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Abstract: Flavonoids are phenolic compounds, secondary metabolites of plants that cause several benefits to our health, 

including helping the treatment against cancer. These pharmacological properties are associated with the ability of flavon-

oids in attenuating the generation of reactive oxygen species, acting as chelate compounds or affecting the oxi-redox cy-

cle. In spite of the large number of information in term of SAR and QSAR, no recent review has tabulated and discussed 

in detail these data. In view of this, we bring here a detailed discussion of the structure-activity relationships (SAR) and 

quantitative structure-activity relationships (QSAR) models. We have also analyzed the correlation between the chemical 

structure of flavonoids and analogues to their anticancer activities. A large number of methodologies have been used to 

identify the characteristics of these compounds with their potential anticancer: multiple linear regression, principal com-

ponents analysis, comparative molecular field analysis, comparative molecular similarity indices analysis, partial least 

squares, neural networks, configuration of classification and regression trees, Free-Wilson, docking; using topological, 

structural and enthalpies’ descriptors. We also discussed the use of docking models, together with QSAR models, for the 

virtual screening of anticancer flavonoids. The importance of docking models to the medicinal chemistry of anticancer 

flavonoids has increased in the last decade, especially to help in identifying the structural determinants responsible for the 

activity. We tabulated here the most important examples of virtual screening determined for anticancer flavonoids and we 

highlighted the structural determinants. The mode of action, the most potent anticancer flavonoids and hints for the struc-

tural design of anticancer flavonoids are revised in details and provided here. 

Keywords: Cancer, descriptors, docking, flavonoids, SAR, QSAR.  

1. INTRODUCTION 

Flavonoids are polyphenolic compounds present in the 
leaves, flowers and stems of more than 4,000 higher plants. 
In plants, these compounds provide protection against the 
ultraviolet radiation, pathogens and herbivores. Flavonoids 
act also as pigments, providing colors from red to violet, and 
attracting pollinating vectors [1, 2]. In special, these com-
pounds have therapeutic properties in the food, cosmetic, and 
medicine fields. 

According to VAYA et al. (2003) and CARDOSO et al. 
(2005) [3, 4], this class of secondary metabolite exhibits the 
same chemical skeleton, therefore can be classified into five 
main groups as shown in Fig. (1). 

The major groups of flavonoids are endowed with phar-
macological properties. Among them, we can cite the anti-
cancer properties, cardioprotective as the most relevant of 

them [5-9]. 
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 In spite of the extreme search for new anticancer drugs 
for medical application, cancer remains a leading cause of 
death. As the time of writing, the anticancer properties of 
flavonoids are the most explored. We can find a large num-
ber of examples where the flavone core was used during the 
structural planning.  

Many studies have ascertained the mode of action and the 
functional properties of anticancer flavonoids, including the 
carcinogen bioactivation, cell signaling and cycle regulation, 
angiogenesis, oxidative stress and anti-inflammatory proper-
ties. Compelling data from laboratory studies, epidemiologi-
cal investigations, and human clinical trials indicate that fla-
vonoids have important effects on cancer chemoprevention 
and chemotherapy. Some of these functional properties in-
clude: carcinogen inactivation, antiproliferation, cell cycle 
arrest, induction of apoptosis and differentiation, inhibition 
of angiogenesis and, reversal of multidrug resistance or a 
combination of these mechanisms. Based on these results, 
flavonoids are promising anticancer agents [5-9]. 

Regarding the structural determinants of flavonoids and 
analogues for the anticancer properties, it is possible to iden-
tify relevant chemical descriptors and correlations between 
the flavonoid structures versus anticancer activity. In the 
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light of this, we here aimed here to tabulate and analyze in 
detail most the existing literature describing structure-
activity relationships (SAR), quantitative structure-activity 
relationships (QSAR) and docking studies of anticancer fla-
vonoids [10]. 

2. SAR 

The main functional property of flavonoids is their ability 
to act as antioxidants, preventing heart diseases and cancers. 
The mode of how flavonoids display antioxidant activity 
depends on two factors: the electron-proton transfer and the 
stabilization of the formed free radical. Phenolic antioxidant 
agents (Ar-OH) need to scavenger the produced free radicals 
faster than other endogenous molecules, thereby conferring 
protection for the cells. The protective effects of a flavonoid 
is due to its capacity into transferring electrons to free radi-
cals, like as a metal chelator, therefore reducing tocoferoxyl 
radicals as well as inhibiting oxidases [1,2,11].  

The main reasons for the antioxidant activity of flavon-
oids in terms of magnitude are: the position and the number 
of phenol hydroxyl attached to the carbon skeleton, the phys-
icochemical properties of other substituent, and the possibil-
ity of formation of intramolecular hydrogen bonds [12, 13]. 

It is well-know the location of the phenolic hydroxyl af-
fects the magnitude of the antioxidant activity. It is also de-
scribed that compounds containing the hydroxyl in para (po-
sition 4) are more potent than those substituted in ortho or 
meta (positions 2 and 3, respectively). The relationship be-
tween the number of phenolic hydroxyls and the antioxidant 
activity shows that the greater the number of hydroxyl 
groups greater is the antioxidant activity. As a result, di-
(most common) and tri-substituted compounds have higher 
antioxidant properties than the mono-hydroxylated ones [13, 
14]. 

In compounds containing a heteroatom (nitrogen and 
oxygen), or a hydroxyl group located in ortho and/or para 

position are more potent antioxidant agents because of the 
resonance involving the pair of  electrons of the heteroatom 
and the resulting phenoxyl radical [15]. 

In 2001, Pannala and colleagues (2001) [1] used pharma-
cokinetic data to evaluate the antioxidant capacity of flavone 
and flavonol derivatives (see Fig. 1). In view of this study, 
we can summarize important structural determinants: 

• The position of the hydroxyl group in ring B is crucial for 
the antioxidant activity and cannot be removed. In regard 
to the position, a para position is better, while little or no 
activity is observed in ortho and meta positions; 

• The presence of a second hydroxyl group in ring B en-
hances the antioxidant activity; 

• The presence of two ortho-dihydroxy substitution on ring 
B, and the double bond C2-C3 conjugated to the carbonyl 
group (C4) in ring C (as seen in flavones) is essential for 
the antioxidant activity; 

• A hydroxyl group located in C3 of the ring C increases 
the antioxidant activity; 

• The presence of a hydroxyl in C4 increases the antioxi-
dant activity in compounds having a hydroxylin C3 be-
cause of the intense conjugation (resonance); 

• Hydroxyl groups in positions C5 and C7 of the ring A 
have no importance; 

• Compounds with three hydroxyl groups are more active 
than dihydroxyl compounds. The reason for is because 
these compounds adopt a mechanism of action involving 
electron donation, resulting to the formation of a 
semiquinone specie, and subsequently a quinine [1, 16]. 

The C2-C3 double bond also appears to be important for 
the anticancer activity, it is clear when we compare 
flavanones and flavones derivatives (Fig. 2). These flavonoid 
variants inhibit the breast cancer resistance protein (BCRP), 
a membrane efflux transporter that belongs to the ABC (ATP 
binding cassette) transporter superfamily. ABCG2 expres-
sion in cancer cells is related to the multidrug resistance 
process [16-18]. 

Two years later, it was reported the presence of a hy-
droxyl group in C-5 along to a methoxy group in C-3 are 
also important for the inhibitory activity of BCRP. The most 
active compounds identified were the ayanin and retusin 
(Fig. 3) [19]. 

In another interesting work, Cheng and colleagues (2002, 
2003) [14, 21] compared the antioxidant properties of 15 
phenolic compounds by molecular modeling. They found 
that gallic acid and pyrogallol (Fig. 4) exhibit a different 
reactivity and functional profile. In this model, gallic acid 
and pyrogallol were not predicted as antioxidant agents, be-
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Fig. (1). Five main groups of flavonoids [3]. 
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cause of their significant pro-oxidant activity. An explana-
tion is that these compounds may act as both antioxidants 
and pro-oxidant, it depends on used concentration as well as 
the source of free radicals. In fact, the reduction of Fe+3 into 
Fe+2 induced by these compounds affect the Fenton’s reac-
tion (Equation 1) as well as the generation of OH• radicals. 
Following a Fenton's reaction and Haber-Weiss cycle, it is 
believed that an autoxidation and production of H2O2 by in-
creasing the concentration of hydroxyl radicals is involved 
during the antioxidant properties of these flavonoids (Equa-
tion 2). 

 Equation 1 Fe2+ + H2O2  Fe3+ + OH- + •OH 

 Equation 2 Fe3+ + O2
-                   Fe2+ + O2 

Topical application of similar flavonoids and antioxi-
dants reduce the oxidative damage induced by UV radiation. 
As a result, flavonoids prevent oxidative stress, reduce cell 
damage, which is worthy for a therapeutic application for 
skin cancer. However, this protection is most effective when 
there is penetration of antioxidant agents into deepest layers 
of the stratum corneum.  
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Fig. (4). Chemical structure of gallic acid and pyrogallol. 

It is evident that a topical formulation should exhibit an 
appropriated ClogP [11], a parameter to be considered in the 
search for topical solutions that reduce the side effects of 
reactive oxygen species (ROS) [13]. In an analysis of aque-
ous solutions of caffeic and ferulic acid at pH 3.0 and 7.2, it 
was observed that the penetration of the ferulic acid solution 
in the stratum corneum was higher than that seen for caffeic 
acid, thereby reducing the UV-induced erythema with 
greater efficiency. An explanation of this is because of the 
higher ferulic acid lipophilicity (CLOGP = 1.62) when com-
pared to caffeic acid (CLOGP = 1.55) [22,23]. 

