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Although the vast majority of biological control agents is generally regarded as safe

for humans and environment, the increased exposure of agriculture workers, and

consumer population to fungal substances may affect the immune system. Those

compounds may be associated with both intense stimulation, resulting in IgE-mediated

allergy and immune downmodulation induced by molecules such as cyclosporin A and

mycotoxins. This review discusses the potential effects of biocontrol fungal components

on human immune responses, possibly associated to infectious, inflammatory diseases,

and defective defenses.
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INTRODUCTION

Phytopathogenic microorganisms are related to infestation of several crops resulting in economic
losses. The Peruvian fungal-like oomycete Phytophtora infestans a potato pathogen caused the Irish
famine and diaspora in the XIX century (Abad and Abad, 1997; Axel et al., 2012; Yoshida et al.,
2013). More recently, in Bahia—Brazil, the fungus Moniliophtora perniciosa, etiological agent of
witch’s broom, caused extensive economic losses in cocoa crops (Meinhardt et al., 2008; Teixeira
et al., 2015). The Trichoderma stromaticum spores comprise effective biocontrol agent for M.
perniciosa (de Souza et al., 2006). Although most microbiological control agents are generally
recognized as safe to humans and environment (Wang et al., 2004; Mommaerts et al., 2009),
some studies demonstrated that those agents imbalance mammalian immune system leading to
diseases such as allergy (Halpin et al., 1994). Given the socioeconomic impact of monocultures
(Roossinck and García-Arenal, 2015), infections and the environmental hazards of chemical
pesticides, biocontrol agents emerge as a strategic option and their increased use may cause
higher exposure of cocoa workers. Moreover, the high fungal persistence in the environment
(Scheepmaker and Butt, 2010), mainly spores (Darbro and Thomas, 2009), potentially causes
exposures of consumer population to fungal substances. Here, we review the eventual mammalian
immunological interactions triggered by fungal components and the association with infective and
inflammatory diseases.

AGRICULTURAL BIOCONTROL AGENT

Biopesticides comprise more selective activity against pests whereas chemical pesticides are
associated to pest resistance induction, requiring more applications, and residual toxic
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effects (Berg, 2009). The multiple modes of action of most
microbial biocontrol agents cause reduced resistance selection
by pathogens, insects, or weeds (Gardener and Fravel, 2002;
Alabouvette et al., 2006). The ability of biocontrol agents
to grow and reproduce, surviving for prolonged periods in
the environment generally in symbiotic consortia with hosts,
contributes to applications of lower bioagent amounts (Whipps,
2001). The decreased residual effect of biocontrol agents
compared to chemical pesticides is also related of effective agents
employing small quantities diminishing environment exposure
(Thakore, 2006; Gupta and Dikshit, 2010). Moreover, these
biological agents, take part of the ecosystem, reducing the impact
of their insertion in microbial community (Vázquez et al., 2000;
Tahat et al., 2010).

The biocontrol agents are classified as microbial and
biochemical pesticides (FAO, 1988). Microbial agents encompass
viruses or live bacteria, fungi, and protists (Chandler et al.,
2011). Biocontrol microbial agents may undergo different genetic
modifications to optimize their biopesticide activity (Chet and
Inbar, 1994; St Leger and Wang, 2010; Kowsari et al., 2014). On
the other hand, biochemical agents are characterized by non-
live parts of microbes such as single molecules or mixtures with
pesticide activity, including enzymes, and other macromolecules
(Chavan and Deshpande, 2013), hormones (Martínez-Medina
et al., 2014), and metabolites (Degenkolb and Vilcinskas, 2016).

