santos e do Hospital Estadual da Criança pela disponibilização das amostras e utilizadas neste trabalho.

Ao Laboratório de Patologia Estrutural e Molecular (LAPEM) e ao Serviço de Microscopia Eletrônica, ambos do IGM-FIOCRUZ/BA, pelo suporte na seleção e análise das amostras.

Agência financiadora:

Programa de Apoio ao Desenvolvimento Diagnóstico em Patologia Hepática e Renal - IGM-FIOCRUZ/BA.

Fundação de Amparo à Pesquisa do Estado da Bahia – FAPESB pelo apoio nos projetos com número de outorga N° 0004/2013 e Nº 6163/2011

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), pela bolsa de mestrado.



# DEDICATÓRIA

Este manual é dedicado a todos os profissionais da saúde que cuidam com zelo do diagnóstico e tratamento dos pacientes com doenças renais.



# Sumário

| INTRODUÇÃO                                                                                  | 7           |
|---------------------------------------------------------------------------------------------|-------------|
| 1. ANÁLISE MORFOMÉTRICA                                                                     | 9           |
| 1.1 MÉTODO DIRETO                                                                           | 9           |
| 1.2 MÉTODO DE INTERCEPTAÇÃO ORTOGONAL                                                       | 15          |
| 2. ESPESSURA NORMAL DA MBG                                                                  | 22          |
| APÊNDICE 1 – Software ImageJ                                                                | 24          |
| APÊNDICE 2 – Construção da grade                                                            | 29          |
| <b>APÊNDICE 3 –</b> Processamento de amostra e análise em microscopia eletro de transmissão | ônica<br>35 |
| 3. REFERÊNCIAS BIBLIOGRÁFICAS                                                               | 38          |



# INTRODUÇÃO

A avaliação da espessura da Membrana Basal Glomerular (MBG) é essencial no diagnóstico de doenças glomerulares que causam alterações em sua estrutura como a Síndrome de Alport (SA) e a Doença de Membrana Basal Fina (DMBF) (OKADA et al., 2014). Entretanto, observa-se, na literatura, variações dos valores da espessura da MBG, criando dificuldades para categorizar uma das patologias referidas acima (WU; DIKMAN, 2010). Estas variações podem ser atribuídas à técnica de processamento das amostras e variações inerentes da população observada (RAMAGE et al., 2002). Desta forma, é recomendável que cada serviço de nefropatologia avalie a espessura da MBG da população local, afim de obter valores de referência fidedignos.

Este manual descreve o passo a passo para a realização da mensuração da MBG em imagens obtidas por microscopia eletrônica de transmissão (MET), utilizando os dois métodos morfométricos recomendados na literatura: o método direto (MD) e o método de interceptação ortogonal (MIO). Pelo MD avalia-se apenas um glomérulo, enquanto MIO avalia-se pelo menos dois glomérulos por paciente. No estudo que realizamos, não observamos diferenças significativas dos resultados obtidos utilizando os dois métodos. Por outro lado, em relação a execução, MD é um método menos complexo, mais rápido de ser executado, o que facilita de ser aplicado na rotina diagnóstica. Contudo, o MIO é recomendado em avaliações mais detalhadas da espessura da MBG de uma população, visto que, o número de glomérulos analisados, o número de eletromicrografias obtidas de cada glomérulo e, finalmente, o número de medidas realizadas são maiores.

Para as mensurações descritas neste manual, utilizamos o programa de morfometria ImageJ, o qual possui acesso livre. Apresentamos um tutorial para realizar a instalação e utilização das ferramentas do ImageJ aplicadas na mensuração da MBG. Um aspecto importante para obtenção de resultados consistentes, é garantir que as etapas de processamento das amostras de rim, incluindo fixação, inclusão e corte, sejam seguidas de forma padronizada.



O procedimento seguido neste estudo para o processamento de amostras para análise por microscopia eletrônica de transmissão está descrito no apêndice 4 e tem como referência: livros, manuais de uso corrente e na experiência adquirida do Serviço de Microscopia Eletrônica (SME) – FIOCRUZ-BA no processamento de amostras de rim e outras amostras biológicas ao longo de cerca de 30 anos de funcionamento.

Além do procedimento de mensuração, serão apresentados os resultados encontrados no nosso estudo na população submetida à biópsia renal nos hospitais de referência em Nefrologia de Salvador-BA. Para efeito de comparação, apresentaremos ainda dados correntes na literatura, sobre estimativas da espessura da MBG realizadas em outros Centros. Espera-se que este manual torne-se uma ferramenta útil no diagnóstico de glomerulopatias.



# **1. ANÁLISE MORFOMÉTRICA**

## **1.1 MÉTODO DIRETO**

O método direto (MD) consiste na medida da espessura da MBG em apenas um glomérulo, em regiões retilíneas e uniformes de uma alça glomerular, excluindo áreas oblíquas e de mesângio. No primeiro momento deverão ser fotografados no aumento de 10.000x, três a cinco campos do glomérulo. Posteriormente, deverão ser realizadas três a cinco medidas, para cada imagem, ao longo da alça glomerular com distância de três micrômetros entre elas. A partir das medidas realizadas, deverá ser calculada a média aritmética e o desvio padrão da espessura da MBG do paciente.

Após a aquisição das imagens no microscópio eletrônico de transmissão das áreas de interesse, seguir os passos apresentados abaixo para a mensuração da espessura da MBG utilizando o *Software* ImageJ (descrito no apêndice 1):

1° - Abrir a imagem da eletromicrografia a ser mensurada, utilizando o programa
ImageJ, clicando em *File*, situado no menu de ferramentas, e depois *Open* na
lista de subcomandos.





2° – Calibrar a imagem conforme descrito no apêndice 1; esta calibração será necessária apenas uma vez, a cada início da utilização do programa, sendo esta válida para imagens obtidas com o mesmo aumento;

**3°** – Identificar regiões retilíneas da alça glomerular, onde serão realizadas as mensurações, conforme ilustrado abaixo:





**4º** - Ampliar a imagem para melhor visualização das membranas das células endoteliais e dos podócitos, clicando em *Image* no menu de ferramentas e em seguida em *Zoom* na lista de subcomandos. Clicar em *In* [+] para ampliar e *Out* [-] para reduzir o tamanho da imagem.