3. QSAR 

3.1. CoMFA, CoMSIA, PLS 

Topological and substructural descriptors have been re-
cently employed in several anticancer QSAR studies using 
sets of small molecules of several classes with activities 
against brain tumor cells lines [24], anti colorectal cancer 
cells [25], breast cancer cell lines [26] and, human carcinoma 
of the nasopharynx [27]. Recently, some studies of Quantita-
tive Structure–Disease Relationship (QSDR) used topologi-
cal index to predict protein properties linked with colon can-
cer [28-30], human breast cancer [30], and antioxidant prop-
erties [31]. Topological descriptors have also been success-
fully employed to calculate predictive model using flavon-
oids. For instance, Farkas et al. (2004) [5] conducted a study 
with 36 flavonoids selected from the literature, including: 
flavonol, flavone, flavanone, dihydroflavonol, biflavanone, 
isoflavanone, and coumestrol. The antioxidant activities 
were determined by their ability to inhibit the -
carotenelinoleic acid in the model of heat-induced oxidation 
[32]. The theoretical models were built with the Statistica 
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Fig. (2). The presence of a C2-C3 double bond in flavonoids is required for flavonoids inhibiting BCRP. 
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Fig. (3). Chemical structure of ayanin and retusin. 



2788    Current Topics in Medicinal Chemistry, 2012, Vol. 12, No. 24 Scotti et al. 

5.5®program, and calculating the partial least squares projec-
tion of latent structures (PLS) method. The number of calcu-
lated descriptors was 147, omitting which showed a correla-
tion higher than 0.99. The validation of the models was done 
by leave-one-out cross-validation cut-off (PRESS =0.6253, 
R2=0.9888). As advantage, the model was obtained with a 
short time machine and led to a high predictive of antioxi-
dant activity as well as separating the various flavonoids 
groups. 

A more recent work described the anticancer properties 
of 23 isoflavones (see Table 1), which featured the impor-

tance of a methyl group in different positions for the antican-
cer properties [6].  

The relationship between the structural properties of 
methoxyisoflavones and their anticancer activities in 
HCT116 cells were analyzed by CoMFA and CoMSIA. A 
PLS dataset was used in both the models to select the most 
significant descriptors that correlates to the interaction fields. 
The model (CoMFA q2=0.783; CoMSIA q2=0.540, r2=0.960) 
showed best cross-validation correlation coefficient or non-
cross-validation coefficient [6]. 

Table 1.  Structures of 23 Isoflavones and their Biological Activities on the Clonogenic Survival Density of HCT116 Colon Cancer 
Cells [6]. 
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Number Chemical name R1 R2 R3 R4 R5 R6 R7 Biol. 

1 7-Methoxyisoflavone H H OCH3 H H H H 174 

2 6,7-Dimethoxyisoflavone H OCH3 OCH3 H H H H 26 

3 4’,5-Dihydroxy-7-metoxyisoflavone(Prunetin) O H OCH3 H H H OH 78 

4 4’,6-Dimethoxy-7-hydroxyisoflavone H OCH3 OH H H H OCH3 287 

5 7-Hydroxy-6-mehtoxyisoflavone H OCH3 OH H H H H 188 

6 3’,4’,5,7-Tetramethoxyisoflavone OCH3 H OCH3 H H OCH3 OCH3 233 

7 3’,4’,6,7-Tetramethoxyisoflavone H OCH3 OCH3 H H OCH3 OCH3 44 

8 4’,7,8-Trihydroxyisoflavone H H OH OH H H OH 108 

9 4’,7,8-Trimethoxyisoflavone H H OCH3 OCH3 H H OCH3 90 

10 3’,4’,7-Trimethoxyisoflavone H H OCH3 H H OCH3 OCH3 193 

11 4’-Bromo-5,7-dimethoxyisoflavone OCH3 H OCH3 H H H Br 259 

12 2’-Chloro-5,7-dimethoxyisoflavone OCH3 H OCH3 H Cl H H 110 

13 3’-Chloro-5,7-dimethoxyisoflavone OCH3 H OCH3 H H Cl H 52 

14 4’-Chloro-5,7-dimethoxyisoflavone OCH3 H OCH3 H H H Cl 86 

15 4’-Chloro-7-hydroxy-8-methylisoflavone H H OH CH3 H H Cl 161 

16 4’-Chloro-7-methoxy-8-methylisoflavone H H OCH3 CH3 H H Cl 125 

17 2’,6-Dichloro-7-methoxyisoflavone H Cl OCH3 H Cl H H 284 

18 4’,7-Dimethoxy-8-methylisoflavone H H OCH3 CH3 H H OCH3 142 

19 7-Hydroxy-8-methylisoflavone H H OH CH3 H H H 217 

20 7-Methoxy-8-methylisoflavone H H OCH3 CH3 H H H 138 

21 7-Methyl-2’,4’,6-trichloroisoflavone H Cl CH3 H Cl H Cl 262 

22 4’-Acetoxy-7-hydroxy-6-methoxyisoflavone H OCH3 OH H H H OAc 220 

23 7-Methoxy-5-methylisoflavone CH3 H OCH3 H H H H 134 
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Using PLS analysis, another study aimed to identify a 
linear correlation between the antiproliferative activity 
against colorectal cells and the resulting field matrix of 
isoflavones. Counter maps calculated from CoMFA and 
CoMSIA analyses led to infer information in regard to the 
steric, electrostatic, hydrophobic, and H-bond donor and 
acceptor effects, as seen in Fig. (5) [6]. 

Another investigation also used a similar model; however 
it has included 30 flavone, flavanones, isoflavones, and chal-
cones. This model was analyzed by CoMFA e CoMSIA [7]. 
As the biological parameter, all these 30 compounds were 
assayed in cancer cells (lymphomas, melanomas, breast, co-
lon, ovarian, uterine cervix, prostate, thyroid, skin, esopha-
gus and pancreatic cancer). However, this work also taken in 
account the ability of compounds to inhibit the expression of 
NF- B, a protein involved in inflammatory process. TNF  is 
a major pro-inflammatory cytokine and plays an essential 
role in the regulation of immune responses. It is suggested 
that TNF  is acting as a target for cancer therapy [7, 33, 34]. 

Once again, the best CoMFA model was obtained by the 
region focusing method and showed cross-validated correla-
tion coefficient (q2 = 0.611) and non-cross-validated (r2 = 
0.969). This model predicted that, for a compound affects the 
secretion of TNF  and NF- B activation, it should contain 
an electronegative substituent at the C-5 position of the A 
ring, a bulky substituent in the meta position of the B ring, as 
well as a hydrophobic substituent in the meta position of the 
B ring [7]. 

Another important attempt to predict the anticancer prop-
erties of flavonoids relies on the understanding of the sub-
stituent effect. To this end, Ou and co-workers analyzed fla-
vonoids by dividing them into three chemical classes. As the 
biological parameter, all these three classes of compounds 
were assayed for five cancer cell lines. The analysis of this 
work is shown in Table 2 [8]. 

This theoretical model has taken in account the cytotox-
icity for cancer cells k562. After structural optimization and 
conformational analysis, a CoMFA analysis was determined. 
The initial PLS analyses were performed using the LOO 
cross-validation with the optimum number of components 
set as default. 

The model with a best cross-validated r2
cv, an optimum 

number of components determined by LOO method was 
used in a non-cross-validated analysis. The CoMFA model 
from LOO PLS analysis with 4 optimum components 

showed that for a non-cross-validated analysis an R2 of 
0.897, an estimated standard error is of 0.286 [8]. 

From this study, it was identified 5,7-dimethoxy flavon-
oids as the most potent anticancer agents than other two ana-
log series. This model provided evidences for using 5,7-
dimethoxy flavonoids as anticancer drug prototypes, since 
they are more promising than the other two chemical series 
[8]. 

P-gp is a super-family of trans-membrane glycoproteins 
found in various resistant tumor cells, and responsible for the 
influx of anticancer agents from the nucleus to the cyto-
plasm, answering for the emergence of drug resistance 
[35,36]. The identification of flavonoids endowed with in-
hibitory properties for P-gp is worthy. In view of this, 42 
compounds (see Table 3), purchased from the literature were 
assayed as antagonists of P-gp. As a biological parameter, 
Kd was measured and converted into pKd (-logKd) in order 
to use the data as a dependent variable in the CoMFA 
(q2=0.747, Q2=0.639,r2

pred=0.802) and CoMSIA models 
(q2=0.810, Q2=0.676, r2

pred=0.785) [26].  

PIM-1 kinase is also an important cancer drug target for 
flavonoids. It is found in many cancer cell lines and is asso-
ciated to the pathology outcome of lymphomas, leukemias, 
and prostate [28]. The identification of flavonoids inhibiting 
this kinase is an appealing line of research. 

In the light of this, Holder and co-workers tested 15 fla-
vonoids as PIM-1 inhibitors, using a CoMFA model to ex-
plain the biological results. The training series (n=15) led to 
a non-cross-validated q2 = 0.805, a standard error of estimate 
of 0.376, F value = 24.79, while the test set (n=6) led to a 
q2=0.825. The calculated model showed to be a robust and 
reliable way to explain and predict the structural design of 
small-molecule PIM-1 kinase inhibitors [37]. 

3.2. 3D versus 2D 

Pick and co-workers compared 2D and 3D QSAR models 
for 28 flavonoids inhibiting the BCPR. (Fig. 6 and Table 4) 
summarize this chemical library [20]. 