Around 135 products are commercialized worldwide as
biocontrol agents (Chandler et al., 2011), including products
from 13 fungi. Some fungal biopesticide species are summarized
on Table 1. These species display variable pesticide action
modes including parasitism of plant-infecting nematodes by
Paecilomyces genus (Cabanillas and Barker, 1989; Castillo Lopez
et al., 2014), colonization of insect’s body cavities by several
Hypocreales species from Ascomycota causing the host death
(Tartar et al., 2005), environmental competition, parasitism with
others undesirable fungi, and stimulation of defense mechanisms
of plants by Trichoderma genus (Benítez et al., 2004). In addition,
several fungal endophytic species colonize internal plant tissues,
stimulating an important host defense mechanisms against
pathogens (Wani et al., 2015). Some fungal species show a
strong specificity for plant host, but analysis of host-specificity
is complex and misleading because in vitro experiments do not
completely simulate the natural environments (Stoeva et al.,
2012). Furthermore, this organism group presents significant
potential impact on the human and animal health due to
propagation of spores adapted to dispersion for resisting harsh
environmental conditions (Baxi et al., 2016).

BIOCONTROL AGENTS AND HUMAN
HEALTH

Although fungal biocontrol pose numerous benefits, these
agents can survive and reproduce in the environment, and so
they are aspirated or swallowed by humans or other animals
(Hansen et al., 2010; Luangsa-Ard et al., 2011). The increased
exposure to fungi or fungal molecules may affect human
health (Eduard et al., 2001). For instance, it is known that

some fungi used as biocontrol agents can compromise the
respiratory tracts of mammals (Madsen et al., 2007). Infections
by biocontrol agents, considered opportunistic pathogens are
common in immunocompromised patients, mainly submitted to
immunosuppressive therapy such as organ transplant recipients.
Disorders such as sinusitis and pulmonary lesions caused by T.
longibrachiatum and T. harzianum were reported in intestine,
liver and bone marrow transplant recipients especially in
neutropenic patients (Furukawa et al., 1998; Guarro et al., 1999;
Richter et al., 1999). T. longibrachiatum is the most common
species involved in Trichoderma infections (Trabelsi et al., 2010)
and its virulence factors include mycelial growth at 37 ◦C and
physiological pH, hemolytic activity and toxicity to mammalian
cells (Antal et al., 2005), extracellular protease(s) (Kredics et al.,
2004) as well as resistance to antifungal compounds such as
fluconazole, itraconazole, and amphotericin B (Singh et al., 1997;
Richter et al., 1999; Espinel-Ingroff, 2001; Dóczi et al., 2004).
Nevertheless, T. longibrachiatum was detected in sphenoidal
sinus infection in immunocompetent patient, only displaying
eosinophilia (Molnár-Gábor et al., 2013). Experimental models
with rodents are used to measure potential effects such as
allergenicity, toxicity, infectivity, and pathogenicity, in order
to evaluate biofungicide safety (US Environmental Protection
Agency (EPA), 1996).

Methods presented in the protocol of The Microbial Pesticide
Test Guidelines of the Environmental Protection Agency of the
USA (US Environmental Protection Agency (EPA), 1996) that
evaluate risks to humans and domestic animals are carried out
using live microorganisms such as Bacillus thuringiensis var
israelensis SH-14 in rats, Beauveria bassiana, and Paecilomyces
fumosoroseus in mice (Mier et al., 2005; Zimmermann, 2007;
Mancebo et al., 2011). Despite the rigorous risk assessment
protocol, epidemiologic studies have previously demonstrated
the correlation of exposure to fungal organisms and frequency
of diseases. For instance, the increased exposure to spores and
mycotoxins from Cladosporium species affects alveolar type
II cells, macrophages, and pulmonary surfactant production
and composition (Kuhn and Ghannoum, 2003). Human cells
exposure to Cladosporium extracts in vitro induces cytokines of
Th1 and Th2-type Thelper cell and eosinophils migration (Shin
et al., 2004). The exposure to 1500 Cladosporium spores/m3

reduced lung function in schoolchildren and the changes
appear to be associated with the small size of the spores that
are deposited in the human lower respiratory tract, and to
Cladosporium allergens (Chen et al., 2014). Among 389 patients
with suspected respiratory allergy and exposure to T. harzianum
(Das and Gupta-Bhattacharya, 2009), 105 showed positive skin
reaction against T. harzianum extract and IgE specific to fungal
proteins.