Laboratório de patologia Estrutural e Molecular - LAPEM

3° – Medir a espessura da membrana usando a ferramenta *line selection tools,* no menu de ferramenta. Clicar no limites inferior da MBG, abaixo do podócito, mantendo o botão esquerdo do mouse pressionado, arrastar perpendicularmente até o limite da célula endotelial e soltar o botão do mouse, ao final uma linha amarela ficará registrada na imagem, conforme ilustrado abaixo:





**4°** – Clicar em *Analyze* no menu de ferramentas, e depois selecionar o subcomando *Measure para* calcular a distância medida. Alternativamente, pressione simultaneamente *Ctrl+M* no teclado para realizar a mesma função.



Após acionar a função *Measure* abrirá uma janela *"Results"* com o valor da medida realizada, dado em nm. Mantenha essa janela aberta até a conclusão das medidas na imagem avaliada, onde os valores serão acumulados a cada medida.

| 🛓 Re | sults    |         |        |         |         |         | x        |
|------|----------|---------|--------|---------|---------|---------|----------|
| File | Edit Fon | t Resul | ts     |         |         |         |          |
|      | Area     | Mean    | Min    | Max     | Angle   | Length  | <b>•</b> |
| 1    | 5502.677 | 81.598  | 54.601 | 106.509 | -26.565 | 434.522 | •        |



**5°-** Ao final da realização das medidas, elas podem ser transferidas automaticamente para uma tabela do Excel. Para isso, clique em *File* no menu de ferramentas e depois selecione o subcomando *Save*. Alternativamente, pressione simultaneamente *Ctrl+S* no teclado para realizar a mesma função.

| d Results          |        |         |         |         | x        |
|--------------------|--------|---------|---------|---------|----------|
| File Edit Font Res | ults   |         |         |         |          |
| Save As Ctrl+S     | Min    | Max     | Angle   | Length  | <u>▲</u> |
| Rename             | 54.601 | 106.509 | -26.565 | 434.522 |          |
| Duplicate          |        |         |         |         |          |
| •                  |        |         |         |         | -<br>-   |

Exemplo: Quatro medidas em uma alça do capilar glomerular, pelo MD.





## 1.2 MÉTODO DE INTERCEPTAÇÃO ORTOGONAL

O método de interceptação ortogonal (MIO) consiste na medida da espessura da MBG em pelo menos dois glomérulos em regiões retilíneas e uniformes de uma alça glomerular, excluindo áreas oblíquas e de mesângio. Inicialmente deverão ser fotografados em torno de nove áreas de cada glomérulo observados por paciente. Posteriormente uma grade 200×200nm deverá ser sobreposta às eletromicrografias, para identificar os pontos onde há interceptação dos vértices da grade com o limite da MBG da face endotelial que deverão ser mensurados. Deverá ser calculada a média harmônica e o desvio padrão de todas as medidas realizadas por paciente, utilizado o programa Excel.

Após a aquisição das imagens no microscópio eletrônico de transmissão das áreas de interesse, seguir três etapas apresentados abaixo:

### 1° ETAPA: Construção da grade

Construir uma grade com distância entre as linhas de 200nm, conforme descrito no apêndice 2.



## 2° ETAPA: Sobreposição da grade

Sobrepor a grade à imagem e identificar os pontos onde o vértice da grade coincida com o limite da MBG da face endotelial, seguindo os passos descritos abaixo:

1° Abrir a eletromicrografia e a imagem da grade obtida na etapa anterior no programa *PowerPoint*.

**2°** Sobrepor a grade a imagem e identificar os pontos onde o vértice da grade coincida com a superfície endotelial da MBG com um círculo ou uma seta.



3° Selecionar todas as figuras, agrupar e salvar em formato TIFF.

![](_page_15_Picture_6.jpeg)

## 3° ETAPA: Mensuração.

Mensurar a espessura da MBG, seguindo os passos descritos abaixo:

1° - Abrir a imagem obtida na etapa anterior, utilizando o programa ImageJ, clicando em *File,* situado no menu de ferramentas, e depois *Open* na lista de subcomandos.

![](_page_16_Picture_3.jpeg)

2° – Calibrar a imagem conforme descrito no apêndice 1; esta calibração será necessária apenas uma vez, a cada início da utilização do programa, sendo esta válida para imagens obtidas no mesmo aumento;

![](_page_16_Picture_5.jpeg)

**3º** - Ampliar a imagem para melhor visualização das membranas das células endoteliais e dos podócitos, clicando em *Image* no menu de ferramentas e em seguida em *Zoom* na lista de subcomandos. Clicar em *In* [+] para ampliar e *Out* [-] para reduzir o tamanho da imagem.

![](_page_17_Picture_1.jpeg)

![](_page_17_Picture_2.jpeg)

![](_page_17_Picture_3.jpeg)

4° – Medir a espessura da membrana usando a ferramenta *line selection tools,* no menu de ferramenta. Clicar no limites inferior da MBG, abaixo do podócito, mantendo o botão esquerdo do mouse pressionado, arrastar perpendicularmente até o limite da célula endotelial e soltar o botão do mouse, ao final uma linha amarela ficará registrada na imagem, conforme ilustrado abaixo:

![](_page_18_Figure_1.jpeg)

![](_page_18_Picture_2.jpeg)

**5°** – Clicar em *Analyze* no menu de ferramentas, e depois selecionar o subcomando *Measure para* calcular a distância medida. Alternativamente, pressione simultaneamente *Ctrl+M* no teclado para realizar a mesma função.