Lipophilicity, calculated as either log P or log D, has 
been used as a predictor for inhibition of BCRP flavonoids 
and analogues [17,18]. To analyze the substituent effect for 
the BCRP activity, a QSAR 2D analysis was calculated us-
ing the Free–Wilson method. On the other hand 3D QSAR 
analyses applying the CoMFA and CoMSIA methodologies
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Fig. (5). Information from CoMSIA and CoMFA in regard to anticancer activity in colorectal cells of isoflavone variants. 
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Table 2.  Three Series used by Ou et al., 2011 and theirs Cytotoxic Activities Against Cancer Cell Lines In Vitro [8]. 

O

O

O

O

R1

R4

R5

R2 R3

 

Compound R1 R2 R3 Cytotoxicity (IC50, M) 

1st set (5,7-di-OMe)    K562 PC-3 MCF-7 A549 HO8910 

1 H H H 1195.5 >50 >50 >50 >50 

2 OMe H H 4.50 6.44 3.50 >50 5.26 

3 H H CH3 6.62 17.18 34.92 10.04 21.33 

4 H CH3 CH3 11.58 14.29 >50 15.60 24.80 

5 H CH3 C2H5 6.16 12.14 15.70 4.83 23.65 

6 H CH3 C3H7 2.76 3.74 5.22 6.98 6.65 

7 OMe H CH3 9.58 23.83 0.56 9.67 2.33 

8 OMe CH3 CH3 5.76 9.25 15.76 13.83 2.28 

9 OMe CH3 C2H5 7.06 38.11 10.06 10.80 4.20 

10 OMe CH3 C3H7 4.49 33.57 2.61 24.68 2.08 

2nd set (5-OH-7-OMe)         

A H H H 2814.5 >50 >50 >50 >50 

B OMe H H 23.19 6.45 >50 25.65 >50 

C H H CH3 82.5 >50 >50 >50 >50 

D H CH3 CH3 35.86 17.55 >50 >50 >50 

E H CH3 C2H5 >50 >50 >50 >50 26.50 

F H CH3 C3H7 178.3 >50 19.23 >50 >50 

G OMe H CH3 24.85 >50 >50 >50 >50 

H OMe CH3 CH3 10.93 >50 >50 >50 >50 

I OMe CH3 C2H5 14.57 >50 >50 >50 >50 

J OMe CH3 C3H7 17.38 >50 >50 >50 >50 

3rd set (5,7-di-OH)         

A’ H H H 22.62 41.98 >50 >50 >50 

B’ OH H H 455.4 25.27 >50 18.04 25.36 

C’ H CH3 CH3 21.38 >50 42.65 >50 35.55 

Doxorubicin    0.15 0.53 0.50 2.61 0.20 

 
were performed to understand the molecular fields that de-
scribe the differences in inhibitory potency. The CoMSIA 
approach the highest q2 was obtained for the combination of 
electrostatic and hydrogen bond acceptor field (q2 = 0.624) 
and the best model using CoMFA using combined hydrogen 

bonding and electrostatic showed q2 = 0.619. The reliability 
of these two models was validated by LOO, LMO method 
and the scrambling stability test. When performing LMO 
[38,39] the dataset was divided into several groups of equal 
size of the compounds were included in model generation 
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Table 3.  Structures and Activity used by Kothandan and Colleagues (2011) [35]. 

O CH

O

OH
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O

O

Ph

Ph

Ph
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O
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Isoflavone2-(Diphenyl-methyl)chromen-4-one
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Compound 3 5 6 7 8 2’ 3’ 4’ pKd 

1a OH H H H H H H H 5.00 

2 OH OH H OH H H H H 5.23 

3 OH OH H OH DMA H H H 6.35 

4a OH OH Prenyl OH H H H H 6.68 

5 OH OH H OH Prenyl H H H 6.66 

6 OH OH H OH H H H OH 5.17 

7 OH OH H OH H H H OCH3 5.35 

8 OH OH H OH DMA H H OCH3 6.70 

9 OH OH H OH H H H F 5.17 

10 OH OH H OH H Cl H Cl 5.40 

11a OH OH H OH H H H I 5.96 

12 OH OH H OH H H H H 5.70 

13 OH OH H OH H H H C8H17 7.24 

14 OCH3 OH H OH H H H H 5.05 

15 OCH3 OH H OCH3 DMA H H H 6.82 

16 OH OH H OH H H OH OH 5.15 

17 H OH H OH H H H OH 4.58 

18a H H H H H H H H 4.47 

19 H H H OH H H H H 4.46 

20 OH H H H H H H H 5.00 

21a H OH H OH H H H H 5.05 

22 H OH CH3 OH H H H H 5.51 

23 H OH H OCH3 H H H H 5.20 

24 H OH CH3 OCH3 H H H H 5.89 

25a H OH H OH H H H OH 5.00 

26 H OH H OH H H F F 5.20 

27 H OH H OH H H H I 5.66 

28 H OH H O-iPr H H H H 6.00 

29 H OH iPr OH H H H H 6.68 

30 H OH iPr O-iPr H H H H 6.55 

31a H OH iPr O-iPr iPr H H H 7.48 
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 (Table 3) contd…. 

Compound 3 5 6 7 8 2’ 3’ 4’ pKd 

32 H OH Bn OH H H H H 6.47 

33a H OH H OH Bn H H H 6.00 

34 H OH Bn OH Bn H H H 7.44 

35 H OH H OBn H H H H 7.17 

36 H OH Prenyl OH H H H H 6.52 

37 H OH H OH DMA H H H 6.70 

38 H OH H OH Prenyl H H H 6.55 

39 H OH Prenyl OH Prenyl H H H 7.82 

40 H OH Geranyl OH H H H H 7.35 

41 H OH H OH Geranyl H H H 7.60 

42a H OH H OH DMA H H OH 6.15 

a – test set. 

 
while the inhibitory potencies of the remaining substances 
were predicted. As the groups were randomly generated, this 
procedure was repeated 100 times to exclude the possibility 
of chance correlations and to validate the models. Results 
from the internal validation techniques, LMO, and scram-
bling stability test have pointed out the validity and robust-
ness of the models. Contour plots were generated to visualize 
the contribution of the different substituents to the biological 
activity of the investigated compounds. The Fig. (7) summa-
rizes the main structural features that affect the inhibition of 
BCRP by flavonoids [20]. 

3.3. MLR 

As can be seen from a QSAR model derived from the 
stepwise multiple linear regression, electron transfer and the 
stability of the corresponding phenoxyl radicals resulting 
from H-abstraction are important roles for the radical reac-
tion. An analysis of these QSAR models for flavonoids and 
variants, clustered according to the antioxidant properties 
(i.e., potency)versus quantum parameters, provided informa-
tion regarding to the electronic and energetic nature 
[12,14,16,21,40-43]. Among these parameters, the most im-
portant ones are: 

• Hf, difference of enthalpy energy between the closed 
shell (phenolic) and radical (abstraction of the hydrogen) 
species; 

• HOX, energy activation of the intermediate cation radi-
cal, calculated by the difference between Hf_fc and 
Hf_fn, and also defined as the electron transfer enthalpy; 

• EHOMO, energy of the highest occupied molecular orbital, 
a parameter related to the electron-donating capacity of 
the molecule; 

• ELUMO, energy of lowest orbital molecular, a parameter 
related to the electron-donating capacity of the molecule; 

• H-Lgap, chemical hardness obtained by the difference of 
energy between orbital HOMO and LUMO. 

Singh et al., 2009 [44] determined a QSAR for 32 oxime- 
and methyloxime-containing flavones and isoflavones by 
MLR. To build the [45]. QSAR model, Singh and co-authors 
used the antiproliferative property for hepatocellular carci-
noma SK Hep1 cells as a dependent variable. Fig. (8) shows 
the chemical structure of these compounds.  

To this end, 122 descriptors were calculated in the VLife 
2.0 program, including: XcD (X comp dipole), QMDMg 
(QM Dipole Magnitude) is the magnitude of the induced 
dipole moment. Internal validation was carried out by LOO 
method. These 32 compounds were divided in training (25 
molecules) and test sets (7 molecules). The calculated equa-
tions were finalized and the multiple linear regressions were: 

Equation 3 

pIC50=[13.618(±3.691) + XcD [0.097(±0.0598) + SdOi [-
0.909(±0.293)] ±QMDMg [0.333(±0.138)] 

n = 25, r = 0.855, r2 = 0.730, variance = 0.032, s = 0.179, 
F = 18.977, chance<0.001, q2 = 0.605, Spress = 0.217, SDEP = 
0.199, Pred_r2 = 0.300. 

Equation 4 

pIC50=[15.546(±4.684)] + XcD [0.099(±0.072)] + DM 
[0.077(±0.045)] + SdOi [-1.050(±0.373)] 

n = 25, r = 0.805, r2 = 0.648, variance = 0.052, s = 0.229, 
F = 12.885, chance<0.001, q2 = 0.512, Spress = 0.269, SDEP = 
0.247, Pred_r2 = 0.577. 

It was interesting to note that various flavones and isofla-
vones, especially for the flavone-6-yl derivatives, had greater 
antiproliferative activity. Once QSAR predicted this, a sec-
ond generation of flavone-6-yl variants with improved po-
tency was designed. In fact, the predicted compounds were 
more potent than the initial ones [44]. 

An analysis of regression associated to the genetic algo-
rithm for a series of 25 flavonoids, as inhibitors of BCRP, 
was determined by Zhang and co-workers. 115 structural 
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Fig. (6). Chemical structures of the flavonoids used by Pick et al., 2011. 

 
descriptors were determined from the QSARIS 1.2 software, 
such as: Kappa shape indices, electrotopological state indi-
ces, information indices, subgraph count indices, molecular 
polarizability, molecular weight, volume. The fitness func-
tion was defined as 1/LOF, LOF representing the Friedman’s 
lack [17]. 