BIOCONTROL AGENTS AND IMMUNE
SYSTEM HOMEOSTASIS

Exposure to high concentrations of environmental fungal
spores can cause human disorders such as allergies and toxic
mold syndrome (Edmondson et al., 2005; Eduard, 2009). In
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TABLE 1 | Immunomodulatory biomolecules in biocontrol fungal.

Specie fungal biocontrol Phytopathogen Crop Immunomodulatory

biomolecules

References

Beauveria bassiana Bemisia tabaci Hedypathes

betulinus Tetranychus urticae

Chrysanthemum, citrus, horticulture,

cucumber; Eucalyptus, papaya, coffee,

soybean

Tartar et al., 2005

Cladosporium sp. Uromyces appenciculatus

Cronartium flaccidum

Peridermium pini

Beans, coffee, rice β-glucan Van Dyken et al., 2011

Paecilomyces sp. Citrus psyllid Spider mite,

Thrips, Whitefly

Apples and stonefruits, citrus, grapes, tree

nuts, strawberries, melons, cucurbits, herbs,

spices, beans

Cabanillas and Barker,

1989; Castillo Lopez et al.,

2014

Trichoderma polysporum Fusarium, Phytopthara,

Scelerotia,

Vegetables, fruits and berries herbs and

spices, ornamentals, Turf, forestry

Ciclosporin A Dreyfuss et al., 1976;

Benítez et al., 2004; Azam

et al., 2012Trichoderma harzianum

Trichoderma harzianum Sclerotina, Fusarium,

Rhizoctonia

Bean, soy, corn, strawberry, vegetables,

ornamentals

Gliovirin Benítez et al., 2004; Rether

et al., 2007

Trichoderma virens Sclerotium rolfsii, Rhizoctonia

solani, Pythium spp.

Sweet potato, pumpkin, corn, wheat, peanut,

Soybean seed, cotton seedlings and

Horticultural crops

Gliotoxin Brian and Hemming, 1945;

Lumsden et al., 1992;

Benítez et al., 2004;

Becker et al., 2016Trichoderma viride

Trichoderma stromaticum Moniliophthora perniciosa Cacao Spores de Souza et al., 2006;

Alves-Filho et al., 2011

agriculture, the application of biocontrol products containing
microbiological pest control agents (MPCAs) can increase the
exposure of workers to microbial agents (Hansen et al., 2010).
The exposure to indoor fungal spores and humidity seem to
be associated with an increased risk of asthma morbidity in
young children as well as people who have previously suffered
asthmatic attack (Baxi et al., 2016). Nevertheless, the importance
of exposure time, the potential of different fungal species and
molecular components responsible for damage and symptoms
are still unknown. A commonmechanism associated with allergy
triggered by biocontrol agents such as B. bassiana (Westwood
et al., 2005, 2006), Metarhizium anisopliae (Ward et al., 2011),
Paecilomyces and Trichoderma viride (Beezhold et al., 2008), and
Penicillium oxalicum (Kochar et al., 2014) is the production of
IgE against fungal molecules observed in animal models and
human patients.

In contrast to immune response exacerbation due to
stimulation of IgE production by common fungal allergens, a few
studies demonstrated that biocontrol agents can impair immune
system homeostasis through negative modulation. Mice exposed
to intranasal T. stromaticum spores employed in ex vivo assays
for cytokine measurements, revealed diminished IL-10 and IFN-
γ levels in bronchoalveolar lavage fluid and splenocyte cultures
(Alves-Filho et al., 2011). Besides that, phagocytes obtained from
thioglycolate-treated mice, exposed to T. stromaticum spores in
vitro showed downregulated production of nitric oxide (NO)
by inducible nitric oxide synthase (iNOS) and reactive oxygen
species (ROS) by neutrophils. In addition, both cell types display
decreased expression of Clec7a gene that codes the Dectin-1
receptor, Toll Like Receptor 2 (Tlr2), and Toll Like Receptor 4
(Tlr4). Hence, the in vitro and in vivo experiments carried out
with T. stromaticum suggested a possible negative modulation

mainly of the cell components of the murine innate immune
system.