| 🛓 ImageJ                                |             |           |        |       |            |                |
|-----------------------------------------|-------------|-----------|--------|-------|------------|----------------|
| File Edit Image Process                 | Analyze     | Plugins   | Window | Help  |            |                |
| ЦО,СО∕А;;                               | Measure     |           | Ctrl+M | K. ₿  | 8 1        | >>             |
| *Straight*, segmented or freehand       | Analyze     | Particles | i      | tch)  |            |                |
| MIO manual .tif (G) (150%)              | Summa       | rize      |        | -     | -          |                |
| 14061.35x13680.98 nm (1146x111          | Distribut   | ion       |        |       |            |                |
| STOP LA                                 | Label       |           |        |       |            | NºS.           |
|                                         | Clear Re    | esults    |        | 10000 |            |                |
|                                         | Set Mea     | suremen   | ts     |       |            | 100            |
| and the second                          | Set Scal    | le        |        |       |            | and the same   |
| 1445 1 2 3                              | Calibrate   | e         |        |       |            | 1005           |
| and the set                             | Histogra    | m         | Ctrl+H |       | 15.1       |                |
| 14 1 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Plot Prof   | file      | Ctrl+K | CARE  | C. S. Sala | 10.00000       |
| 100 E 3 300                             | Surface     | Plot      |        |       |            |                |
| a serie as the year                     | Gels        |           | +      | 191   |            | and the second |
| State State of the                      | Tools       |           | •      | RX    | 1          |                |
|                                         | 4. E. F. S. |           |        |       | · K        |                |

Após acionar a função *Measure* abrirá uma janela *"Results"* com o valor da medida realizada, dado em nm. Mantenha essa janela aberta até a conclusão das medidas na imagem avaliada, onde os valores serão acumulados a cada medida.

| 🛓 Re | esults   |          |       |         |        |         | x |
|------|----------|----------|-------|---------|--------|---------|---|
| File | Edit Fon | t Result | s     |         |        |         |   |
|      | Area     | Mean     | Min   | Max     | Angle  | Length  |   |
| 1    | 4516.542 | 82.922   | 2.224 | 245.009 | 38.047 | 355.146 | • |
|      |          |          |       |         |        |         |   |

![](_page_19_Picture_4.jpeg)

**6°** - Ao final da realização das medidas, elas podem ser transferidas automaticamente para uma tabela do Excel. Para isso, clique em *File* no menu de ferramentas e depois selecione o subcomando *Save*. Alternativamente, pressione simultaneamente *Ctrl*+*S* no teclado para realizar a mesma função.

| 🛓 Results          |       |         |        |         | x        |
|--------------------|-------|---------|--------|---------|----------|
| File Edit Font Res | ults  |         |        |         |          |
| Save As Ctrl+S     | Min   | Мах     | Angle  | Length  | <b>_</b> |
| Rename             | 2.224 | 245.009 | 38.047 | 355.146 |          |
| Duplicate          |       |         |        |         |          |
|                    |       |         |        |         |          |
| •                  |       |         |        |         | - T      |
|                    |       |         |        |         |          |

Exemplo: Medidas de uma alça do capilar glomerular, pelo MIO.

![](_page_20_Picture_3.jpeg)

![](_page_20_Picture_4.jpeg)

Em nosso estudo avaliamos a espessura da MBG de pacientes com diagnóstico histológico de Alterações glomerulares mínimas (AGM), que tiveram biópsias renais processadas e arquivadas no SME do IGM - FIOCRUZ- BA, entre os anos de 1998 a maio de 2017, procedentes de hospitais de referência em nefrologia do estado da Bahia (Hospital Roberto Santos, Hospital Ana Neri, Hospital Santo Antônio e Hospital Estadual da Criança-Feira de Santana).

A mensuração da espessura da MBG foi realizada utilizando o MD (N:32) e o MIO (N:20). Usando o MD estimamos a espessura normal das membranas basais glomerulares em  $380,4 \pm 48,71$ nm (média  $\pm$  DP). Utilizando o MIO o valor obtido foi de  $373,5\pm 48,91$ nm (média  $\pm$  DP). A tabela 1 apresenta as médias da espessura da MBG obtidas pelo os dois métodos, nas diferentes faixas etárias 0-10, 11-20, 21-30, 31-40e > 60 anos.

|                | Μ | Método direto   |   | eptação ortogonal |
|----------------|---|-----------------|---|-------------------|
| Faixas etárias | Ν | Média ± DP      | Ν | Média ± DP        |
| 0- 10 anos     | 8 | 370,4 ± 43,56nm | 7 | 375,8 ± 57,60nm   |
| 11- 20 anos    | 7 | 377,6 ± 55,49nm | 5 | 392,2 ± 36,14nm   |
| 21- 30 anos    | 9 | 381,8 ± 52,68nm | 4 | 361,7 ± 60,24nm   |
| 31- 40 anos    | 7 | 388,6 ± 52.84nm | 4 | 359,8 ± 50,03nm   |
| >60 anos       | 1 | 333 ± 74,28nm   |   |                   |

Tabela 1: Comparação entre as médias das duas técnicas utilizadas para mensuração.

A tabela 3 descreve a médias e desvios padrões da espessura da MBG obtidas em diferentes estudos. Entretanto, existem poucos trabalhos na literatura reportando estimativas da espessura da MBG normal.

![](_page_21_Picture_6.jpeg)