The best model is represented in the equation 5. 

Equation 5 

pEC50 = 1.156 x logP + 0.891 x SdssC_acnt – 0.176 x Dy 
+ 0.480 

( R2 = 0.852, Q2 = 0.784) 

The Rext value was of 0.922, indicating that the con-
structed model is valid and comparable with the build mod-
els with QSAR-3D and CoMFA. A positive contribution of 
logP was observed for this model. As a result, the gain of 

hydrophobicity increases the inhibitory activity for BCRP 
when substituents were attached in the positions 6, 7, 8 e 4’ 
[17]. 

Using MLR and GA-PLS 50 flavonoid derivatives with 
p56lck protein tyrosine kinase inhibitory activity were stud-
ied [46]. Fassihi and collaborators observed the influence of 
substituent electronic descriptors (SED) parameters on pro-
tein tyrosine kinase inhibitory activity of the compounds. 
About 600 descriptors were generated: topological, geomet-
rical, constitutional, functional group, electrostatic, quantum 
and chemical. The resultant GA-PLS model had a high sta-
tistical quality (R2 = 0.74 and Q2 = 0.61) for predicting the 
activity of the inhibitors. 

3.4. MIF 

Many predictive models have been built, most of them 
using descriptors using MIFs. These descriptors are
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Table 4.  Set and Activity of Flavonoids used by Pick et al., 2011 [20]. 

Number Compound R3 R5 R6 R7 R8 R2’ R3’ R4’ R5’ IC50 

1 6-Methoxyflavanon H H OCH3 H H H H H H 19 

2 Pinostrombin H OH H OCH3 H H H H H 8.9 

3 Dimethylpinocembrin H OCH3 H OCH3 H H H H H 17 

4 Strobopinin H OH CH3 OH H H H H H 11 

5 Strobopinin-7-methylether H OH CH3 OCH3 H H H H H 4.9 

6 Dimethylcryptostrobin H OCH3 H OCH3 CH3 H H H H 9.3 

7 Flavone H H H H H H H H H 17 

8 6-Methoxyflavone H H OCH3 H H H H H H 3.4 

9 Apigenin H OH H OH H H H OH H 3.1 

10 Chrysin H OH H OH H H H H H 1.5 

11 Chrysin-dimethylether H OCH3 H OCH3 H H H H H 9.2 

12 Kaempferol OH OH H OH H H H H H 4.7 

13 Quercetin OH OH H OH H H OH OH H 6.9 

14 Morin OH OH H OH H OH H OH H 21 

15 Penduletin OCH3 OH OCH3 OCH3 H H H OH H 1.2 

16 Ayanin OCH3 OH H OCH3 H H OH OCH3 H 0.46 

17 Retusin OCH3 OH H OCH3 H H OCH3 OCH3 H 0.39 

18 Tangeretin H OCH3 OCH3 OCH3 OCH3 H H OCH3 H 19 

19 Sinensetin H OCH3 OCH3 OCH3 H H OCH3 OCH3 H 9.0 

20 Nobiletin H OCH3 OCH3 OCH3 CH3 H OCH3 OCH3 H 4.9 

21 
3,5,6,7,8,3’,4’-Heptamethoxy-

flavone 
OCH3 OCH3 OCH3 OCH3 OCH3 H OCH3 OCH3 H 1.4 

22 
5-Hydroxy-6-methyl-7-

methoxy-flavone 
H OH CH3 OCH3 H H H H H 3.0 

23 Strobochrysin-dimethylether H OCH3 CH3 OCH3 H H H H H 5.9 

24 Apigetrin H OH H 
O-

glucose 
H H H OH H - 

25 Vitexin-2’’-O-rhamnoside H OH H OH 
C-

sugar 
H H OH H - 

26 Vitexin-4’-rhamnoside H OH H OH 
C-

sugar 
H H 

O-

sugar 
H - 

27 Hyperoside 

O-

galac-

tose 

OH H OH H H H OH OH - 

28 Genistein H OH H OH H H H OH H 6.9 

 
appropriated for correlating the tridimensional 3D interac-
tions between the molecule and receptor [47, 48]. 

The inhibitory activity ABCG2/BCRP was investigated 
by VolSurf descriptors [49-51] of MIFs. To this end, a li-
brary of 34 flavonoids and flavonoid derivatives including 

flavones, benzopyranes, benzofuranes, boeravinones and 
acridones were biologically assayed.  

Once the geometry of compounds was optimized by 
MMFF94s dataset, acceptor and donor parts of MHBPac and 
MHBPdo and the MLPho were computed, using a SYBIL 
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8.0. For each MIF, 16 shape descriptors were calculated with 
VolSurf [49]. 

O

O

OH (-)

OMe (+)

  OH (+)

H-acceptor (+)

OMe (+)

  OH (-)

Double bond (+)
Prenyl or H-acceptor (+)

OH (-)

OH (-)

 

Fig. (7). Results are based on data from the 2D and the 3D QSAR 

approaches, where (+) is the positive influence on inhibition of 

BCRP by flavonoids and (-) is the negative influence. 

 
PCA and PLS analysis were performed with SIMCA-P 

11.0. The models were evaluated by cross-validation using 
LOO method. The calculated model presented reliable ro-
bustness and statistical significance (r2=0.77; q2=0.70). 
Seven flavonoids were selected as external tests (r2=0.80). 
This QSAR-3D analysis ascertained the importance of mo-
lecular shape, polarizability and hydrophobicity of com-
pounds for the inhibitory property [49]. 

3.5. Neural Networks 

In another line, 57 flavonoids were purchased and as-
sayed as inhibitors of P-gp [52]. Once the biological activity 
was ascertained, these compounds were submitted for 
BRNN, BPNN e PLS dataset methodologies. In this study, 
the biological activity (P-gp inhibition) was taken in account 
as the dependent variable. BRNN is a matrix based on a 

probabilistic interpretation of network training to improve 
generalization ability of the classical neural networks. In 
contrast to conventional network training, the Bayesian ap-
proach involves a probability distribution of network 
weights. Classical BPNN is the widely common of the su-
pervised learning models of neural network. Yet PLS ex-
presses a dependent variable (target activity) in terms of lin-
ear combinations of the independent variables, commonly 
known as PCs [53-56]. 

(Table 5) sums the statistical index in regard to the three 
employed methods. In fact, the calculated model showed to 
be a reliable and robust in predicting flavonoids inhibiting P-
gp with improved affinity.  

The calculated model showed to be a reliable and robust 
course in predicting flavonoids inhibiting P-gp with im-
proved affinity.  

3.6. Others 

It has also been reported inhibitory activity of flavonoid 
derivatives for protein tyrosine kinase p56lck, a protein re-
lated to metastasis [57]. Some of 3D-QSAR studies analyze 
this activity using different methods.  

One of these studies was conducted in 1998 by Nik-
olovska and collaborators. A set of 104 flavonoid derivatives 
were submitted on QSAR analysis using classical and quan-
tum chemical parameters. The results showed that meta and 
para positions of the flavonoids (3’ and 4’) should have elec-
tron-donating properties to interact with the catalytic domain 
of the enzyme, through hydrogen bonds [58]. 

Zhou and collaborators used globally optimal CART 
(MPSOCART). The objective was formulated to decide the 
appropriate CART architecture and the optimum splitting 
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Fig. (8). Structures of flavone and isoflavone derivatives used in QSAR method [35]. 

 

Table 5.  Statistical Results of the Three Optimal QSAR Models for P-gp Flavonoid Inhibitors by Each Regression Method [52]. 

Parameter BRNN BPNN PLS 

 Training Test Training Test Training Test 

Compounds 43 14 43 14 43 14 

PCs 4 4 4 4 1 1 

R2 0.756 0.728 0.826 0.679 0.392 0.655 

SEEa 0.120 - 0.119 - 0.657 - 

SEPb -c 0.146 - 0.160 - 0.267 

a - standard error of estimate 
b - standard error of prediction 

c - not applicable or available 
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parameters and the results were compared with PLS. 
MPSOCAT showed good power of prediction the bioactiv-
ities of flavonoid derivatives and inhibitory activities of in-
hibitors of epidermal growth factor receptor tyrosine kinase 
[59]. 

4. DOCKING 

4.1. Molecular Targets for Anticancer Flavonoids 

Molecular docking is defined as the collision of the sub-
strate with the binding site in the correct conformation and 
orientation; therefore it can provide information about the 
stereochemical organization of the receptor binding site [60]. 
This method has been applied for anticancer flavonoids [61]. 
Among the proteins involved with the anticancer flavonoids, 
we can cite: aromatases, fatty acid synthases, xanthine oxi-
dases, cyclooxygenases, lipoxygenases, ornithine decarboxy-
lases, tyrosine kinases, and phosphoinositide 3-kinases. 

4.2. The Cytochrome P450 and the Anticancer Flavon-
oids 

In the past decade, molecular docking between flavon-
oids and the cytochrome P450 family of enzymes was 
largely studied using natural products.  

Enzymes of cytochrome P450 play many roles in the bio-
synthesis of essential molecular signal mediators, such as: 
steroid hormones, cholesterol, fatty acids, bile acids, as well 
as metabolize exogenous substrates (drugs and toxins). As a 
result, these enzymes are molecular targets for anticancer 
drugs. These enzymes also mediate the metabolic activation 
of innumerous carcinogens and participate of the inactivation 
/ activation of anticancer drugs [62].  