Somemolecules from biocontrol fungal agents, that act during
the mycoparasitism or stimulating the defense mechanisms of
the host plant, have been previously identified as modulators
of the mammalian immune response (Table 1). For instance,
Cylindrocapon lucidum, Trichoderma polysporum currently
identified as Tolypocladium inflatum, Fusarium oxysporum, and
T. harzianun fungi produce cyclosporin A (CsA) (Dreyfuss
et al., 1976; Rodríguez et al., 2006; Azam et al., 2012). This
molecule is considered a virulence factor for including its
antifungal activity against the phytopathogen M. perniciosa,
and one of its intracellular targets is cyclophilin protein. CsA
activity assays over the pathogen M. perniciosa demonstrated
inhibition of basidiospore germination and mycelium growth
in vitro (Monzani et al., 2011). On the other hand, the
immunomodulatory function of CsA, due to its well-established
capacity to inhibit calcineurin, is associated to impaired activity
of the nuclear factor of activated T cells (NFAT) and reduced
activation, proliferation, and survival of lymphoid cells (Rovira
et al., 2000). This immunosuppressant action of CsA is
interesting because of its potential use for preventing acute
rejection in organ transplantation (Borel et al., 1976; Levy,
2001). Another important action mechanism of CsA consists
of inhibition of NO production by destabilization of the
iNOS mRNA (Hämäläinen et al., 2009). Furthermore, CsA
downregulate the signaling pathway of the NFκb transcription
factor through the inhibition of TLR4 expression (Dusting et al.,
1999; Rovira et al., 2000; Ge et al., 2012). The impact of CsA from
environmental fungi in human health remains inconclusive since
it is detected in crops such as maize (Mogensen et al., 2011),
but the molecule displays slow and incomplete oral absorption
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(Ptachcinski et al., 1986). Detailed studies are required to clarify
whether cyclosporin A produced by biocontrol fungi accumulate
in cultures and if the consumption of these cultures comprises
risks to the homeostasis of the human immune system.

In addition to cyclosporin, peptaibiotics, siderophores, and
epidithiodioxopiperazine (ETPs)make up the group of secondary
metabolites named non-ribosomal peptides (NRPs) and, the
success of Trichoderma species as biocontrol agent is at least
in part due to the ability of these fungi to produce these
biotechnology relevant metabolites (Zeilinger et al., 2016).
Particularly the toxicity of the ETPs gliovirin and gliotoxin is
due to the eventual inactivation of proteins by interaction of
their disulfide bridges to thiol groups (Gardiner et al., 2005).
In mammals, modulation of the immune response by gliovirin
is related to decreased expression of tumor necrosis factor
in consequence of inhibition of the AP1 and NFκb-factors
transcription (Rether et al., 2007). In addition, gliotoxin, a
well-studied metabolite, inhibits several mechanisms of innate
immunity including phagocytosis, activation of the NADPH
oxidase complex responsible for the generation of ROS andNFκB
nuclear factor, indispensable for the production of cytokines and
reactive nitrogen species such as nitric oxide (Figure 1; Lumsden
et al., 1992).

Gliotoxin was firstly identified in Trichoderma virens (Brian
and Hemming, 1945; Lumsden et al., 1992) and is produced
by several fungal species (Scharf et al., 2016). This molecule
showed antibiotic activity against plant pathogens such as
Rhizoctonia solani, Pythium ultimum, Sclerotinia sclerotiorum
(Vargas et al., 2014), and Botrytes cinerea (Lorito et al., 1994). The
action mechanisms against phytopathogens include cytoplasmic
material leakage (necrosis), inhibition of sporangia germination,
and mycelial growth (Roberts and Lumsdem, 1990; Lorito et al.,
1994; Lewis et al., 2005; Scharf et al., 2016).