| Pais                        | Pais Medida da espessura da MBG                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                             | Faixa etária (n)                                                                                                             | média ± DP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Arábia<br>Saudita           | 0-5 anos (5)<br>6–10 anos (7)<br>11–17 (13)<br>18–60 (26)<br>>60 (2)                                                         | 211.0 ± 7.4 nm<br>276.1 ± 40.9nm<br>326.9 ± 18.9nm<br>352.7 ± 16.6nm<br>372.5 ± 3.5nm                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Japão                       | 3 meses de idade (1)<br>3 a 11 anos (7)<br>12 a 57 anos (8)<br>60 a 70 anos (4)                                              | 115 ± 36nm<br>243 ± 12nm<br>353 ± 20nm<br>287 ± 25nm                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Canada                      | 31 e 86 (2)                                                                                                                  | 348 ± 135nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Índia                       | 18-58 anos (25)                                                                                                              | 321 ± 28nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Nicósia                     | 4 a 69 anos<br>4 anos (1)<br>>4 (8)                                                                                          | 246 ± 44nm<br>362 ± 92nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Reino unido                 | 1 – 20 anos (212)<br>1 ano<br>>1                                                                                             | 194 ± 6,5nm<br>297 ± 6,0nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Inglaterra                  | 15-57 anos (20)                                                                                                              | 396 ± 31-7nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Caucasiano<br>e<br>Asiático | Caucasiano (24)<br>Asiático (11)<br>1 ano<br>3 anos<br>5 anos<br>7 anos                                                      | 281± 33nm<br>273± 38nm<br>Intervalo<br>220 100-340<br>260 130-380<br>280 160-410<br>300 180-430                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                             | Pais<br>Arábia<br>Saudita<br>Japão<br>Canada<br>Índia<br>Nicósia<br>Reino unido<br>Inglaterra<br>Caucasiano<br>e<br>Asiático | PaisMedida da espes<br>Faixa etária (n)Arábia<br>Saudita0-5 anos (5)<br>6-10 anos (7)<br>11-17 (13)<br>18-60 (26)<br>>60 (2)Japão3 meses de idade (1)<br>3 a 11 anos (7)<br>12 a 57 anos (8)<br>60 a 70 anos (4)Canada31 e 86 (2)Índia18-58 anos (25)Índia18-58 anos (25)Índia4 a 69 anos<br>4 anos (1)<br>>4 (8)Reino unido1 - 20 anos (212)<br>1 ano<br>>1Inglaterra15-57 anos (20)Caucasiano<br>e<br>AsiáticoCaucasiano (24)<br>Asiático (11)Asiático1 ano<br>3 anos<br>5 anos<br>7 anos<br>9-13 anos |  |  |

**Tabela 2:** Valores da espessura normal da MBG estimadas em diferentes estudos.

![](_page_22_Picture_2.jpeg)

## **APÊNDICE 1**

## SOFTWARE ImageJ

ImageJ é um programa de processamento de imagem baseado em Java, o que permite que ele seja executado em Linux, Mac OS X e Windows. É um programa de domínio público para análise de imagens científicas produzido pelo National Institute of Health (NIH, EUA). O ImageJ pode ser usado para exibir, editar, analisar, processar, salvar e imprimir imagens de 8-bits, 16-bits e 32-bits e 64 bits. Tem a capacidade de ler diversos formatos de imagem como TIFF, GIF, JPEG, BMP, DICOM, FITS, Dm3. Além de calcular áreas e estatísticas, valores em pixel, com as seleções definidas pelo usuário. As possibilidades de processamento de imagens permitidas pelo ImageJ incluem alterações do contraste, da nitidez, suavização, detecção de bordas e filtros.

Sites para Download:

https://imagej.softonic.com.br/download

http://www.baixaki.com.br/download/imagej.htm

https://imagej.net/Downloads

|                                                     |       | menu |
|-----------------------------------------------------|-------|------|
| 🛃 ImageJ                                            | • S   | x)   |
| File Edit Image Process Analyze Plugins Window Help |       |      |
|                                                     |       | >>   |
| x=8447.55, y=5160.84, angle=-21.80, length=200.85   |       |      |
| Barra de ferramenta Barra d                         | e sta | tus  |

Figura 1. Janela de ferramentas do programa ImageJ

| Nome | Função                                                                        |
|------|-------------------------------------------------------------------------------|
| File | Operações básicas de arquivos (abertura, gravação, criação de novas imagens). |
| Edit | Operações de edição e desenho (recortar, cópia e seleção de imagens).         |

![](_page_23_Picture_10.jpeg)

Manu

| Image   | Ajusta as propriedades da imagem, por exemplo: cores, camadas e aproximação.                                  |
|---------|---------------------------------------------------------------------------------------------------------------|
| Process | Processamento de imagem, incluindo operações pontuais, filtros e operações aritméticas.                       |
| Analyze | Medições estatísticas, perfis de perfil e histograma e outras operações relacionadas para análise de imagens. |
| Plugins | Comandos com opções para desenvolvedores (criação de macros, por exemplo) e alguns filtros de efeitos 3D.     |
| Window  | Seleção e gerenciamento de janelas abertas.                                                                   |
| Help    | Atualizações, recursos de documentação e informações de versão.                                               |
|         |                                                                                                               |

As ferramentas usadas com maior frequência neste manual estão apresentadas por números na barra de ferramentas abaixo:

![](_page_24_Figure_2.jpeg)

Figura 2. Barra de Ferramentas ImageJ

1 - *Straight Line Selection Tool* - Ferramenta de seleção de linha reta. O comprimento e o ângulo da linha são exibidos na barra de status.

2 - Wand Tool – Ferramenta Varinha. Cria uma seleção na imagem

As imagens analisadas nesse manual foram gravadas no formato TIFF (*TaggedImage File Format*). A calibração foi realizada para que os resultados fossem expressos em nm, como demostrado no passo a passo a seguir:

![](_page_24_Picture_7.jpeg)

**1°** - Abrir uma eletromicrografia contendo escala no programa ImageJ. Para isto, clicar no comando *File,* que fica situado no menu de ferramentas do programa, em seguida em *Open* na lista de subcomandos e por fim selecionar o arquivo desejado;

| 🛓 Imagel       |              |                                    | - • • |
|----------------|--------------|------------------------------------|-------|
| File Edit Imag | ge Process   | Analyze Plugins Window Help        |       |
| New            |              | A < ₹ Dev Stk 8 8                  | A >>  |
| Open           | Ctrl+O       | selections (right click to switch) |       |
| Open Next      | Ctrl+Shift+O |                                    |       |
| Open Samples   | s            | •                                  |       |
| Open Recent    |              | <b>&gt;</b>                        |       |
| Import         |              | •                                  |       |
| Close          | Ctrl+W       | ,                                  |       |
| Close All      | Ctrl+Shift+W | ,                                  |       |
| Save           | Ctrl+S       |                                    |       |
| Save As        |              | <b>F</b>                           |       |
| Revert         | Ctrl+R       | 1                                  |       |
| Page Setup     |              |                                    |       |
| Print          | Ctrl+P       |                                    |       |
| Quit           |              |                                    |       |

![](_page_25_Picture_2.jpeg)

**2°** – Clicar no ícone da ferramenta *wand tool* situado no menu de ferramenta do programa e em seguida selecionar a escala da imagem.