In view of this, Paoletta and co-workers [63] conducted a 
study of virtual screening of natural products gathered from 
240 plants of the traditional Chinese Medicine (Chinese 
Herbal Constituents Database, CHCD) [64]. As a result of 
this massive virtual screening, a large number of compounds 
were identified as potential inhibitors of the human aro-
matase (CYP19), which catalyzes the aromatization reaction 
in cells and crucial within the estrogen biosynthesis. CYP19 
is a promising molecular target for hormonal-dependent 
breast cancer therapy [65,66], and thus the identification of 
natural products useful for inhibit this enzyme is a task that 
is receiving much attention. 

Mammary carcinomas can be treated with the use of anti-
estrogens, which interfere with the binding of estrogen to its 
receptor. Another possibility is the treatment with aromatase 
inhibitors, which decrease the serum levels of estrogen by 
blocking the biosynthesis of the androgens into estrogen 
[67].  

In light of this, to prospect for novel aromatase inhibitors, 
were calculated 238 different structural descriptors for these 
compounds: 150 2D (two dimensional), MOE descriptors 
(Chemical Computing Group, Montreal, Quebec), 56 Kier-
Hall descriptors [68] and 32 Labute VSA descriptors [69]. 
The structural features of 44 phytochemicals with known 
aromatase activity were used in the training Random Forest 
(RF) models to distinguish aromatase inhibitors in 8264 con-
stituents used in the traditional Chinese medicine (TCM). 
The Random Forest model selected 30 compounds of what 
22 compounds did not have been tested as aromatase inhibi-
tors, and three compounds; denoted liquiritigenin, 
gossypetin, and myricetin (Figure M1) were purchased from 
commercial sources and tested as aromatase inhibitors. 

The construction of molecular models to explain these 
three compounds and the docking model of these ligands 
into the aromatase catalytic site were first determined using 
the HyperchemTM version 7 (HypercubeInc., Gainesville, 
FL). Atomic coordinates for the Homology-modeled struc-
ture of human aromatase were collected from the Protein 
Data Bank13 (1TQA) [70]. Other molecular docking studies 
were later on determined using the FlexX program [71] 
(BioSolveIT GmbH, Sankt Augustin, Germany). The protein 
residues involved in the catalytic site for each ligand were 
defined with reference to the ligand pose in the most stable 
of the HyperchemTM modeled complexes. The FlexX dock-
ing was in all cases employed without constraints, and using 
the default values for all adjustable control parameters.  

The docking model indicated that all these compounds 
(myricetin, gossypetin and liquiritigenin – Fig. 9) bind and 
form stable complexes with the enzyme, which make senses 
with the observed inhibitory properties of these compounds 
for catalytic activity of human aromatase (IC50s of 10, 11 and 
0.34 μM, respectively). The ranked order of the activities for 
the three TCM compounds agrees with the predicted stability 
calculated by manual docking studies, but does not agree for 
the FlexX docking calculations. 

Another docking model was determined for the interac-
tion between CYP1B1, CYP1A1, and CYPA2 and 18 
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Fig. (9). Chemical structures of the potential aromatase inhibitors, (a) myricetin, (b) liquiritigenin and (c) gossypetin. 
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methoxyflavonoids [72]. To this end, the Surflex Dock in 
SYBYL 8.0 (TriposInc., St. Louis, MO, USA) was em-
ployed. The CYP1B1 enzyme catalyzes the C4-position of 
E2 to 4-hydroxyestradiol (4-OHE2). 4-OHE2, but not 2-
OHE2, has a strong agonistic effect for the estrogen receptor 
(ER), and therefore is recognized to accelerate the prolifera-
tion of estrogen-dependent cells. CYPA1 is a key enzyme in 
the drug metabolizing pathway for the excretion of exoge-
nous compounds absorbed into the body and CYP1A2 plays 
an important role in the detoxification of estrogen. CYP1B1, 
but not CYPA1and CYPA2, is important for the estrogen-
related carcinogenesis, such as breast cancer [72]. 

The structures of CYP1A2 (PDB: 2HI4) and the 
CYP1A1 and CYP1B1 were constructed by sequence re-
placement using the SYBYL Biopolymer program (Tripos 
Inc., St. Louis, MO, USA) and the atomic coordinates 
(Arg34-Ser513) of the crystal structure of CYP1A2 (PDB; 
2HI4) as a template [73]. 

The authors concluded that specific residues for each 
CYP1s, Thr-124 of CYP1A2, Ser-122 of CYP1A1 and Ala-
133 of CYP1B1, are crucial for these compounds inhibit the 
enzyme. These same authors also suggest that Ala-133 of 
CYP1B1 is important for the binding of methoxyflavonoids 
into catalytic site. The methoxyflavonoids, as isorhamnetin 

and chrysoeriol (Fig. 10), bind tight to the active site pocket 
of CYP1B1, but do not fit into the pockets of CYP1A1 and 
1A2 because of collisions between both a methoxy substitu-
ent of these methoxyflavonoids and Ser-122 of CYP1A1 and 
Thr-124 of CYP1A2. These results explain why methoxyfla-
vonoids with the 2–3 double bond in the C-ring can act as 
selective inhibitors against human CYP1B1 [72]. 

The dynamic and docking of chrysin (5,7-dihydroxy-
flavone – Fig. 11), a natural flavonoid extracted from many 
plants, honey, and propolis, for structures of CYP1A2 and its 
isoform CYP2C9, was determined in order to understand the 
selectivity of this compound [74].  

Some researchers have also employed CDOCKER proto-
col implemented in the Accelrys Discovery Studio 2.1 [75] 
for the docking calculation. The ligand-binding site of 1A2 
was defined and localized by using -naphthoflavone as a 
reference ligand. The authors selected the optimal pose based 
on both the docking energy and cluster popularity for further 
molecular simulation studies. Molecular dynamics simula-
tion parameter files were prepared for each system using 
AMBER 10. The general AMBER force field (GAFF) was 
used as the parameters for ligands, while AMBER ff03 force 
field was used as the parameters for 1A2 and 2C9.  
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Fig. (10). Chemical structures of the selective inhibitors of CYP1B1: (a) isorhamnetin and (b) chrysoeriol. 
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Fig. (11). Structures of six flavonoids used by Shimada and coworkers [76] in molecular docking simulations with CYP1A1, 1A2, 1B1, 2C9, 

3A4. 
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The results showed that chrysin binds to 1A2 in a similar 
model as -naphthoflavone (ANF) does, albeit with few dif-
ferences. The authors have argued that larger binding site 
pocket of 2C9 may decrease the van der Waals’ interactions 
with chrysin. Van der Waals’ and electrostatic/H-bond inter-
actions were the driving forces for its recognition of 1A2. 
The predicted binding free energies using molecular dynam-
ics for the 1A2–chrysin and 2C9–chrysin complexes were -
23.11 and -20.41 kcal/mol, respectively, indicating that the 
chrysin was more potential for the binding with 1A2. 
Weaker van de Waal’s interactions between 2C9 and chrysin 
may be the reason for its moderate inhibitory affinity. The 
authors concluded that hydrophobic/van der Waals’ interac-
tions are a crucial element of binding for 1A2. Because of 
the hydrophobic nature of chrysin, these interactions should 
play an important role in the binding of chrysin to 1A2. The 
flavone ring of chrysin has conventional interactions with the 
1A2 residues [74]. 

Shimada and coworkers described the inhibition of hu-
man enzymes CYP1A1, 1A2, 1B1, 2C9 and 3A4 by 33 
flavonoids and selected six to determine the docking poses 
[76]: five active inhibitors P450 enzymes: flavone, chrysin, 
galangin, acacetin, 5,7-dihydroxy-3',4'-dimethoxyflavone; 
and one inactive: 2-(3,4-dimethoxyphenyl)-7,8-dihydroxy-
4H-chromen-4-one one (Fig. 11). 

The crystal structures of 1A2, 2C9, and 3A4 have re-
cently been reported [73,77,78]. 1A1 and 1B1 primary se-
quences were aligned with human 1A2 (PDB Data Bank 
code 2HI4) in the MOE software (version 2009.10, Chemical 
Computing Group, Montreal, Canada) for modeling of a 
three dimensional structure. Prior to docking, the energy of 
the P450 structures was minimized using the CHARMM22 
force field. Docking simulation was carried out for flavonoid 
binding to P450 enzymes using the MMFF94x force field 
distributed in the MOE Dock software. Twenty solutions 
were generated for each docking experiment and ranked ac-
cording to total interaction energy.  

This docking model argues that there are different 
mechanisms in the interaction of flavonoids with CYP1A1, 
1A2 and 1B1. One of the mechanisms of inhibition of 
CYP1A2 suggested by the authors is because of the direct 
interaction of flavonoids with active site, although such 
mechanisms must be ruled out for CYP1A1 and 1B1 because 
of the observation of possible interaction of 2-(3,4-
dimethoxyphenyl)-7,8-dihydroxy-4H-chromen-4-one Figure 
M4 – b) one inactive, a weak inhibitor, with the active site 
these enzymes. The authors concluded that there are different 

orientations in the interaction of the six flavonoids with the 
five CYP enzymes examined and that two or more mecha-
nisms are possible to explain how various flavonoids inhibit 
each single P450 enzymes in specific modes [76]. 

A study of a 14 dietary flavonoids with functional inhibi-
tory properties for CYP1A1 and CYP1B1 were published 
and molecular docking simulations were employed with the 
aim to rationalize the activity of these flavonoids based on 
their CYP1-binding mode [79]. The authors used the soft-
ware Modeller 9.4 [80] to generate the homology models of 
CYP1A1 and CYP1B1 using the crystallographic structures 
of CYP1A2 (PDB ID: 2HI4) [64] and CYP2C9 (PDB ID: 
1R9O) [77] as templates. The 3D coordinates of the flavon-
oids were generated from their SMILES representation using 
the Omega 2.1 [81]. AutoDockTools1.5.4 was employed for 
the preparation of proteins and ligands with the united- atom 
approximation [82]. Docking calculations were performed 
using the AutoDock4.2 [83]. 