Although there is little evidence of the involvement of
gliotoxin in human disease, exposure to this toxin appears
to occur during infections by pathogenic fungi such as
Aspergillus fumigattus and Candida albicans, but evidence of
immunosuppressive activity associated with intoxication due
to fungal infection remains inconclusive (Bondy and Pestka,
2000). The antigen-presenting cells including thioglycolate-
elicitedmouse peritoneal macrophages exposed to gliotoxin show
inhibited phagocytosis and adhesion capacity (Müllbacher and
Eichner, 1984). J774 cells and human macrophages differentiated
from THP1 monocytes showed increased phagocytosis of A.
fumigatus gliP∆ mutant conidia, a strain depleted of the gliP
gene, responsible for the biosynthesis of gliotoxin, as compared to
wild-type A. fumigatus conidia and conidia gliPR (reconstituted
gliP). Both J774 and THP1 incubated with exogenous gliotoxin,
display significantly reduced uptake of conidia of the three
strains, indicating that the gliotoxin produced by A. fumigatus
inhibits phagocytosis by macrophages (Jia et al., 2014). Low
concentrations of gliotoxin (30–100 ng/mL) inhibit zymosan
phagocytosis by human polymorphonuclear leukocytes. In
addition, the compound induces neutrophil cell shrinkage, F-
actin collapse in the perinuclear region and disappearance of
filopodia without affecting the protein polymerization process,
but this reorganization does not seem to correlate with

phagocytosis reduction (Coméra et al., 2007). Recently it has
been shown that gliotoxin affects phagocytosis, a key macrophage
function, modifying the homeostasis of phosphatidylinositol
3,4,5-trisphosphate and interfering in integrin activation and
actin dynamics (Schlam et al., 2016; Figure 1).

This gliotoxin inhibits neutrophil ability to produce O•−

2 ,
especially when added prior to the activation of the NADPH
oxidase by phorbol myristate acetate (PMA; Yoshida et al., 2000;
Tsunawaki et al., 2004). This inhibition is a consequence of the
reduction of translocation levels of cytosolic Phox components
to membrane rather than of oxidase assembly (Tsunawaki et al.,
2004; Figure 1). The immunoregulatory effects of gliotoxin on
mononuclear cells are due at least in part, to their potential to
block the degradation of the most abundant inhibitory subunit
of nuclear factor κB (NF-κB), IκBα (Figure 1; Pahl et al., 1996;
Kroll et al., 1999). Recently the high throughput screening
(HTS) technique with Tb3+ -Fluorescein FRET was used to
demonstrate that gliotoxin selectively binds at the catalytic
center of the linear ubiquitin chain assembly complex (LUBAC)
inhibiting ubiquitin chain formation and signal-induced NFκB
activation (Sakamoto et al., 2015). The reduction in IκBα

degradation results in inhibition of cytoplasmic activation and
nuclear translocation of NFκB in different cells. Gliotoxin
induces negative modulation of pro-inflammatory cytokines
associated with down-regulation of genes, which in turn are
associated with inhibition of NFκB, and result in increased
susceptibility to microorganisms (Kupfahl et al., 2006). In human
monocyte cell lines, gliotoxin favors a cytokine imbalance with
relevant inhibition of IL-10 production (Johannessen et al., 2005).

The detection and relevance of gliotoxin from biocontrol
fungi to human health, particularly for occupationally exposed
individuals were scarcely studied. There is no in-depth, bona
fide knowledge regarding symptoms and doses that cause
susceptibility in individuals and little is known about the presence
of this toxin in bioaerosols. Studies determined a total of
0.22 microgram of gliotoxin in extract of 6.2 × 108 spores
from Aspergillus fumigatus mechanically disintegrated (Schulz
et al., 2004). The presence of gliotoxin has been described in
biocontrol fungal species of the genus Trichoderma including
T. viride and T. virens (Brian and Hemming, 1945; Anitha and
Murugesan, 2005). Thus, inhalation of aerosols containing high
concentrations of spores may comprise a potential health hazard.