![](_page_26_Picture_1.jpeg)

**3°** – Clicar em *Image* no menu de ferramenta e depois *Show Information* na lista de subcomandos, então abrirá uma nova janela. Nesta janela, em *Traced Selection* copie o valor apresentado entre parênteses no campo *Width*, que corresponde a distância em pixel.

| 🛓 ImageJ       |               |              |                      | F  |
|----------------|---------------|--------------|----------------------|----|
| File Edit      | Image Process | Analyze Plug | ins Window Help      |    |
|                | Туре          | •            | Dev Stk & & A >>     | Ρi |
| *Straight*, se | Adjust        | •            | ght click to switch) | ID |
|                | Show Info     | Ctrl+I       |                      | Bi |
|                | Properties    | Ctrl+Shift+P |                      | No |
|                | Color         | •            |                      | Ma |
|                | Stacks        | •            |                      | Ur |
|                | Hyperstacks   | •            |                      | Pa |
|                | Crop          | Ctrl+Shift+X |                      | Sc |
|                | Duplicate     | Ctrl+Shift+D |                      | 0  |
|                | Rename        |              |                      |    |
|                | Scale         | Ctrl+E       |                      | Tr |
|                | Transform     | •            |                      | X  |
|                | Zoom          | •            |                      | Ś  |
|                | Overlay       | ۱.           |                      | N  |
|                | Lookup Tables | Þ            |                      | H  |
| L              |               |              | 1                    |    |

![](_page_26_Picture_4.jpeg)

![](_page_26_Picture_5.jpeg)

**4°** – Clicar em *Analyze* no menu de ferramenta e selecionar *Set Scale* na lista de subcomandos.

| 🛓 Imagel                | -                |        |        |          |
|-------------------------|------------------|--------|--------|----------|
| File Edit Image Process | Analyze Plugins  | Window | Help   |          |
| IQCV/A ::*              | Measure          | Ctrl+M | 1. 8 8 | ) A 🛛 >> |
| Wand (tracing) tool     | Analyze Particle | s      |        |          |
|                         | Summarize        |        |        |          |
|                         | Distribution     |        |        |          |
|                         | Label            |        |        |          |
|                         | Clear Results    |        |        |          |
|                         | Set Measureme    | nts    |        |          |
|                         | Set Scale        |        |        |          |
|                         | Calibrate        |        |        |          |
|                         | Histogram        | Ctrl+H |        |          |
|                         | Plot Profile     | Ctrl+K |        |          |
|                         | Surface Plot     |        |        |          |
|                         | Gels             | +      |        |          |
|                         | Tools            | •      |        |          |

**5**° – Ao selecionar a função *Set Scale*, abrirá uma nova janela. Inserir no *campo Distance in pixels* o valor copiado na etapa anterior.

| ,            |                         | Inserir o valor observado           |
|--------------|-------------------------|-------------------------------------|
|              |                         | width no quadro Show<br>information |
|              | Known distance: 2000    |                                     |
|              | Pixel aspect ratio: 1.0 | Distância conhecida                 |
|              | Unit of length: nm      | da imagem em nanômetros             |
|              | Click to Remove Scale   |                                     |
| Selecionar 🔸 | Global                  | Definir unidade de                  |
|              | Scale: 0.0815 pixels/nm | medida<br>"nanômetros"              |
| Confirmar ┥  | OK Cancel Help          |                                     |

![](_page_27_Picture_4.jpeg)

Para mensurar a espessura da MBG pelo MIO deve-se construir uma grade com distância entre as linhas de 200nm, para posteriormente sobrepor às eletromicrografias, seguindo os passos apresentados abaixo.

1° Abrir uma eletromicrografia no mesmo aumento das imagens que serão analisadas, no caso 10.000x, no programa ImageJ. Clicar em *File,* situado no menu de ferramentas, depois *Open* na lista de subcomandos e selecionar o arquivo desejado.

![](_page_28_Picture_3.jpeg)

2° – Calibrar a imagem conforme descrito no apêndice 1.

![](_page_28_Picture_5.jpeg)

**3**° Selecionar a ferramenta *line selection tools,* no menu de ferramentas. Traçar uma reta, pressionando o botão direito do mouse sobre a imagem (Figura A), arrastar até observar a medida de 200nm, observando na barra de status em *lenght*, e soltar o botão (Figura B).

![](_page_29_Picture_1.jpeg)

| 🛓 ImageJ                                                                                                                        |                  |
|---------------------------------------------------------------------------------------------------------------------------------|------------------|
| File Edit Image Process Analyze Plugins Wi                                                                                      | /indow Help      |
| $\Box \bigcirc \Box \oslash \checkmark \measuredangle \ddagger \checkmark \land \land \land \land \checkmark \blacksquare \Box$ | Dev Stk & & A >> |
| x=8447.55, y=5160.84, angle=-21.80, length=200.85                                                                               |                  |

![](_page_29_Picture_3.jpeg)

Caso necessário, poderá mensurar o valor da reta clicando em *Analyze* no menu de ferramentas, e depois selecionar o subcomando *Measure para* calcular. Alternativamente, pressione simultaneamente *Ctrl+M* no teclado para realizar a mesma função.