Androutsopoulo and coworkers discussed some docking 
results based on the 4 most active flavonoids: diosmetin, 
eupatorin, chrysin and acacetin (Fig. 12). The simulated 
binding orientation of the studied flavonoids was in accor-
dance with the previously reported and cited in this review 
[72]. Molecular docking reveals favorable energies for poly-
methoxylated flavonoids, as eupatorin, with respect to bind-
ing orientations to the heme group, as opposed to polyhy-
droxylated flavonoids [79]. 

Bonfield and co-workers reported a recent study about 
the design and development of isoflavanone derivatives as 
potential aromatase (CYP19) inhibitors, based on isoflafone 
3-phenylchroman-4-one (isoflavanone) derivatives [84]. 
Docking simulations were employed to investigate the inter-
actions between enzyme and inhibitor, such as hydrophobic 
interactions, hydrogen bonding and heme iron coordination. 
The coordinates of the X-ray crystal structure of the aro-
matase (CYP19A1) androstenedione complex (PDB code 
3EQM) were collected from the Protein Databank 
(http://www.rcsb.org) and imported into the modeling pro-
gram SYBYL (version 8.0; Tripos, St. Louis, MO). Inhibitor 
structures were computationally docked into the enzyme’s 
binding site using the program GOLD (version 5.0.1.; 
CCDC, Cambridge, UK), which operates with a genetic 
search algorithm and allows for complete ligand and partial 
binding site flexibility [85]. 

The obtained data showed good inhibitory potencies of 
isoflavanone derivatives against aromatase, revealing that the
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Fig. (12). Structures of a) diosmetin, b) eupatorin, c) chrysin and d) acacetin. 
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Fig. (13). Structures of isoflavones derivatives used with inhibitory activity against CYP19A1 [84]. 

 
non-planarity configuration of the isoflavanone scaffold 
might be the reason for the enzyme–ligand binding. Specifi-
cally, compound 6-methoxy-3-phenylchroman-4-one bearing 
a methoxy group at C6 position came out as the most potent 
inhibitor, with a 100-fold potency enhancement in compari-
son to the isoflavanone (Fig. 13). The authors identified most 
the structural features that enable isoflavanones bind to the 
aromatase active site with high affinity: Isoflavanone rings A 
or B may participate in –  stacking interactions with aro-
matase’s porphyrin ring or amino acid residues, such as Phe 
221, Trp224 and Phe 134. Moreover, the same authors ar-
gued that the methoxy groups, that are present in 6-Methoxy-
3-phenylchroman-4-one and 3-(3,5-
Dimethoxyphenyl)chroman-4-one (Fig. 13), increase the 
binding affinity because of hydrogen bonds with aromatase 
residues, such as Met 374, Arg 192 and Ser 478. Heterocyc-
lic nitrogen (3-(Pyridin-3-yl)chroman-4-one, Fig. 13) or car-
bonyl oxygen atom of the inhibitors coordinates towards the 
heme iron atom, thereby enhancing the binding interactions 
[84]. 

Another study reported in the same year [86], used the 
same pdb structure X-ray crystal structure of aromatase en-
zyme reported by [87] (PDB ID: 3EQM) for 39 compounds 
belonging to flavone, flavanone, and structural derivatives of 
the isoflavone. Three molecular docking programs used in 
this study were GOLD v4.0 (Cambridge Crystallographic 
Data Centre, Cambridge, 2000 UK.), LIGANDFIT (Discov-
ery Studio Modeling Environment Release 2.1, 2008, San 
Diego, USA: Accelrys Software Inc) and GLIDE v5.5. The 
prediction models were generated using stepwise multiple 
linear regression method to correlate the pIC50 values to 
docking descriptors and scores. Results showed that these 
analogues bind in a similar mode and the calculated pIC50 
values demonstrate significant linear correlation, with inter-
nal cross-validation (leave-one-out) prediction coefficient (q-

loo
2> 0.8), with the experimental aromatase inhibition. 

The same research group of the prior cited work also de-
termined a docking model for 6,8-dibromo-2-aryl-2,3-
dihydroquinolin-4(1H)-ones, which were evaluated in vitro 
(for MCF-7 breast cancer cell lines) [88]. The docking stud-

ies were determined to recognize the binding motif of the 
title compounds within the active of aromatase enzyme em-
ploying GOLD docking software using the same X-ray crys-
tal structure of human placental microsomal aromatase (PDB 
ID: 3EQM) [78]. All the compounds were docked well into 
the active site of aromatase enzyme site and interacted with 
the cyclic ketone group with the heme of the aromatase. The 
most active compounds (Fig. 14) form a hydrogen bonding 
with Ser 478 or Asp 309 amino acids of the active site, 
which probably account, according the authors, for their bet-
ter activity compared to other analogs of the series [88]. 
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c = CN

d = OCH3  

Fig. (14). Structures of 6,8-dibromo-2-aryl-2,3-dihydroquinolin-

4(1H)-ones with most inhibitory activity against CYP19A1. 

 

4.3. Kinase Inhibitors  

Protein kinases are known to play important roles within 
the cellular processes of division, proliferation, metabolism, 
and apoptosis. Up or down regulation of protein kinases have 
been found in chronic myelogenous leukemia, gastrointesti-
nal stromal cancer, and various other sarcomas [89].  

To ascertain the potential of flavonoids as lead com-
pounds for cancer treatment as well as their role in cancer 
prevention, a large number of studies have been done using 
flavonoids as inhibitors of protein kinases. In this line of 
research, Lee and co-workers have compared resveratrol, a 
nonflavonoid compound and quercetin (Fig. 15), both pre-
sent in red wine. Using an inhibitory vitro assay against Rap-
idly Accelerated Fibrosarcoma (Raf1) and mitogen-activated 
protein kinase/extracellular signal-regulated kinase kinase 
(MEK1), together with docking calculations, these authors 
have identified the mode of action of these anticancer com-
pounds [90]. The extracellular signal-regulated kinase activa-

OH

HO

OH

O

O

HO

HO

HO

OH

OH

a b  

Fig. (15). Structures of resveratrol (a) and quercetin (b). 
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tion (ERK) is shown in various types of tumors [91]. The 
down-regulation of ERK, through the inhibition of upstream 
kinases such as Raf or MEK, is a feasible way for interven-
ing in carcinogenesis. The docking studies and structural 
analysis were performed using the computational program 
Insight II (Accelrys) with the crystal coordinates of MEK1 
(accession code 1S9J), which are available in the Protein 
Data Bank. These authors concluded the binding mode of 
resveratrol is similar to that of quercetin. Moreover, the 3’ 
position of resveratrol is located in the 3’ position of quer-
cetin. However, the absence of the hydroxyl group at the 3’ 
position of resveratrol does not lead to the formation of a 
hydrogen bond between resveratrol and the backbone amide 
group of Ser212 [90].  

The same authors calculated a docking model of 
kaempferol (figure k3 - c), which is a natural dietary flavon-
oid and also a phosphatidylinositol 3-kinase (PI3K) inhibitor 
[92]. PI3K is the major signaling component responsible for 
the downstream of several growth factor receptor tyrosine 
kinases. As a result, PI3K inhibitors attenuate epidermal 
growth factor [92]. The same computational program, In-
sight II (Accelrys, San Diego, CA) was used for the docking 
calculations and the crystal coordinates of PI3K in complex 
with ATP or quercetin (accession numbers 1E8X and 1E8W) 
bonds were used. Based on the previous data that kaempferol 
is an adenosine triphosphate (ATP)-competitive inhibitor, 
the authors docked the compound into the adenosine triphos-
phate-binding site. The high-level inhibitory activity of 
kaempferol may be because of hydrogen bonds between the 
carbonyl group at position 4 and the hydroxyl groups at posi-
tion 5 of the backbone of Val887 in the hinge region of 
PI3K.On the other hand, hydroxyl groups at positions 7’ and 
4’ establish hydrogen bonds with the side-chains of Lys890 
and Asp841, respectively, while the hydrophobic interaction 
with the side-chains of residues in the ATP-binding site [92]. 

Later on, these same authors reported another docking 
study suggesting kaempferol also inhibits UVB-induced cy-
clooxygenase-2 expression by suppressing the Src kinase 
activity [93]. The Src tyrosine kinase is a member of a super-
family of membrane associated non-receptor tyrosine 
kinases, which were identified as proto-oncogene mediators 
[94].  

The docking model was calculated using the program In-
sight II (Accelrys, San Diego, CA) and the crystal coordi-
nates of Src (accession code 1YOJ). The docking model 
suggested that kaempferol indeed interacts with the back-
bone atoms in the hinge region of Src, as other protein kinase 
inhibitors do. The hydroxyl group at the 5-position and the 
carbonyl group at the 4-position of kaempferol forms two 
hydrogen bonds with the backbone atoms of Met343 in the 
hinge region of Src. The authors also suggested that hy-
droxyl groups at the 4’- and 7-positions of kaempferol might 
establish additional hydrogen bonds with Glu312 and 
Asp350, respectively. Yet the hydrophobic residues in the 
ATP-binding site, including Ala295, Ala405, Leu395, 
Val325, Leu275, and Val283 interact with the inhibitor [93].  