Cell wall components such as chitin and β-glucan were
identified in biocontrol fungi spores and are extensively
studied during biocontrol-pathogen-plant interaction. These
carbohydrate polymers may induce modulatory activity affecting
the production of both pro-inflammatory and anti-inflammatory
cytokines (Sorrell and Chen, 2009; Koller et al., 2011;
Brodaczewska et al., 2015; Becker et al., 2016). Chitin a
polymer of beta-(1,4)-linked N-acetylglucosamine (GlcNAc) and
β-glucan, glucose polymers linked together by1-3 linear β-
glycosidic are pathogen-associated molecular patterns (PAMPs)
able to modulate the innate immune response of various
cells including monocytes, macrophages, neutrophils, and NK
through of pattern recognition receptors (PRRs), including
TLR-2 and C-Type Lectin Receptors (CLR) such as Dectin-1,
Dectin-2, andManose Receptor (Barreto-Bergter and Figueiredo,
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FIGURE 1 | Schematic representation of major phagocyte modulation pathway induced by gliotoxin from fungal: spore internalization by phagocytes

is an essential mechanism to prevent hyphae formation by pathogenic fungi. Gliotoxin triggers (1) F-actin disorganization, inhibition of phagocytosis by

deregulation of PtdIns (3,4,5)P3 turnover, resulting in integrin and actin cytoskeleton dysfunction, preventing pseudopodia emission (2). Gliotoxin also blocks

translocation of cytosolic phox proteins (p40, p67, p47) that bind to membrane proteins of phagolysosomes, gp91 and p22 to form NADPH oxidase, inhibiting

reactive oxygen species (ROS) formation (3). Dectin-1-mediated ubiquitin chain formation (4) and NF-κB activity (5) are negatively modulated by gliotoxin.

Phosphorylation of IκBα leads to its ubiquitination and proteasomal degradation (6). Active heterodimer p50-p65 is then released and translocated to the nucleus (7),

binds to specific κB sites and either alone or in combination with other transcription factors, activates NF-κB target gene expression of the innate (8) and inflammatory

immune response (9).

2014; Brodaczewska et al., 2015). These interactions between
PAMPs and specific PRRs upregulate innate responses and
Th1 responses in humans and animals (Rop et al., 2009;
Muzzarelli, 2010). However, chitin is able to induce the Th2
immune response, exacerbating allergic reactions (Gregory
and Lloyd, 2011; Dubey et al., 2015). In addition, soluble
β-glucan from Candida albicans reverses or impairs the
activation of human monocytes cultured with endotoxin. This
β-glucan effect is associated to the suppressed production of
the type 1 cytokines IL-2 and IFN-γ by cultured human
PBMC (Nakagawa et al., 2003). The dual immunological
effect de chitin and β-glucan is due at least in part to
features such as particle size, tissue in which the contact
with macrophage takes place, environmental cytokines and

surface availability of spore β-glucans (Da Silva et al., 2009;
Mintz-Cole et al., 2013; Alvarez, 2014). Furthermore, chitin
induces accumulation of innate immune cells expressing IL-4
including eosinophils and basophils in tissue from mice and
these events are associated with allergy (Reese et al., 2007).
Specifically, fungal chitin from dust collected from the homes
of asthmatic individuals, induces marked eosinophilic lung
infiltration particularly whenever associated with β-glucans (Van
Dyken et al., 2011).

As the structure of the fungal cell wall and the PAMPs
exposed at the cell surface are genus-, species- and morphotype-
dependent (Brodaczewska et al., 2015), detailed studies on
modulation of the mammals immune system induced by
biocontrol agent spores and mycotoxins is relevant to medicine
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and biotechnology. The compromised immune system may
favor the development of opportunistic pathogens (Fishman,
2011) and even neoplastic diseases (Barle et al., 2014). The
immunosuppressive molecules may comprise chemotherapy
agents for autoimmunity and hypersensitivity reactions (Thell
et al., 2014). Although there is little research approaching
the health effects of biocontrol fungi, the preliminary data
indicate that the impact upon immune system can be more
significant than previously supposed. Henceforth, further studies
are required to identify the compounds of these fungi,
accumulation during crop storage, amount ingested or inhaled
by the consumer/worker, mechanisms associated with immune

modulation, eventual health hazards as well as potential
biotechnological use of such compounds.
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