![](_page_30_Picture_1.jpeg)

Após acionar a função *Measure* abrirá uma janela *"Results"* com o valor da medida realizada, dado em nm.

| 4   | Results                |         |         |         |       |        | x        |  |  |  |  |  |  |  |  |
|-----|------------------------|---------|---------|---------|-------|--------|----------|--|--|--|--|--|--|--|--|
| Fil | File Edit Font Results |         |         |         |       |        |          |  |  |  |  |  |  |  |  |
|     | Area                   | Mean    | Min     | Мах     | Angle | Length | <b>_</b> |  |  |  |  |  |  |  |  |
| 1   | 28.828                 | 171.901 | 125.409 | 200.161 | 0     | 0.206  |          |  |  |  |  |  |  |  |  |
| ⊡   |                        |         |         |         |       |        | Ē        |  |  |  |  |  |  |  |  |

![](_page_30_Picture_4.jpeg)

**5°** Faça um *Print scrn* da tela e cole no *PowerPoint* recorte a foto até o tamanho desejado sem alterar o tamanho da imagem. Desenhe uma reta na vertical e na horizontal com o mesmo comprimento da linha amarela deixada pelo ImageJ:

![](_page_31_Picture_1.jpeg)

![](_page_31_Picture_2.jpeg)

**6**° Desenhar uma grade com a ferramenta de linhas do *PowerPoint*, obedecendo as distâncias das retas confeccionadas e o tamanho da eletromicrografia, conforme ilustrado abaixo:

| ARC | UIVO PÁGINA INICIAL      | INSERIR DESIGN            | TRANSIÇ | ções animações         | APRESENTAÇÃO DE S                         | LIDES F   | revisão ex      | IBIÇÃC   | •       |   |                                                       |                          |                               |
|-----|--------------------------|---------------------------|---------|------------------------|-------------------------------------------|-----------|-----------------|----------|---------|---|-------------------------------------------------------|--------------------------|-------------------------------|
|     | Recortar                 | Layout *                  |         | · · A                  | ^*   �   ⊟ •   Ξ •   €                    | = ==   ;= | ↓   A Direção d | lo Texto | D ~     |   |                                                       | Preenchimento da Forma * | A Localizar<br>ab. Substituir |
| Co  | lar Vincel de Formatação | Novo<br>Slide + 😁 Seção + | NI      | <u>S</u> abc AV - Aa - | $  A \cdot   \equiv \equiv \equiv \equiv$ | -         | Converte        | r em Si  | nartArt | - | <sup>1</sup> <sup>2</sup> ∩ ( ) ☆ = Organizar Estilos | Efeitos de Forma -       | Selecionar *                  |
|     | Área de Transferência    | Slides                    |         | Fonte                  | 5                                         | Pará      | grafo           |          |         | 6 | Desenho                                               | rş,                      | Edição                        |
| 1   |                          |                           | Γ       |                        |                                           |           |                 |          |         |   |                                                       |                          |                               |
|     |                          |                           |         |                        |                                           |           |                 |          |         |   |                                                       |                          |                               |
|     |                          |                           |         |                        |                                           |           |                 |          |         |   |                                                       |                          |                               |
|     |                          |                           |         |                        |                                           |           |                 |          |         |   |                                                       |                          |                               |
|     |                          |                           |         |                        |                                           |           |                 |          |         |   |                                                       |                          |                               |
| 2   |                          |                           |         |                        |                                           |           |                 |          |         |   |                                                       |                          |                               |
| 2   |                          |                           |         |                        |                                           |           |                 |          |         |   |                                                       |                          |                               |
|     | 1 Carl                   |                           |         |                        |                                           |           |                 |          |         |   |                                                       |                          |                               |
|     |                          |                           |         |                        |                                           |           |                 |          | _       |   |                                                       |                          |                               |
|     | and the                  |                           |         |                        |                                           |           |                 |          | _       | _ |                                                       |                          |                               |
|     |                          |                           |         |                        |                                           |           |                 |          | -       | - |                                                       |                          |                               |
| 3   |                          |                           |         |                        |                                           |           |                 |          | +       | - |                                                       |                          |                               |
|     |                          |                           |         |                        |                                           |           |                 |          |         |   |                                                       |                          |                               |
|     |                          |                           |         |                        |                                           |           |                 |          |         |   |                                                       |                          |                               |
|     |                          |                           |         |                        |                                           |           |                 |          |         |   |                                                       |                          |                               |
|     |                          |                           |         |                        |                                           |           |                 |          |         |   |                                                       |                          |                               |
|     |                          |                           |         |                        |                                           |           |                 |          |         |   |                                                       |                          |                               |
|     |                          |                           |         |                        |                                           |           |                 |          |         |   |                                                       |                          |                               |
|     |                          |                           |         |                        |                                           |           |                 |          |         |   |                                                       |                          |                               |
|     |                          |                           |         |                        |                                           |           |                 |          |         |   |                                                       |                          |                               |
|     |                          |                           |         |                        |                                           |           |                 |          |         |   |                                                       |                          |                               |
|     |                          |                           |         |                        |                                           |           |                 |          |         |   |                                                       |                          |                               |
|     |                          |                           |         |                        |                                           |           |                 |          |         |   |                                                       |                          |                               |
|     |                          |                           |         |                        |                                           |           |                 |          |         |   |                                                       |                          |                               |
|     |                          |                           |         |                        |                                           |           |                 |          |         |   |                                                       |                          |                               |
|     |                          |                           |         |                        |                                           |           |                 |          |         |   |                                                       |                          |                               |
|     |                          |                           |         |                        |                                           |           |                 |          | - 1     |   |                                                       |                          |                               |

![](_page_32_Picture_2.jpeg)