Another interesting example is the glycogen synthase 
kinase-3b (GSK-3b). GSK-3b leads to a decrease in pancre-
atic cancer cell proliferation by abrogating the functional 
activity of nuclear factor jB (NFjB). In view of this, Johnson 

and co-workers tested flavonoids of citrus fruits [95] because 
of the previous epidemiologic knowledge that between the 
consumption of citrus fruits and decreased chances of pan-
creatic cancer occurrence. The in vitro studies conducted 
with flavonoids of these fruits inhibit the proliferation of 
human pancreatic cancer cells [96].  

The chemical structures of most citrus compounds were 
collected from the Kyoto Encyclopedia of Genes and Ge-
nomes database (http://www.genome.jp/kegg/) and/or were 
built in the Molecular Operating Environment program. 
Therefore, the energy was minimized using the MMFF94 
force-field.38 ligands were docked into the active site of the 
minimized-energy configuration of GSK-3b protein and a 
model was calculated by using the DOCK function within 
the Molecular Operating Environment program. The docking 
model indicated the flavonoids stabilize the GSK-3b active 
site because of hydrogen bonding with the amino acid resi-
dues Lys85 and Arg141. Moreover, the authors identified 
that flavonoids containing a hydroxyl groups that are avail-
able for hydrogen bonding with the amino acid residues in 
the enzyme contribute to provide stability, while large side 
groups, as such methoxy groups or sugar conjugations, are 
less suitable in providing stability (Fig. 16) [95].  

Another study aimed to identify the structural determi-
nants and the pharmacological core for prenyl flavonoids as 
PKB/Akt1 inhibitors [97]. PKB/Akt, the serine/threonine 
proteases, which belongs to the AGC family of kinases are 
molecular targets for cancer therapy since they protect can-
cer cells of apoptosis, increase cancer growth and cancer 
resistance [98]. In light of these findings, researches em-
ployed 24 compounds to build pharmacophore models, and 
therefore a virtual screening of an in-house database was 
determined. These researches tested 9 hits for in vitro studies 
of enzyme inhibition. They also used several computational 
docking programs: FlexiDock (Molecular Modelling System, 
Tripos Associates: St. Louis, MO, USA.), FlexX [71], 
LigandFit [99], CDOCKER [75] and Libdock [100], and six 
PKB/Akt1 ligand complex (PDBcode: 3CQU, 3CQW, 
3MV5, 3MVH, 3OCB and 3OW4) were retrieved from the 
Protein Data Bank (PDB, http://www.pdb.org). The flavon-
oids showed in Fig. (17) were the most potent inhibitors, 
with IC50 = 5.4 and 3.9 M, and lowest docking energies: -
3545.05 and -3766.5 kcal/mol, respectively [97]. 

The cyclin-dependent kinases (CDKs), each one with 
their respective regulatory cyclin, are involved in the regula-
tion of the cell cycle, apoptosis, and transcription, these en-
zymes are thus interesting targets for cancer therapy [101]. 

Another in silico study was carried out to underlay the 
mode of action in terms of molecular dynamic as well as the 
binding affinity of fisetin, apigenin, and chrysin (Fig. 18) to 
the cyclin-dependent kinase 6/cyclin D. Complexes were 
calculated [102] using the Flexible Docking module in the 
Discovery Studio 2.5 (Accerys, Inc.).  

The initial structure of the fisetin CDK6/cycD complex 
was taken from the Protein Data Bank (1XO2). The docking 
energies followed the same order of inhibitory affinity 
(fisetin>apigenin>chrysin), being in a good agreement with 
the experimental IC50 values of 0.85, 1.70 and 6.0 respec-
tively. Hydrogen bond formation and van der Waals interac-
tions seem to be important for the binding of these three 
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Fig. (16). Structures of luteolin (a), apigenin (b), quercetin (c), kaempferol (d), flavone (e), heseperetin (f), narigenin (g), nobiletin (h), tan-

geretin (i), rutin (j), narirutin (k) . 
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Fig. (17). Structures of potent prenylated flavonoids inhibitors of PKB/Akt1,(a) IC50 = 5.4 μM, apigenin (b) IC50 = 3.9μM. 
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Fig. (18). Structures of (a) fisetin, (b) apigenin, and (c) chrysin with IC50 values of 0.85, 1.70 and 6.0 respectively against CDK6/cycD com-

plex. 

 
different flavonoids for the CDK6/cycD. However, the bind-
ing strength of the flavonoid depends on the number and 
location of the hydroxyl groups as well as their orientation in 
the ATP binding pocket. To clarify this, structural modifica-

tions were performed in 7-position of the A ring of fisetin 
and the researchers observed that replacing it by a methyl 
amine group as well as the insertion of an acetamide group at 
the 4 -position on the B-ring are tolerated [102]. 
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A virtual screening study using docking approach and an 
in-house flavonoids database containing 2,620 compounds, 
including aurones, chalcones, flavones, flavanones, isofla-
vones, biflavonoids, anthocyanidins, dihydrochalcones and 
proanthocyanidins were tested against the p90 ribosomal S6 
kinase 2 (RSK2), a cancer-related protein [103]. The struc-
ture (PDB ID:3G51) was collected from the PDB Bank for 
virtual screening studies. The computational program 
GLIDE from the Schrodinger Suite 2011 was used for the 
docking simulations.  

Quercentim and kaempferol (Fig. 15 and 16, respec-
tively), were selected and their functional activity were con-
firmed using experimental assays. A docking simulation was 
performed using the flavonoid isorhamnetin and mitogen-
activated protein kinase kinase 1 (MEK1) (PDB: 1S9J) and 
the results show that hydrogen bonds were formed between 
isorhamnetin (Fig. 19) and the backbone of MEK1, including 
Val127 located the ATP-noncompetitive binding site and 
Ser212 in the activation loop and hydrophobic interactions 
with the side chain at Ile99, Phe129, Ile141, Phe209 and 
Leu118 [103]. 
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Fig. (19). Structure of flavonoid isorhamnetin. 

 

4.4. Others Targets and Multi-Target Studies 

Heat shock proteins (Hsps) are over-expressed proteins in 
human cancers. They are implicated to the cancer cell prolif-
eration, differentiation, invasion, metastasis, death, and rec-
ognition by the immune system [104]. 

Because of these pharmacological importance, docking 
study between18 flavonoids (flavones, flavonols, isofla-
vones, and flavanones) and the structure of the heat shock 

protein 90(HSP90) was studied in detail by using the compu-
tational program Ligandfit along to many other mathematical 
functions: Dockscore, PLP1, PLP2, and PMF [105]. The 
crystal structure of human Hsp90 receptor was collected 
from the Protein Data Bank (ID: 2BSM). From this work, it 
was interesting to note that the isoflavones led to high values 
of scores functions, but the docking poses of these com-
pounds were not located to the ATP binding site of HSP90. 
The authors proposed that the phenyl ring on position 3 has a 
rigid structure so that isoflavones would only bind to the 
outer domain. Quercetin (Fig. 16) had the lowest interaction 
energy in our molecular simulation. By molecular simula-
tion, luteolin (Fig. 16) showed the highest docking score of 
all tested flavonoids. 

Using the computational program Autodock, involving 
another HSP protein,70 kDa heat-shock protein (Hsp70), that 
regulates apoptosis in cancer cells, and green tea flavonoid 
(+)-epigallocatechin 3-gallate (Fig. 20) which induces apop-
tosis in numerous cancer cell lines were performed [106]. 
Two pharmacophore maps, which reproduced the docking 
model, were determined based on the hydrogen bonding in-
teractions and hydrophobic interactions. The scoring func-
tions (LigScore2, PLP1, and PLP2) were calculated for hits 
to establish a relationship between this pharmacophore and 
the set of twenty three naturally-occurring flavonoids and ten 
catechin based polyphenolic flavonoids extracted from green 
and black tea inhibitors using Cerius2. Only two flavonoids: 
myricetin (Fig. 9) and (+)-gallocatechin -(GC – Fig. 20) 
were selected as potent inhibitors. Three hydroxyl group of 
B-ring in myricetin and gallo group of GC formed important 
hydrogen bonds, and 7-OH of A-ring in myricetin and OH 
group of catechin moiety in GC participated in hydrogen 
bonding interactions [106].  

Some others structure approaches using docking and sev-
eral types of enzymes that were cancer related were per-
formed. Deschamps and co-workers a work [107] that use 
baicalein (Fig. 21) and apigenin (Fig. 18) and 15-human 
Lipoxygenase that is related to colorectal cancer [108]. 15-
hLO-1 homology model was created using the Protein Local 
Optimization Program. The software structures of apigenin 
(Fig. 18) and baicalein (Fig. 21) were prepared for docking 
using the LigPrep and computational program Glide to per-
form docking simulations. The authors verified that baicalein 
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Fig. (20). Structures of (a) (+)-epigallocatechin 3-gallate and (b) (+)-gallocatechin. 
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is a redox inhibitor against 15- hLO-1, which most likely 
binds directly to the catalytic iron through its catechol moi-
ety, while apigenin does not. 

A set of 9 natural flavonoid compounds which possess a 
plane configuration of cis C-4 ketone and C-5 hydroxy were 
submitted by molecular docking using AutoDock 3.0 [109]. 
The complex structure of human glyoxalase I (hGLO I), that 
is highly expressed in the most tumor cells and little in nor-
mal cells was obtained from the Protein Data Bank (PDB) 
(code 1FRO). The docking results show that hydroxyl 
groups at position 3’, 4’, 5’ (ring B) and 6 (ring A), struc-
tural features present in baicalein (Fig. 21), luteolin, 
kaempferol, quercetin (Fig. 16) and myricetin (Fig. 9) have 
positive contribution to inhibitory activity. 
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Fig. (21). Structure of baicalein. 