# 7° Agrupe todas as linhas e salve a grade como imagem.

|           |                 |        |                             |                            |                |          | Apres        | entaçã           | ão1 - I            | Power          | Point            |          |              |                  |                        |                          |                           |                           |              |                  |                      |                            |                             |   |       |
|-----------|-----------------|--------|-----------------------------|----------------------------|----------------|----------|--------------|------------------|--------------------|----------------|------------------|----------|--------------|------------------|------------------------|--------------------------|---------------------------|---------------------------|--------------|------------------|----------------------|----------------------------|-----------------------------|---|-------|
| DE SLIDES | REV1            | SÃO    | EX                          | IBIÇĂ¢                     | 0              |          |              |                  |                    |                |                  |          |              |                  |                        |                          |                           |                           |              |                  |                      |                            |                             |   |       |
| · [ @ @   | t= -  <br> <br> | A Dire | eção d<br>nhar To<br>nverte | lo Ted<br>exto =<br>r em S | to +<br>imart/ | \rt -    | ▲<br> <br> 4 | 1<br>1<br>1<br>1 | □(<br>  <br>  <br> | )0<br>)6<br>}☆ | -<br>-<br>-<br>- | rganiz   | ar Es<br>Ráp | tilos<br>tidos • | <u>0</u> 1<br>20<br>01 | reeno<br>Conto<br>Feitos | thimer<br>rno da<br>de Fo | nto da<br>Formi<br>irma * | Forma<br>a - | 3 °              | 靴 Lo<br>む Su<br>ひ Se | caliza<br>bstitu<br>lecion | r<br>ir <del>-</del><br>ar- |   |       |
| P         | arágraf         | 0      |                             |                            |                | G.       |              |                  |                    |                |                  | D        | esenh        | 0                |                        |                          |                           |                           |              | Γ <sub>i</sub> ε | E                    | dição                      | _                           |   |       |
| 1         | 1               |        |                             |                            |                |          |              |                  |                    |                |                  |          |              |                  |                        |                          |                           |                           |              |                  |                      |                            |                             |   |       |
|           |                 |        |                             |                            |                |          |              |                  |                    |                |                  |          |              |                  |                        |                          |                           |                           |              |                  |                      |                            |                             |   | _     |
|           |                 |        |                             |                            |                |          |              |                  |                    |                |                  |          |              |                  |                        |                          |                           |                           |              |                  |                      |                            |                             |   | _     |
| +         | -               | -      |                             |                            |                | <u> </u> |              | _                |                    | -              | -                |          |              |                  |                        |                          |                           |                           | _            |                  | -                    |                            |                             | _ | <br>_ |
| +         | -               |        |                             |                            |                | -        |              |                  |                    | _              |                  |          |              |                  |                        |                          |                           |                           | _            |                  | -                    |                            |                             |   | <br>- |
| +         | -               |        |                             |                            | <u> </u>       | <u> </u> |              |                  |                    |                |                  |          |              |                  |                        |                          |                           |                           | _            |                  |                      |                            |                             | _ | <br>_ |
|           | -               |        |                             |                            |                |          |              |                  |                    |                |                  |          |              |                  |                        |                          |                           | _                         |              |                  |                      |                            |                             |   | <br>_ |
| +         |                 |        |                             |                            |                |          |              |                  |                    |                |                  |          |              |                  |                        |                          |                           |                           | _            |                  |                      |                            |                             |   | _     |
| -         |                 |        |                             |                            |                |          |              |                  |                    |                |                  |          |              |                  |                        |                          |                           |                           |              |                  |                      |                            |                             |   | _     |
|           |                 |        |                             |                            |                |          |              |                  |                    |                |                  |          |              |                  |                        |                          |                           |                           |              |                  |                      |                            |                             |   | _     |
|           |                 |        |                             |                            |                |          |              |                  |                    |                |                  |          |              |                  |                        |                          |                           |                           |              |                  |                      |                            |                             |   |       |
|           |                 |        |                             |                            |                |          |              |                  |                    |                |                  |          |              |                  |                        |                          |                           |                           |              |                  |                      |                            |                             |   | _     |
|           |                 |        |                             |                            |                |          |              |                  |                    |                |                  |          |              |                  |                        |                          |                           |                           |              |                  |                      |                            |                             |   | -     |
| +         | $\vdash$        |        |                             |                            |                |          |              |                  |                    |                |                  |          |              |                  |                        |                          |                           |                           |              | _                |                      |                            |                             |   | -     |
| +         | -               |        |                             |                            |                |          |              |                  |                    |                |                  |          |              |                  |                        |                          |                           |                           |              | _                |                      |                            |                             |   | _     |
| +         | -               |        |                             |                            |                |          |              |                  |                    |                |                  |          |              |                  |                        |                          |                           |                           |              |                  |                      |                            |                             |   | _     |
| -         |                 |        |                             |                            |                |          |              |                  |                    |                |                  |          |              |                  |                        |                          |                           |                           |              |                  |                      |                            |                             |   | _     |
|           |                 |        |                             |                            |                |          |              |                  |                    |                |                  |          |              |                  |                        |                          |                           |                           |              |                  |                      |                            |                             |   | _     |
|           |                 |        |                             |                            |                |          |              |                  |                    |                |                  |          |              |                  |                        |                          |                           |                           |              |                  |                      |                            |                             |   | _     |
|           |                 |        |                             |                            |                |          |              |                  |                    |                |                  |          |              |                  |                        |                          |                           |                           |              |                  |                      |                            |                             |   | _     |
|           |                 |        |                             |                            |                |          |              |                  |                    |                |                  |          |              |                  |                        |                          |                           |                           |              |                  |                      |                            |                             |   |       |
|           |                 |        |                             |                            |                |          |              |                  |                    |                |                  |          |              |                  |                        |                          |                           |                           |              |                  |                      |                            |                             |   | -     |
| +         | $\vdash$        |        |                             |                            |                |          |              |                  |                    |                |                  |          |              |                  |                        |                          |                           |                           |              | _                |                      |                            |                             |   | -     |
| +         | -               | -      |                             |                            | -              | <u> </u> |              |                  |                    |                |                  |          |              | _                |                        |                          |                           |                           | _            |                  |                      |                            |                             |   | -     |
| +         | -               |        | <u> </u>                    |                            | -              | <u> </u> |              |                  | _                  | -              | -                | <u> </u> |              |                  |                        |                          |                           |                           | _            |                  |                      |                            |                             |   | -     |
| +         | -               |        |                             |                            | _              | <u> </u> |              |                  | _                  | _              | _                |          |              |                  |                        |                          |                           | _                         | _            |                  | _                    |                            |                             |   | <br>_ |
| +         | -               |        |                             |                            |                |          |              |                  |                    |                |                  |          |              |                  |                        |                          |                           |                           |              |                  |                      |                            |                             |   | _     |
| -         | <u> </u>        |        |                             |                            |                |          |              |                  |                    |                |                  |          |              |                  |                        |                          |                           |                           |              |                  |                      |                            |                             |   | _     |
| -         |                 |        |                             |                            |                |          |              |                  |                    |                |                  |          |              |                  |                        |                          |                           |                           |              |                  |                      |                            |                             |   | _     |
|           |                 |        |                             |                            |                |          |              |                  |                    |                |                  |          |              |                  |                        |                          |                           |                           |              |                  |                      |                            |                             |   | _     |
|           |                 |        |                             |                            |                |          |              |                  |                    |                |                  |          |              |                  |                        |                          |                           |                           |              |                  |                      |                            |                             |   |       |

![](_page_33_Picture_2.jpeg)

## **APÊNDICE 3**

# PROCESSAMENTO DE AMOSTRA E ANÁLISE EM MICROSCOPIA ELETRÔNICA DE TRANSMISSÃO

#### 1. Fixação

A fixação deve ser iniciada imediatamente após a retirada do fragmento renal do paciente, utilizando solução de glutaraldeído a 2% em tampão cacodilato de sódio 0,1M, no período de no mínimo duas horas em temperatura ambiente (TA). O fragmento da biopsia deverá ser subdividido com uma navalha de bisturi ou lâmina de aço inoxidável em pedaços de 1mmx1mm.

Caso necessário, após o intervalo de fixação por duas horas a temperatura ambiente, a biopsia poderá ser armazenada na geladeira imersa no mesmo fixador, por no máximo uma semana, para prosseguimento do processamento.

#### 2. Lavagem

Os fragmentos são lavados em tampão cacodilato de sódio 0,1M em intervalo de 10 minutos por 3 vezes em TA.

#### 3. Pós-fixação

Substituir o tampão de lavagem por uma mistura de tetróxido de ósmio 1%, ferricianeto de potássio 0,8% e cloreto de cálcio 5mM em tampão cacodilato de sódio 0,1M e incubar por 1 hora a temperatura ambiente protegido da luz.

Após este intervalo, lavar os fragmentos em tampão cacodilato de sódio 0,1M em intervalo de 10 minutos por 3 vezes em TA.

![](_page_34_Picture_10.jpeg)

# 4. Desidratação

Desidratar os fragmentos em banhos sucessivos de acetona em concentrações crescentes de 30, 50, 70, 90 e 100%, sendo que na concentração de 100% o banho deverá ser repetido três vezes. Todos os banhos deverão ser realizados em temperatura ambiente com duração de 10 minutos cada.

# 5. Substituição

Substituir a acetona por resina Epoxi tipo PolyBed 812<sup>®</sup> seguindo a seguinte sequência de banhos com as misturas indicadas abaixo:

-Resina: Acetona – 1:2 – 18h

-Resina: Acetona – 1:1 – 18h

-Resina: Acetona – 2:1 – 18h

-Resina pura – 18h

Durante os banhos os fragmentos deverão ser submetidos a constante agitação, para garantir um boa substituição.

# 6. Inclusão

Posicionar cada sub-fragmento em um molde específico e preencher com resina epóxi pura. Em seguida levá-lo a uma estufa a 60°C para polimerização da resina, por 72h.

# 7. Cortes

1° Cortes semifinos (SF) – Após a polimerização os blocos são trimados e cortados em navalha de vidro em ultramicrótomo em secções de 1µm. Os cortes obtidos são aderidos em lâmina histológica e corados com uma solução de Azur II e Azul de metileno. Em seguida, os cortes são analisados no microscópio de luz, para identificar os blocos que apresentam glomérulo em evidência.

![](_page_35_Picture_13.jpeg)

2° Cortes ultrafinos (UF) - Os blocos com glomérulo em evidência são cortados em navalha de diamante em secções de 60 a 70nm e coletados em grades de cobre de 200MESH;

# 8. Contrastação

As grades são contrastadas com banho em solução de acetato de uranila a 6% por cinco minutos seguida de lavagem com álcool metílico, e por fim banho em solução de citrato de chumbo por cinco minutos seguida de lavagem em água destilada;

# 9. Observação

Os cortes são observados no Microscópio Eletrônico de Transmissão a 80Kv no aumento de 10.000x.

![](_page_36_Picture_5.jpeg)

# **3. REFERÊNCIAS BIBLIOGRÁFICAS**

DE SOUZA, W. Técnicas de Microscopia Eletrônica Aplicadas às Ciências Biológicas. 3 ed. Rio de Janeiro: Sociedade Brasileira de Microscopia, 2007, 37-50 p.

DISCHE, F. E. at al. Incidence of thin membrane nephropathy: morphometric investigation of a populationsample. **J ClinPathol** 43: p. 457-460, 1990.

KFOURY, H. Glomerular basement membrane thickness among the saudi population. **UltrastructPathol**, v., n., p. 1-4, 2016.

MARQUEZ, B. et al. A simplified method for measuring the thickness of glomerular basement membranes. **UltrastructPathol**, v. 27, n. 6, p. 409-416, 2003.

MORITA, M. et al. Glomerular basement membrane thickness in children. A morphometric study. **PediatrNephrol**, v. 2, n. 2, p. 190-195, 1988.

OKADA, S. et al. Morphological diagnosis of Alport syndrome and thin basement membrane nephropathy by low vacuum scanning electron microscopy. **Biomed Res**, v. 35, n. 5, p. 345-350, 2014.

RAMAGE, I. J. et al. Glomerular basement membrane thickness in children: A stereologic assessment. **Kidney Int**, v. 62, n. 3, p. 895-900, 2002.

RANGAYYAN, R. M.; KAMENETSKY, I.; BENEDIKTSSON, H. Segmentation and analysis of the glomerular basement membrane in renal biopsy samples using active contours: A pilot study. **J Digit Imaging**, v. 23, n. 3, p. 323-331, 2010.

RAYAT, C. S. et al. Glomerular basement membrane thickness in normal adults and its application to the diagnosis of thin basement membrane disease: An indian study. **Indian J PatholMicrobiol**, v. 48, n. 4, p. 453-458, 2005.

SATO, S. et al. Validation of glomerular basement membrane thickness changes with aging in minimal change disease. **Pathobiology**, v. 77, n. 6, p. 315-319, 2010.

![](_page_37_Picture_11.jpeg)

WU, H. S.; DIKMAN, S. Segmentation and thickness measurement of glomerular basement membranes from electron microscopy images. J Electron Microsc (Tokyo), v. 59, n. 5, p. 409-418, 2010.