 
Apigenin (Fig. 16), tricin (Fig. 22) and 3 ,4 ,5 ,5,7-

pentamethoxyflavone (PMF – Fig. 22) were docked into the 
indomethacin-bound structure of cyclogenase COX-2, con-
sidered to be important mechanisms of colorectal cancer 

chemoprevention, (PDB entry: 4COX; ref. 20) and the ibu-
profen-bound structure of COX-1 (PDB entry: 1EQG; ref. 
21) using the molecular docking program GOLD 4.0 (22). 
Ligand docking suggests that all three flavones can occupy 
the active site of COX-2. The binding mode for apigenin and 
tricin is very similar, whereas PMF shows a different orien-
tation in the binding site. For PMF, tricin, and apigenin, the 
GOLD fitness scores, were 57.2, 52.8, and 51.3, respectively 
[110].  

A virtual screening using an automated docking study us-
ing CDOCKER (Accelrys Inc., San Diego, CA) with the 
CHARMm force field,450 flavonoids and human perox-
isome proliferator-activated receptor gamma hPPAR  (code: 
2PRG and 1K74) was performed by Lee and co-workers 
[111]. HPPAR  regulates the proliferation, apoptosis, and 
differentiation of various human cancer cells, including lung, 
breast, colon, and prostate cancer cells. Among the selected 
eight flavonoids (four flavones, two flavonols, and two 
isoflavones), the authors highlighted that compound 3,6-
dihydroxyflavone (Fig. 23) is a novel agonist of PPAR , 
with cytotoxic activity against human cervical and prostate 
cancer cells [111]. Other recent study of the same research 
group proposes a binding model of amentoflavone (Fig. 23), 
symmetric biflavonoid (homodimer of apigenins), and 
hPPAR  (code: 2PRG). Computations were performed using 
CDOCKER (Accelrys Inc., San Diego, USA) with the 
CHARMM force field. The docking results show that three 
hydrogen bonds and two hydrophobic interactions are re-
sponsible to the strong binding of amentoflavone to hPPAR  
[112]. 
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Fig. (22). Structures of (a) tricin and (b) 3 ,4 ,5 ,5,7-pentamethoxyflavone. 
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Fig. (23). Structures of (a) 3,6-dihydroxyflavone and (b) amentoflavone. 
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Docking results of P-glycoprotein, multidrug resistance 
and breast cancer resistance protein [113], and flavonoids 
aided 3D-QSAR studies [26]. The structures of the flavone 
derivatives and their biological activities of forty two com-
pounds were taken from the literature [114]. The authors 
used the most active compound to perform molecular dock-
ing studies using the computational program Autodock 4.0 
[115] and final structures were ranked according to the 
Autodock scoring function. The top binding mode was se-
lected and used for receptor-guided CoMFA and CoMSIA 
analysis [35]. 

Ehrman and co-workers described an interesting in silico 
study to select multi-target anti-inflammatory agents from a 
data set of 192 metabolites [116], including flavonoids, iso-
lated from over 50 Chinese herbs, using the computational 
program LigandScout and several targets: cyclo-oxygenases 
1 and 2 (COX), p38 MAP kinase (p38), c-Jun terminal-NH2 
kinase (JNK), which the inhibition is related to the treatment 
of cancer disease [117] and type 4 cAMP-specific phos-
phodiesterase (PDE4). Other multi-target study selected of 
28 plant-derived compounds, mainly flavonoids, that exhibit 
anticancer activity, were subjected to docking simulations, 
using AutoDock 3.0.5, with different enzymes and receptor 
proteins involved with cell cycle, cell growth, and DNA rep-
lication: cyclin-dependent protein kinase 2 (CDK-2), CDK-
6, DNA topoisomerases I and II, B-cell lymphoma 2 (Bcl-2), 
vascular endothelial growth factor receptor 2 (VEGFR-2), 
and the telomere: G-quadruplexes. (respective pdb codes: 
1DI8, 1XO2, 1T8I, 1ZXM, 2O2F, 2OH4, 1L1H). The 
authors focused into some structural features for every target 
based on docking results [118]. Several flavonoids were 
docked onto the proangiogenic peptides such as VEGF, hy-
poxia inducible factor (HIF-1a), and VEGFR2 from human 
origin [119]. Hypoxia inducible factor-1a (HIF-1a) is basi-
cally a hypoxia-induced transcription factor. Its expression 
has been reported to be elevated in many human cancers 
[120] ArgusLab 4.0.1. (Mark Thompson and Planaria Soft-
ware LLC) was used for performing molecular docking ex-
periments. The X-ray crystallographic structures of the hu-
man VEGF (1vpp/pdb), human HIF-1a (1yci/pdb) and hu-
man VEGFR2 (1ywn/pdb) were downloaded online 
(www.rcsb.org) from the Research Collaboratory for Struc-
tural Bioinformatics (RCSB). The authors highlighted the 
results obtained from genistein (Fig. 24), kaempferol (Fig. 
16), and quercetin (Fig. 16).  
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Fig. (24). Structure of genistein. 

 

CONCLUDING REMARKS AND FUTURE PERSPEC-
TIVES 

We have tabulated and discussed the most important 
structural information of anticancer flavonoids. A large 
number of studies of SAR, QSAR, 2D and 3D QSAR models 

have been calculated and determined in an attempt to iden-
tify and understand the rational basis behind the medicinal 
chemistry of these compounds.  

Most of these QSAR studies used structural descriptors, 
but we noted that the reason to choose a descriptor varies a 
lot and depends on the overall aim. For example, the potency 
of an antioxidant flavonoid is the largest benefit that these 
compounds provide to our health, including reducing cell 
damage, preventing cancer and inhibiting its advance. In 
computational studies that attempt to correlate the chemical 
structure of flavonoids with antioxidant activity; electronic 
descriptors and of enthalpy are selected. 

On the other hand, the importance of docking models to 
the medicinal chemistry of anticancer flavonoids has in-
creased in the last decade, especially to help in identifying 
the structural determinants responsible for the activity. 
Therefore, we also discussed the use of docking models, 
together with QSAR models, for the virtual screening of 
anticancer flavonoids. We tabulated here the most important 
examples of virtual screening determined for anticancer fla-
vonoids and we highlighted the structural features. The mode 
of action, the most potent anticancer flavonoids and hints for 
the structural design of anticancer flavonoids are revised in 
details and provided here.  

Future perspectives in the discovery of flavonoids with 
anticancer activity may be focused on the use of novel and 
recently reported QSAR studies, which allow simultaneous 
prediction and virtual screening of compounds with the de-
sired biological activity [24-26, 121-136]. These promising 
methodologies could be of great help in chemotaxonomic 
studies, the fast and efficient detection of flavonoids from 
different plant species, and at the same time, with the com-
puter-aided selection of these versatile natural products as 
anticancer agents. 
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LIST OF ABBREVIATIONS 

1TQA = Cytochrome P450 aromatase 

2D = Two dimensional 

3D = Three dimensional 

4-OHE2 = 4-hydroxyestradiol 

A549 = Adenocarcinomic human alveolar basal 
epithelial cells 

ANF = -naphthoflavone 

ATP = Adenosine triphosphate 

ABCG2 = ATP-binding cassette sub-family G mem-
ber 2 
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BCRP = Breast cancer resistance protein 

BPNN = Back-propagation neural network 

BRNN = Bayesian-regularized neural network 

CDKs = Cyclin dependent kinases 

CART = Configuration of classification and regres-
sion trees 

CHCD = Chinese Herbal Constituents Database  

ClogP  = Logarithm of partition coefficient (Lipo-
philicity) 

CoMFA = Comparative molecular field analysis 

CoMSIA = Comparative molecular similarity indices 
analysis 

ERK- I  = Extracellular signal-regulated kinase acti-
vation 

GAFF = General AMBER force field 

GSK-3b = Glycogen synthase kinase-3b 

HCT116 = Colon cancer cell lines 

HO8910 = Human epithelial ovarian cancer cells 

H-bond = Hydrogen bond 

K562 = Human erythromyeloblastoid leukemia cell 
line 

Kd = Dissociation constant 

LMO = Leave-many- out 

LOO = Leave-one-out 

MCF-7 = Breast cancer cell lines 

MEK1 = Mitogen-activated protein 
kinase/extracellular signal-regulated kinase 

MMFF94s = Merck Molecular Force Field 

MIFs = Molecular interaction fields 

MHBP = Molecular hydrogen bound potential (ac-
ceptor) 

MHBPd = Molecular hydrogen bound potential (do-
nor) 

MLPho = Hydrophobic molecular lipophilic potential 

MPSOCART = Globally optimal CART 

NFjB = Abrogating nuclear factor jB 

NF- B = Nuclear factor kappa-light-chain-enhancer 
of activated B cells 

q2 = Cross-validation correlation coefficient 

QSAR = Quantitative structure-activity relationship 

PI3K = Phosphatidylinositol 3-kinase 

PC-3 = Human prostate cancer cell lines 

PCs = Principal components 

PCA = Principal components analysis 

P-gp = P-glycoprotein 1 

Pim-1 = Proto-oncogene serine/threonine-protein 
kinase 

PLS = Partial Least Squares 

r 2 = Non-cross-validation coefficient 

Raf1 = Rapidly Accelerated Fibrosarcoma 

RF = Random Forest 

ROO• = Radical oxygen 

ROS = Reactive oxygen species 

RSK2 = Ribosomal S6 kinase 2 

SAR = Structure-activity relationship 

SKHep1 = Hepatocellular carcinoma 

SED = Substituent electronic descriptors 

TCM = Traditional Chinese medicine 

TNF  = Tumor necrosis factor  
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